blg?:k hat

LISSA 2

PinDemonium

a DBI-based generic unpacker for Windows executables

Sebastiano Mariani - Lorenzo Fontana - Fabio Gritti - Stefano D'Alessio

° (3 @
Malware Analysis black hat
e Staticanalysis: Analyze the e Dynamicanalysis: Analyze
malware without executing it the malware while it is

executed inside a controlled
environment

° n @
Malware Analysis black hat
e Staticanalysis: Analyze the e Dynamicanalysis: Analyze
malware without executing it the malware while it is
executed inside a controlled
environment
Static Analysis

e Analysis of disassembled code
e Analysis of imported functions
e Analysis of strings

A8 v

——
Maybe in a fairy tale... biSdkhat

USA 2016

What if the malware tries to hinder the analysis process?

Packed Malware

e Compressor encrypt the original code —» Code and strings analysis
impossible

e Obfuscate the imported functions —» Analysis of the imported
functions avoided

TS 22 &5

Solutions oDt
Manual approach Automatic approach
e Verytime consuming e Fastanalysis
e Toomany samplesto be e Scale well on the
analyzed every day number of samples that
has to be analyzed every
e Adaptthe approachto day
deal with different
techniques e Single approach to deals
with multiple
techniques

-

Overview

PinDemonium s a
generic unpacker
based on Intel PIN, a

dynamic binary
instrumentation
framework (DBI)

Whatis a DBI? biSakhat

USA 2016

Control Flow Graph

Basic Block < BB

1
yd — —> Trace
BB3 BB2
BB4
BB6
BB7 BBS8
BB10

BB11 BB12

Whatis a DBI? biSekhat

USA 2016

Code Cache

BB1

Trace is copied in the code
BB3 BB2 cache >

BB9

BB10

BB11 BB12

Whatis a DBI? bl&akhat

USA 201&
Code Cache
BB1
DBI provides the possibility to add
BB3 BB2 user defined code after each:

- Instruction

- Basic Block

- Trace

BB9

BB10

BB11 BB12

Whatis a DBI? bl&akhat

USA 2016

Code Cache

BB1

DBI starts executing the program
BB3 BB2 from the code cache

BB9

BB10

BB11 BB12

Keyidea

H OW Canan Exploit the functionalities of the

DBI to identify the common

unpa Ck er be behaviour of packers:

they have to write new code in

2 ~D memory and eventually execute

USA 2016

blé‘;’:k hat

Our stairway to heaven

iginal
malware

Or

Packed
malware

Our journey

begins

We begin to build
the foundation of
our system

14

Detect WxorX memory regions miédxna

USA 2016

Let’'s exploit the key idea behind a generic unpacker
implementing the WxorX handler module

Concepts: Idea:

e Write Interval (WI): range of Track each instruction of the
continuously written program:
addresses

e Write instruction: get the target
address of the write and update

the write interval consequently.
e WpzxorXlaw broken:

instruction written by the e All instructions: check if the EIP

program itself and then is inside a write interval present

executed in the write set. If the condition is
met then the WxorX law is
broken.

Detect WxorX memory regions sina

USA 2016

Steps:

Current . .
instr. PinDemonium

Write set

0x412000 0x402000 0x401000

0x413000 0x403000 0x402000

Legend:

- : Instruction with its EIP

Start addr.

: Write instruction and its
ranges

End addr.

Detect WxorX memory regions sina

PinDemonium

Write set

Current
instr.
0x412000 0x402000 0x401000
0x413000 0x403000 0x402000

Write interval 1

0x401000 - 0x402000

Legend:

- : Instruction with its EIP

Start addr.

: Write instruction and its
ranges

End addr.

USA 2016

Steps:

1. The currentinstructionisa
write, no WI present, create
the new WI

Detect WxorX memory regions sina

Legend:

Current

instr.

PinDemonium

Write set

0x412000

0x413000

0x402000

0x403000

Write interval 1

0x401000 - 0x403000

- : Instruction with its EIP

End addr.

Start addr.

: Write instruction and its
ranges

USA 2016

Steps:

1. The currentinstructionisa
write, no WI present, create
the new WI

2. The currentinstructionisa
write, the ranges of the
write overlaps an existing
WI, update the matched WI

Detect WxorX memory regions sina

Legend:

Current
instr.

PinDemonium

Write set

0x412000

0x413000

Write interval 1

0x401000 - 0x403000

- : Instruction with its EIP

End addr.

Start addr.

: Write instruction and its
ranges

Werite interval 2

0x412000 - 0x413000

USA 2016

Steps:

1.

The current instruction is a
write, no WI present, create
the new WI

The current instruction is a
write, the ranges of the
write overlaps an existing
WI, update the matched WI

The current instruction is a
write, the ranges of the
write don't overlap any WI,
create a new WI

Detect WxorX memory regions sina

Current
instr.

Legend:

- : Instruction with its EIP

Start addr.

: Write instruction and its
ranges

End addr.

PinDemonium

Write set

Write interval 1

Werite interval 2

0x412000 - 0x413000

USA 2016

Steps:

1. The currentinstructionisa
write, no WI present, create
the new WI

2. The currentinstructionisa
write, the ranges of the
write overlaps an existing
WI, update the matched WI

3. The currentinstructionisa
write, the ranges of the
write don't overlap any WI,
create a new WI

4. The EIP of the current

instruction is inside a WI,
WxorX law broken!

DUMP THE MEMORY!

Ok the core of

the problem
has been
resolved...

... but we have just
scratch the
surface of the
problem. Let's
collect the results
obtained so far...

21

T —
Dump the program correctly uifdnat

USA 2016

In order to dump the program we have exploited the capabilities of our
dumping module and Scylla

PinDemonium

Instrumented St ep S

program memory

1. The execution ofa
written address is
detected

Main Module

EIP = Written Memory

Dump the program correctly uifdnat

USA 2016

In order to dump the program we have exploited the capabilities of our
dumping module and Scylla

PinDemonium ——— Scylla
Instrumented - Step S
progam memory)

1 1. The execution ofa
written address is
detected

2. PinDemonium calls
Scylla
Main Module
\/
EIP)

Written Memory

Dump the program correctly uifdnat

USA 2016

In order to dump the program we have exploited the capabilities of our
dumping module and Scylla

PinDemonium ——— Scylla
Instrumented - Step S
program memory)
1 1. The execution of a
written address is
3 detected
2. PinDemonium calls
_ Scylla
Main Module 3. Scylla gets the
v — addresses of the main
EIP = Written Memory module

T —
Dump the program correctly uifdnat

USA 2016

In order to dump the program we have exploited the capabilities of our

PinDemonium ——— Scylla
L
Instrumented
program memory
1
Main Module
\/
EIP)

Written Memory

dumping module and Scylla

Main Module

Written Memory

Steps:

1.

The execution of a
written address is
detected

PinDemonium calls
Scylla

Scylla gets the
addresses of the main
module

Scylla dumps the
main module along
with the written
addresses on a file

Have we

already Nope...
finished?

Unpacking on the heap

blg.c’:k hat

USA 2016

What if the original code is written on the heap?

PinDemonium

Instrumented
program memory

Main Module

Written Memory

Steps:

Unpacking on the heap

blg.c’:k hat

USA 2016

What if the original code is written on the heap?

PinDemonium — Scylla
L

Instrumented

program memory

1
4
3
Main Module e
\/
e | tew | N
Written Memory

Steps:

1.

The execution of a
written address is
detected

PinDemonium calls
Scylla

Scylla gets the
addresses of the main
module

Scylla dumps the
main module

WRONG!

Unpacking on the heap bifihat

USA 2016

The OEP doesn’t make sensel!

w' CFF Explorer VII - [interheap_0.exe]
File Settings ?

2 H @ J,*” inderheap: Diexe: |

-
Member Offset Size Value Meaning
= T File: interh 0.
E=lIE e e e Magic 000000FS8 Word 0108 PE32
— =l Dos Header
=l Nt Headers MajorLinkerVersion D00DD0OFA Byte 0A
iz File Header
Zl Optional Header MinorLinkerVersion (QO0000FE Byte 00
- SizeOfCode 000000FC Dword 00003A00
— =l Section Headers [x]
— () Import Directory SizeOflnitializedData | 00000100 Dword 00003600
— [)Resource Directory

— [Debug Directory
— %, Address Converter

. AddressOfEntryPoint | 00000108 01ES0000
— 4 Dependency Walker
— % Hex Editor BaseOfCode 0000010C 00001000

Solution

Add the heap memory
range in which the
WxorX rule has been
broken as a new section
inside the dumped PE!

1.

3.

Unpacking on the heap

blgc’zk hat

USA 2016

Keep track of write-
intervals located on the
heap

Dump the heap-zone
where the WxorXrule is
broken

Add it as a new section
inside the PE

Set the OEP inside this new
added section

Unpacking on the heap

The OEP is correct!

bIg?:k hat

USA 2016

w#' CFF Explorer VII - [interheap_0.exe]

File Settings ?

3 SV

interheap_0.exe

T ——

& FIFile: interheap_0.exe
— & Dos Header

[z Nt Headers

Izl File Header

1zl Optional Header

|zl Data Directories [x]

— =] Section Headers [x]

— () Import Directory

— [Z)Resource Directory

—) Debug Directory

— %, Address Converter
— . Dependencv Walker

Member Offset Size Value Meaning
Magic 000000F8 Word 0108 PE32
MajorLinkerVersion O00000FA Byte 0A

MinorLinkerVersion 000000FB Byte 00

SizeOfCode 000000FC Dword 00003A00
SizeOflnitializedData | 00000100 Dword 00003600
SizeOfUninitializedD... | 00000104 Dweord 00000000
AddressOfEntryPoint | 00000108 Dword 0001A000 .heap

T —
Unpacking on the heap bifihat

USA 2016

However, the dumped heap-zone can contain references to addresses
inside other not dumped memory areas!

‘ IDA View-A (%] Q] Hex View-1 % Structures % [E] Enums &
-heap:8841n08088 assume es:nothing, ss:nothing, ds: data, fs:nothing, gs:nothing
-heap:8041Aa080808
-heap:8041na06080 public start
-heap:08041A80808 start: : DATA XREF: HEADER:B8848682D4To

. -heap:8841A8080 add eax, 1
-heap:8841A0883 add [
-heap:8841A8846 mou eax, ds-22B8060668h
-heap:8841A0888 mou ax, 22CH80808h

' |.heap:8041n010 call eax
S AP B Y B . S o o e e e T T i

" |-heap:-8841a812 duw @

-heap:B8841Aa6814 align 286h

' |-heap:8041Aa200 dd 388h dup({?)
-heap:8841A288 _heap ends
-heap:8841A4288
-heap:-8841420808
-heap:-8041A2080 end start

T —
Unpacking on the heap bifihat

USA 2016

1. Retrieve all the currently
allocated heap-zones

2. lIdentify the new allocated
or modified ones by

Solution comparing the MD5 of
their previous content

Dump all the heap-zones

. , 3. Dump these heap-zones
and load them in IDA in

order to allow static 4. Create new segments
analvsis! inside the .idb for each of
ysis: them

5. Copy the heap-zones
content inside these new
segments!

T —
Unpacking on the heap bifihat

USA 2016

IDA View-A B | © Hex View-1 % Structures (% S Enums %] Imports xS
-heap:8841n008 assume es:seqB21, ss:seqB21, ds: data, fs:nothing, gs:nothing
-heap:@841A0068
-heap:@841A008 public start
-heap:@8B41ABA0 start: ; DATA XREF: HEADER:@64862D4To
-heap:0841n000 add eax, 1
-heap:0841a 083 add eax, 2
-heap: 08410086 mov eax, dword ptr ds:afaaa_@ ; "AAARY
-heap:8841n 0608 nov eayx, 22C0088h
heap:@s4ingia call eax |
cNEapEABEIRRTAL 5 - s e e e R R s oW oL _ii__iii__iiiii_o_.__
.heap:B041A@12 dw 0 :
-heap:0841ag1s align 286h : Segment type: Regular
-heap: 6641200 dd 388h dup(?) ; Segnent alignment '' can not be represented in assembly
-heap: B641A200 _heap ends seq 21 seqment para private '' use32
-heap: 66417200 assume cs:seqf21
ceqB10: 020000080 ; ==========================oo=os=o=s s0rg 22C8088h
seg810:62000600 assume es:nothing, ss:nothing, ds:nothing, fs:nothing, gs:nothing
seqB10:020808088 ; Segment type: Regular %OF edx, edx
=eqB810: 82008088 ; Segment alignment '' can not be re push eaR
seqB10:626D0000 seqi1@ seqment para private uscus

Two down,

two still
standing!

Reverser we are
coming for you!
Let's deobfuscate
some imported
functions...

35

Deobfuscate the IAT biSakhat

USA 2016

Extended Scylla functionalities:

e [AT Search : Used Advanced and Basic IAT search
functionalities provided by Scylla

o IAT Deobfuscation: Extended the plugin system of
Scylla for IAT deobfuscation

Deobfuscate the IAT

0x04000000

0x04000012

0x04001000

0x04000012

ADD EAX, 4

MOV EBP, [ESP]

JMP 0x04001000

POP EBP

PUSH EAX

JMP 08x75000010

'

ADD EAX, 4

MOV EBP, [ESP]

POP EBP

PUSH EAX

SUB ECX, 1

MessageBox + 0x14

MessageBox + 0x18

0x75000000

Messagebox
Entry
point

blgc’zk hat

USA 2016

Steps:

1. Isthe address 0x04000012
inside the DLL memory
region? No, continue until
next jump...
ins_delta = @

2. Isthe address 0x04001000
inside the DLL memory
region? No, continue until
next jump...
ins_delta = 8

3. Istheaddress 0x75000010
inside the DLL memory
region? YES! Let’s patch the
IAT entry
ins_delta = 16

[0x4000012] = (0x75000010 - 16) =
0x75000000

CORRECT!

One last step...

Too many dumps,
too many programs
making too many
problems... Can't
you see? This is the
land of confusion

38

T —
Recognize the correct dump wéxnat

USA 2016

We have to find a way to identify the correct dump

Idea 1. Entropy difference

Give for each dump a
“quality” index using the
heuristics defined in our
heuristics module

T —
Recognize the correct dump wéxnat

USA 2016

We have to find a way to identify the correct dump

Idea 1. Entropy difference

2. Farjump

Give for each dump a
“quality” index using the
heuristics defined in our
heuristics module

T —
Recognize the correct dump wéxnat

USA 2016

We have to find a way to identify the correct dump

Idea 1. Entropy difference

2. Farjump

Give for each dump a
“quality” index using the
heuristics defined in our
heuristics module

3. Jump outer section

T —
Recognize the correct dump wéxnat

USA 2016

We have to find a way to identify the correct dump

Idea 1. Entropy difference
Give for each dump a 2. Farjump
“quality” index using the 3

o . , . Jump outer section
heuristics defined in our

heuristics module 4 Yararules

Yara Rules

bIg?:k hat

USA 2016

Yara is executed on the dumped memory and a set of
rulesis checked for two main reasons:

Detecting Evasive code

Detect patterns of evasive
code which may have
prevented the complete
unpacking of the malware

like Anti-VM and Anti-Debug
techniques

Identifying malware family

When a known malware
family rule is matched after
multiple unpacking layers
probably this is the correct
dump

Advanced Problems

You either die
a hero or you
live long

enough to see
yourself
become the
villain

Exploit PIN
functionality to
break PIN

A.k.a. Self
modifying code

45

Self modifying code

ins_1
ins_2
wrong_ins_3
ins_4
1ns_5

Code
Cache

Main
module of
target
program

blga:k hat

USA 2016

Steps:

Self modifying code

Collected
trace

ins_2

———————————————

ins_1
ins_2

crash_ins_3
ins_4
ins_5

blga:k hat

USA 2016

Steps:

1. Thetraceis
collected in the code
cache

Self modifying code

Execution
starts

» 1ns_1T
ins_2
crash_ins_3

ins_4

ins_1
ins_2
crash_ins_3
ins_4
1ns_5

blga:k hat

USA 2016

Steps:

1.

The trace is
collected in the code
cache

The execution starts
in the code cache

Self modifying code

Execution
starts

» 1ns_1T
ins_2

crash_ins_3

ins_4

ins_1
ins_2

ins 3 =
ins_4
ins_5

Patch

blga:k hat

USA 2016

Steps:

1.

The trace is
collected in the code
cache

The execution starts
in the code cache

The wrong
instruction is
patched in the main
module

Self modifying code

Execute
here

1ns_1T
ins_2
—» crash_ins_3
ins_4

1ns_1T
1ins_2
ins 3
ins_4
1ns_5

blga:k hat

USA 2016

Steps:

1.

The trace is
collected in the code
cache

The execution starts
in the code cache

The wrong
instruction is
patched in the main
module

Thewrong_ins_3 is
executed

CRASH!

Solution

Self modifying code

ins_1(write)
ins_2

crash_ins_3
ins_4

List of written
addresses

ins_1
ins_2
crash_ins_3
ins_4
ins_5

Steps:

tﬂgigkdmaf

USA 2016

——
Self modifying code biSdkhat

USA 2016
Steps:

1. Insertone analysis routine
before each instruction and
another one if the

B CheckEipWritten() instruction is a write
P MarkWrittenAddress()
ins_1 (write)
1 P CheckEipWritten()
ins_2 List of written
p CheckEipWritten() addresses
crash_ins_3
P CheckEipWritten()
ins_4

ins_1
ins_2
crash_ins_3
ins_4
ins_5

T —
Self modifying code biS&khat
Steps:

1. Insertone analysis routine
before each instruction and
another one if the
instruction is a write

CheckEipWritten()
[P ——MarkWrittenAddress()
ins_1 (write)
CheckEipWritten()

ins_2 List of written
CheckEipWritten() addresses
crash_ins_3
CheckEipWritten() 2
ins_4 - crash_ins_3_addr

2. Execute the analysis routine
before the write

ins_1
ins_2
crash_ins_3
ins_4
ins_5

——
Self modifying code

IP

—

CheckEipWritten()

MarkWrittenAddress()

ins_1 (write)
CheckEipWritten()
ins_2
CheckEipWritten()
crash_ins_3
CheckEipWritten()
ins_4

List of written
addresses

crash_ins_3_addr

ins_1
ins_2

ins_3 -

ins_4
ins_5

blackhat
USA 2016

Steps:
1. Insertone analysis routine

before each instruction and
another one if the
instruction is a write

Execute the analysis routine
before the write

The crash_ins_3is patched
in the main module

Self modifying code

IP

CheckEipWritten()
MarkWrittenAddress()
ins_1 (write)

—— > CheckEipWritten()
ins_2
CheckEipWritten()
crash_ins_3
CheckEipWritten()
ins_4

List of written
addresses

crash_ins_3_addr

ins_1
ins_2
ins_3
ins_4
ins_5

blackhat
USA 2016

Steps:
1. Insertone analysis routine

before each instruction and
another one if the
instruction is a write

Execute the analysis routine
before the write

The crash_ins_3is patched
in the main module

Checkifins 2 addressis
inside the list

NOPE...

IP

Self modifying code

CheckEipWritten()
MarkWrittenAddress()
ins_1 (write)
CheckEipWritten()
ins_2

—— 9 CheckEipWritten()
crash_ins_3
CheckEipWritten()
ins_4

List of written
addresses

ins_1
ins_2
ins_3
ins_4
ins_5

blg.c’:k hat

USA 2016

Steps:

1.

Insert one analysis routine
before each instruction and
another one if the
instruction is a write

Execute the analysis routine
before the write

The crash_ins_3is patched
in the main module

Checkifins 2 addressis
inside the list

NOPE..

Checkif crash_ins 3 address
is inside the list

YES!

——
Self modifying code biSdkhat

USA 2016
Steps:

1. Insertone analysis routine
before each instruction and

another one if the
CheckEipWritten() Instruction i1s a write
MarkWrittenAddress
ins_l‘l (write) 0 2. Execute the analysis routine
CheckEipWritten() . . before the write
ins_2 List of written _ .
CheckEipWritten() addresses 3. Theilcrash_lns_z lsi patched
_ ____cr_asﬂ_lni_fa‘_ _d_y 1n the main module
CheckEipWritt
¢ l~p i en(')' . 4. Checkifins 2 addressis
IS crash_ins_3_addr inside the list
NOPE...
] 5. Checkifcrash ins 3 address
ins_1 is inside the list
ins_2
. I
in 3_3 YES!
ins_4 6. Stop the execution
ins_5

Self modifying code

| CheckEipWritten()

1 MarkWrittenAddress()

I dins_1 (write)
—», CheckEipWritten()

I ins_2

I CheckEipWritten()

: ins_3

I CheckEipWritten()

! ins_4

List of written
addresses

crash_ins_3_addr

ins_1
ins_2
ins_3
ins_4
ins_5

blackhat
USA 2016

Steps:
1. Insertone analysis routine

before each instruction and
another one if the
instruction is a write

Execute the analysis routine
before the write

The crash_ins_3is patched
in the main module

Checkifins 2 addressis
inside the list

NOPE...

Checkif crash_ins 3 address
is inside the list

YES!
Stop the execution
Recollect the new trace

CORRECT!

Are there
other ways to

break the Process Injection
WxorX rule?

——
Process Injection bibekhat

USA 2016

Inject code into the memory space of a different process
and then execute it

e Dllinjection e Process hollowing

e Reflective Dll injection e Entry point patching

OUR WxorX TRACKER IS NO MORE SUFFICIENT!

Solution

——
Process Injection bibekhat

USA 2016

Identify remote writes to other processes by hooking
system calls:

e NtWriteVirutalMemory
e NtMapViewOifSection

Identify remote execution of written memory by
hooking system calls:

e NtCreateThreadEx
e NtResumeThread
e NtQueueApcThread

Finally for the SWAG!

127.0.04

Ox41a0ec
0Ox41a0ed

Ox41a0ef
0x41a0f3

OEP : 0x41a0f3

S —
Experiments bibekhat

USA 2016

- Test 1: test our tool against the same binary packed
with different known packers.

> Test 2 : test our tool against a series of packed
malware sample collected from VirusTotal.

Experimentl: biS&khat
known packers

ct
v v v v v X v

WinRAR.exe / / / / / x / /

Xcom | PEloc | ASProte | ASPack | eXpress | exe32pac | beropac | Hyperio | PeSpin
p k ct or ker
ker n
v t t v t v v v v

WinRAR.exe v : : v ‘ v v v v

MessageBox.
exe

MessageBox.

exe

— Original code dumped but Import directory not reconstructed

Experiment 2: biS&khat
wild samples
Number of packed (checked manually) samples
1066

Unpacked and

150 14

Unpacked but not
working 139 13

258 24

Experiment 2: bibekhat

wild samples
Number of packed (checked manually) samples

1066

Unpacked and —
63%

150 14 B
Unpacked but not
working 139 13
258 24

More advanced IAT
> obfuscation techniques
are not handled

Packers which re-
encrypt / compress
code after its execution
are not supported

Limitations

Evasion techniques are
not handled

Conclusions

Generic unpacker based
on a DBI

Able toreconstruct a
working version of the
original binary

Able to deal with IAT
obfuscation and dumping
on the heap

17 common packers
defeated

63% of random samples
correctly unpacked
(known and custom
packers employed)

The source code is available at

https://github.com/Seba0691/PINdemonium

https://github.com/Seba0691/PINdemonium
https://github.com/Seba0691/PINdemonium

