
PinDemonium
a DBI-based generic unpacker for Windows executables

Sebastiano Mariani - Lorenzo Fontana - Fabio Gritti - Stefano D’Alessio

Malware Analysis

22

● Dynamic analysis : Analyze
the malware while it is
executed inside a controlled
environment

● Static analysis : Analyze the
malware without executing it

Malware Analysis

33

● Dynamic analysis : Analyze
the malware while it is
executed inside a controlled
environment

● Static analysis : Analyze the
malware without executing it

Static Analysis

● Analysis of disassembled code
● Analysis of imported functions
● Analysis of strings

Maybe in a fairy tale...

What if the malware tries to hinder the analysis process?

Packed Malware
● Compress or encrypt the original code Code and strings analysis

impossible
● Obfuscate the imported functions Analysis of the imported

functions avoided

4

??

4

Solutions

● Very time consuming

● Too many samples to be
analyzed every day

● Adapt the approach to
deal with different
techniques

● Fast analysis

● Scale well on the
number of samples that
has to be analyzed every
day

● Single approach to deals
with multiple
techniques

Manual approach Automatic approach

55

All hail

PinDemonium

6

PinDemonium is a
generic unpacker
based on Intel PIN, a
dynamic binary
instrumentation
framework (DBI)

Overview

77

What is a DBI?

88

Trace

Control Flow Graph

Basic Block BB1

BB3 BB2

BB4

BB6

BB7 BB8

BB9

BB10

BB11 BB12

What is a DBI?

99

BB1

BB3 BB2

BB4

BB6

BB7 BB8

BB9

BB10

BB11 BB12

Code Cache

BB1

BB3 BB2

Trace is copied in the code
cache

What is a DBI?

1010

BB1

BB3 BB2

BB4

BB6

BB7 BB8

BB9

BB10

BB11 BB12

Code Cache

BB1

BB3 BB2

DBI provides the possibility to add
user defined code after each:

- Instruction
- Basic Block
- Trace

User Defined
Code

What is a DBI?

1111

BB1

BB3 BB2

BB4

BB6

BB7 BB8

BB9

BB10

BB11 BB12

Code Cache

BB1

BB3 BB2

DBI starts executing the program
from the code cache

User Defined
Code

How can an
unpacker be
generic?

Key idea

Exploit the functionalities of the
DBI to identify the common

behaviour of packers:
they have to write new code in

memory and eventually execute
it

12

Our stairway to heaven

Packed
malware

Original
malware

D
et

ec
t w

ri
tt

en
 a

n
d

th
en

ex

ec
u

te
d

m
em

or
y

re
gi

on
s

D
u

m
p

th
e

m
em

or
y

co
rr

ec
tl

y

D
eo

bf
u

sc
at

e
th

e
IA

T

R
ec

og
n

iz
e

th
e

co
rr

ec
t

du
m

p
am

on
g

m
an

y

1313

We begin to build
the foundation of
our system

Our journey
begins

1414

Detect WxorX memory regions

Concepts:

● Write Interval (WI): range of
continuously written
addresses

● WxorX law broken:
instruction written by the
program itself and then
executed

Idea:

Track each instruction of the
program:

● Write instruction: get the target
address of the write and update
the write interval consequently.

● All instructions: check if the EIP
is inside a write interval present
in the write set. If the condition is
met then the WxorX law is
broken.

Let’s exploit the key idea behind a generic unpacker
implementing the WxorX handler module

1515

Detect WxorX memory regions

Write set

Current
instr.

0x401000
-

0x402000

0x402000
-

0x403000

0x412000
-

0x413000
0x401000

PinDemonium

EIP value

Start addr.
-

End addr.

Legend:

: Write instruction and its
ranges

: Instruction with its EIP

1616

Steps:

Detect WxorX memory regions

17

Write set

Current
instr.

0x402000
-

0x403000

0x412000
-

0x413000
0x401000

EIP value

Start addr.
-

End addr.

Legend:

: Write instruction and its
ranges

: Instruction with its EIP

0x401000 - 0x402000

Write interval 10x401000
-

0x402000

17

Steps:

1. The current instruction is a
write, no WI present, create
the new WI

PinDemonium

Detect WxorX memory regions

18

Write set

Current
instr.

0x402000
-

0x403000

0x412000
-

0x413000
0x401000

PinDemonium

EIP value

Start addr.
-

End addr.

Legend:

: Write instruction and its
ranges

: Instruction with its EIP

Write interval 1

0x401000 - 0x403000

18

Steps:

1. The current instruction is a
write, no WI present, create
the new WI

2. The current instruction is a
write, the ranges of the
write overlaps an existing
WI, update the matched WI

Detect WxorX memory regions

19

Write set

Current
instr.

0x412000
-

0x413000
0x401000

PinDemonium

EIP value

Start addr.
-

End addr.

Legend:

: Write instruction and its
ranges

: Instruction with its EIP

Write interval 1

0x401000 - 0x403000

0x412000 - 0x413000

Write interval 2

19

Steps:

1. The current instruction is a
write, no WI present, create
the new WI

2. The current instruction is a
write, the ranges of the
write overlaps an existing
WI, update the matched WI

3. The current instruction is a
write, the ranges of the
write don’t overlap any WI,
create a new WI

Detect WxorX memory regions

20

Steps:

1. The current instruction is a
write, no WI present, create
the new WI

2. The current instruction is a
write, the ranges of the
write overlaps an existing
WI, update the matched WI

3. The current instruction is a
write, the ranges of the
write don’t overlap any WI,
create a new WI

4. The EIP of the current
instruction is inside a WI,
WxorX law broken!

DUMP THE MEMORY!

Write set

Current
instr.

0x401000

PinDemonium

EIP value

Start addr.
-

End addr.

Legend:

: Write instruction and its
ranges

: Instruction with its EIP

Write interval 1

0x400000 - 0x403000

0x412000 - 0x413000

Write interval 2

20

… but we have just
scratch the
surface of the
problem. Let’s
collect the results
obtained so far...

Ok the core of
the problem
has been
resolved...

2121

Dump the program correctly

Steps:

1. The execution of a
written address is
detected

1

In order to dump the program we have exploited the capabilities of our
dumping module and Scylla

2222

Instrumented
program memory

Main Module

Written MemoryEIP

 PinDemonium

Instrumented
progam memory

Dump the program correctly

Steps:

1. The execution of a
written address is
detected

2. PinDemonium calls
Scylla

2
Scylla

In order to dump the program we have exploited the capabilities of our
dumping module and Scylla

2323

1

Main Module

Written MemoryEIP

 PinDemonium

Dump the program correctly

Steps:

1. The execution of a
written address is
detected

2. PinDemonium calls
Scylla

3. Scylla gets the
addresses of the main
module

3

In order to dump the program we have exploited the capabilities of our
dumping module and Scylla

2424

Instrumented
program memory

2
Scylla

1

Main Module

Written MemoryEIP

 PinDemonium

Dump the program correctly

Steps:

1. The execution of a
written address is
detected

2. PinDemonium calls
Scylla

3. Scylla gets the
addresses of the main
module

4. Scylla dumps the
main module along
with the written
addresses on a file

In order to dump the program we have exploited the capabilities of our
dumping module and Scylla

2525

3

Instrumented
program memory

2
Scylla

1

Main Module

Written MemoryEIP

 PinDemonium

4

Main Module

Written Memory

Nope...
Have we
already
finished?

2626

What if the original code is written on the heap?

Unpacking on the heap

Steps:

2727

Instrumented
program memory

Main Module

EIP

PinDemonium

Written Memory

Heap

What if the original code is written on the heap?

Unpacking on the heap

2828

Instrumented
program memory

Main Module

EIP

PinDemonium

Written Memory

Heap

3

Scylla

4

Main Module

Steps:

1. The execution of a
written address is
detected

2. PinDemonium calls
Scylla

3. Scylla gets the
addresses of the main
module

4. Scylla dumps the
main module

WRONG!

1

2

The OEP doesn’t make sense!

Unpacking on the heap

2929

Unpacking on the heap

Solution

Add the heap memory
range in which the
WxorX rule has been
broken as a new section
inside the dumped PE!

1. Keep track of write-
intervals located on the
heap

2. Dump the heap-zone
where the WxorX rule is
broken

3. Add it as a new section
inside the PE

4. Set the OEP inside this new
added section

3030

Unpacking on the heap

3131

The OEP is correct!

Unpacking on the heap

3232

However, the dumped heap-zone can contain references to addresses
inside other not dumped memory areas!

Unpacking on the heap

Solution

Dump all the heap-zones
and load them in IDA in
order to allow static
analysis!

1. Retrieve all the currently
allocated heap-zones

2. Identify the new allocated
or modified ones by
comparing the MD5 of
their previous content

3. Dump these heap-zones

4. Create new segments
inside the .idb for each of
them

5. Copy the heap-zones
content inside these new
segments!

3333

Unpacking on the heap

3434

Reverser we are
coming for you!
Let’s deobfuscate
some imported
functions...

Two down,
two still
standing!

3535

Extended Scylla functionalities:

● IAT Search : Used Advanced and Basic IAT search
functionalities provided by Scylla

● IAT Deobfuscation : Extended the plugin system of
Scylla for IAT deobfuscation

Deobfuscate the IAT

3636

Deobfuscate the IAT
Steps:

1. Is the address 0x04000012
inside the DLL memory
region? No, continue until
next jump…
ins_delta = 0

2. Is the address 0x04001000
inside the DLL memory
region? No, continue until
next jump…
ins_delta = 8

3. Is the address 0x75000010
inside the DLL memory
region? YES! Let’s patch the
IAT entry
ins_delta = 16

[0x4000012] = (0x75000010 - 16) =
0x75000000

CORRECT!

1

2

3

3737

0x04000012

ADD EAX, 4

MOV EBP, [ESP]

JMP 0x04001000

POP EBP

PUSH EAX

JMP 0x75000010

MOV EBP, [ESP]

POP EBP

PUSH EAX

SUB ECX, 1

ADD EAX, 4

MessageBox + 0x14

MessageBox + 0x18

0x04000000

0x04000012

0x04001000

0x75000000
Messagebox

Entry
point

Too many dumps,
too many programs
making too many
problems… Can’t
you see? This is the
land of confusion

One last step...

3838

Recognize the correct dump

Idea

Give for each dump a
“quality” index using the
heuristics defined in our
heuristics module

1. Entropy difference

We have to find a way to identify the correct dump

3939

Recognize the correct dump

1. Entropy difference

2. Far jump

We have to find a way to identify the correct dump

4040

Idea

Give for each dump a
“quality” index using the
heuristics defined in our
heuristics module

Recognize the correct dump

Idea

Give for each dump a
“quality” index using the
heuristics defined in our
heuristics module

1. Entropy difference

2. Far jump

3. Jump outer section

We have to find a way to identify the correct dump

4141

Recognize the correct dump

Idea

Give for each dump a
“quality” index using the
heuristics defined in our
heuristics module

1. Entropy difference

2. Far jump

3. Jump outer section

4. Yara rules

We have to find a way to identify the correct dump

4242

Yara Rules

4343

Detecting Evasive code

Detect patterns of evasive
code which may have
prevented the complete
unpacking of the malware
like Anti-VM and Anti-Debug
techniques

4343

Identifying malware family

When a known malware
family rule is matched after
multiple unpacking layers
probably this is the correct
dump

Yara is executed on the dumped memory and a set of
rules is checked for two main reasons:

Advanced Problems

Exploit PIN
functionality to
break PIN

A.k.a. Self
modifying code

You either die
a hero or you
live long
enough to see
yourself
become the
villain

4545

Self modifying code

Steps:

4646

ins_1
ins_2

wrong_ins_3
ins_4
ins_5

Code
Cache

Main
module of

target
program

Self modifying code

Steps:

1. The trace is
collected in the code
cache

4747

ins_1
ins_2

crash_ins_3
ins_4
ins_5

ins_1
ins_2

crash_ins_3
ins_4

Collected
trace

Self modifying code

Steps:

1. The trace is
collected in the code
cache

2. The execution starts
in the code cache

4848

ins_1
ins_2

crash_ins_3
ins_4
ins_5

ins_1
ins_2

crash_ins_3
ins_4

Execution
starts

Self modifying code

Steps:

1. The trace is
collected in the code
cache

2. The execution starts
in the code cache

3. The wrong
instruction is
patched in the main
module

4949

ins_1
ins_2
ins_3
ins_4
ins_5

ins_1
ins_2

crash_ins_3
ins_4

Patch

Execution
starts

Self modifying code

Steps:

1. The trace is
collected in the code
cache

2. The execution starts
in the code cache

3. The wrong
instruction is
patched in the main
module

4. The wrong_ins_3 is
executed

CRASH!

5050

ins_1
ins_2
ins_3
ins_4
ins_5

ins_1
ins_2

crash_ins_3
ins_4

Execute
here

Solution

Self modifying code

5252

ins_1
ins_2

crash_ins_3
ins_4
ins_5

ins_1(write)
ins_2

crash_ins_3
ins_4

List of written
addresses

Steps:

Self modifying code

5353

ins_1
ins_2

crash_ins_3
ins_4
ins_5

CheckEipWritten()
MarkWrittenAddress()

ins_1 (write)
CheckEipWritten()

ins_2
CheckEipWritten()

crash_ins_3
CheckEipWritten()

ins_4

1
List of written

addresses

Steps:

1. Insert one analysis routine
before each instruction and
another one if the
instruction is a write

Self modifying code

5454

ins_1
ins_2

crash_ins_3
ins_4
ins_5

CheckEipWritten()
MarkWrittenAddress()

ins_1 (write)
CheckEipWritten()

ins_2
CheckEipWritten()

crash_ins_3
CheckEipWritten()

ins_4

List of written
addresses

crash_ins_3_addr
2

IP

Steps:

1. Insert one analysis routine
before each instruction and
another one if the
instruction is a write

2. Execute the analysis routine
before the write

Self modifying code

5555

ins_1
ins_2
ins_3
ins_4
ins_5

CheckEipWritten()
MarkWrittenAddress()

ins_1 (write)
CheckEipWritten()

ins_2
CheckEipWritten()

crash_ins_3
CheckEipWritten()

ins_4

List of written
addresses

crash_ins_3_addr
3

IP

Steps:

1. Insert one analysis routine
before each instruction and
another one if the
instruction is a write

2. Execute the analysis routine
before the write

3. The crash_ins_3 is patched
in the main module

Self modifying code

5656

ins_1
ins_2
ins_3
ins_4
ins_5

CheckEipWritten()
MarkWrittenAddress()

ins_1 (write)
CheckEipWritten()

ins_2
CheckEipWritten()

crash_ins_3
CheckEipWritten()

ins_4

List of written
addresses

crash_ins_3_addr

4

IP

Steps:

1. Insert one analysis routine
before each instruction and
another one if the
instruction is a write

2. Execute the analysis routine
before the write

3. The crash_ins_3 is patched
in the main module

4. Check if ins_2 address is
inside the list

NOPE…

Self modifying code

5757

ins_1
ins_2
ins_3
ins_4
ins_5

CheckEipWritten()
MarkWrittenAddress()

ins_1 (write)
CheckEipWritten()

ins_2
CheckEipWritten()

crash_ins_3
CheckEipWritten()

ins_4

List of written
addresses

crash_ins_3_addr

5

IP

Steps:

1. Insert one analysis routine
before each instruction and
another one if the
instruction is a write

2. Execute the analysis routine
before the write

3. The crash_ins_3 is patched
in the main module

4. Check if ins_2 address is
inside the list

NOPE…

5. Check if crash_ins_3 address
is inside the list

YES!

Self modifying code

5858

ins_1
ins_2
ins_3
ins_4
ins_5

CheckEipWritten()
MarkWrittenAddress()

ins_1 (write)
CheckEipWritten()

ins_2
CheckEipWritten()

crash_ins_3
CheckEipWritten()

ins_4

List of written
addresses

crash_ins_3_addr

6

Steps:

1. Insert one analysis routine
before each instruction and
another one if the
instruction is a write

2. Execute the analysis routine
before the write

3. The crash_ins_3 is patched
in the main module

4. Check if ins_2 address is
inside the list

NOPE…

5. Check if crash_ins_3 address
is inside the list

YES!

6. Stop the execution

Self modifying code

5959

ins_1
ins_2
ins_3
ins_4
ins_5

CheckEipWritten()
MarkWrittenAddress()

ins_1 (write)
CheckEipWritten()

ins_2
CheckEipWritten()

ins_3
CheckEipWritten()

ins_4

List of written
addresses

crash_ins_3_addr

7

Steps:

1. Insert one analysis routine
before each instruction and
another one if the
instruction is a write

2. Execute the analysis routine
before the write

3. The crash_ins_3 is patched
in the main module

4. Check if ins_2 address is
inside the list

NOPE…

5. Check if crash_ins_3 address
is inside the list

YES!

6. Stop the execution

7. Recollect the new trace

CORRECT!

Process Injection

Are there
other ways to
break the
WxorX rule?

6060

Process Injection

Inject code into the memory space of a different process
and then execute it

OUR WxorX TRACKER IS NO MORE SUFFICIENT!

6161

● Dll injection

● Reflective Dll injection

● Process hollowing

● Entry point patching

Solution

Process Injection

Identify remote writes to other processes by hooking
system calls:

● NtWriteVirutalMemory
● NtMapViewOfSection

Identify remote execution of written memory by
hooking system calls:

● NtCreateThreadEx
● NtResumeThread
● NtQueueApcThread

6363

Finally for the SWAG!

Experiments

➔ Test 1 : test our tool against the same binary packed
with different known packers.

➔ Test 2 : test our tool against a series of packed
malware sample collected from VirusTotal.

6565

Experiment 1 :
known packers

Upx FSG Mew mpress PeCompa
ct

Obsidium ExePacker ezip

MessageBox.
exe

WinRAR.exe

Xcom
p

PEloc
k

ASProte
ct

ASPack eXpress
or

exe32pac
ker

beropac

ker

Hyperio

n

PeSpin

MessageBox.
exe

WinRAR.exe

66

Original code dumped but Import directory not reconstructed

66

Experiment 2 :
wild samples

N° %

Unpacked and
working 519 49

Unpacked but
Different behaviour 150 14

Unpacked but not
working 139 13

Not unpacked 258 24

67

Number of packed (checked manually) samples
 1066

67

Experiment 2 :
wild samples

N° % of all

Unpacked and
working 519 49

Unpacked but
Different behaviour 150 14

Unpacked but not
working 139 13

Not unpacked 258 24

6868

63%

Number of packed (checked manually) samples
 1066

DEMO

More advanced IAT
obfuscation techniques
are not handled

Packers which re-
encrypt / compress
code after its execution
are not supported

Evasion techniques are
not handled

Limitations

70

Able to reconstruct a
working version of the
original binary

Able to deal with IAT
obfuscation and dumping
on the heap

17 common packers
defeated

Conclusions

Generic unpacker based
on a DBI

63% of random samples
correctly unpacked
(known and custom
packers employed)

71

The source code is available at

https://github.com/Seba0691/PINdemonium

https://github.com/Seba0691/PINdemonium
https://github.com/Seba0691/PINdemonium

Thank you!

