
Black Hat USA 2016

PinDemonium: a DBI-based

generic unpacker for Windows

executables

Sebastiano Mariani, Lorenzo Fontana, Fabio Gritti, Stefano D’Alessio

1

Contents

1 Introduction 2

2 Approach 6

2.1 Dynamic Binary Instrumentation 6

2.2 Approach overview . 7

2.3 Approach details . 8

2.3.1 Written addresses tracking 8

2.3.2 WxorX addresses notifier 9

2.3.3 Dumping process . 12

2.3.4 IAT Fixing and Import Directory Reconstruction . . . 15

2.3.5 Heuristics description 18

3 Implementation details 23

3.1 System architecture . 23

3.1.1 PIN . 24

3.1.2 Scylla . 28

3.2 System details . 29

3.2.1 WxorX handler Module 29

3.2.2 Hooking Module . 32

3.2.3 Dumping module . 36

3.2.4 IAT search and reconstruction Module 37

3.2.5 IAT Fixing and Import Directory Reconstruction . . . 38

3.2.6 Heuristics implementation 42

II

CONTENTS 1

4 Experimental validation 44

4.1 Thresholds evaluation . 44

4.1.1 Long jump threshold survey 45

4.1.2 Entropy heuristic threshold survey 46

4.2 Experiment 1: known packers 47

4.3 Experiment 2: unpacking wild samples 49

4.3.1 Dataset . 49

4.3.2 Setup . 49

4.3.3 Results . 50

References 53

Chapter 1

Introduction

Nowadays malware authors, in order to hinder the analysis process, are in-

creasingly using anti-analysis tools called packers. These tools can deeply

change the structure of a program by obfuscating its code and resources,

making automatic static analysis practically impossible and manual static

analysis (i.e., reverse engineering) very hard. In this work we focus on how

to automatically unpack a Windows executable and reconstruct a working

version of it, exploiting the capabilities of a DBI framework (Intel PIN), in

a way that is flexible with respect to the packer used by the malicious de-

veloper. Our goal is to leverage the fact that every packed executable has

to unpack itself at run-time, in order to fulfill its goals. This run-time un-

packing process differs from packer to packer, and its complexity can make

it very hard to be predictable. Besides that, every unpacking routine shares

a common behavior: it must write the new code in memory and then redi-

rect the execution to it. Recognizing this process is the core of the modern

analysis systems aimed to extract the original program code from a packed

binary: these systems are commonly called generic unpackers. In order to

be complete, the main problems that these tools must resolve are the cor-

rect detection of the Original Entry Point (OEP) of the program (i.e., where

the real malicious code starts) and the reconstruction of a de-obfuscated

version of it with a correct Import Directory (the list of the imported Win-

dows libraries and functions), that implicitly hides the problem of detecting

the Import Address Table (IAT) inside the process memory (i.e., finding the

3

structure that contains all the resolved addresses of the imported functions in

the process memory). The former problem can be faced only using heuristics,

since understanding algorithmically when the unpacking process is finished

is a not decidable problem; different works proposed clever ideas that range

from the use of the entropy to the detection of particular patterns of code.

The latter problem is usually faced by recognizing the IAT pattern in mem-

ory (a series of addresses that points to nearby memory locations) and then

dereferencing the addresses found in that position in order to discover the

related APIs. However, this process is usually hindered by the so called IAT

obfuscation techniques, that complicate the reconstruction of an Import Di-

rectory. Few of the analysis tools developed until now try to reconstruct a

working version of the original binary, and none tries to combine together

all the heuristics proposed in literature in order to collect useful informa-

tion to increase the probability to detect the OEP of the binary. However,

we made the consideration that combining together multiple heuristics can

overcome the limitations of a single one and give a more precise indication of

the correct dump that can include the OEP. Moreover, the majority of the

current generic unpackers limit themselves to dump the program memory

at the OEP, while others are only a support for Anti-Virus (AV) malware

detection; for both of them the reconstruction of a de-obfuscated binary is

out of scope either because this require an additional step that brings lots

of new problems or because it is simply not needed for the purpose of the

tool. Our approach in building PinDemonium exploits the general idea of a

generic unpacker: tracking the written addresses in order to identify written

and then executed memory regions and, after this condition is met, making a

dump of the code at this moment and try to find all the imported functions in

order to reconstruct a working program. We have overcome the limitations

of existing generic unpackers by taking care also of dynamic unpacking of

code on the heap and by defeating some of the IAT obfuscation techniques

employed by malware. Moreover, since our strategy produces as final result

different reconstructed binaries, we have introduced many OEP detection

heuristics and unified them in a synergy aimed to identify the best candidate

for being the correct working de-obfuscated program. Different approaches

exist in order to build a generic unpacker: debuggers, kernel modules, hyper-

4

visor modules and Dynamic Binary Instrumentation (DBI) frameworks. In

this work we choose to explore the possibilities offered by a Dynamic Binary

Instrumentation (DBI) framework which allows a complete control over the

analyzed program at a very fine granularity (i.e., every instruction can be

inspected and modified). In particular, we choose PIN, since it is one of the

most complete and well documented DBIs available. The core component of

PinDemonium keeps track of instructions executed from previously written

addresses, even inside external processes, in order to correctly identify new

unpacked layers or eventually the layer that contains the OEP of the original

packed program. When a written and then executed instruction is detected

(and other conditions aimed to void too many dumps are met), we trigger a

dump of the process by exploiting an external project that we have decide to

include in our tool: Scylla. We have modified Scylla in both its core compo-

nent: the PE Reconstruction module and the IAT search and reconstruction

Module. The former has been enhanced in order to take care also of situ-

ations in which the new unpacked code is positioned on dynamic memory

regions such as the heap, while the latter has been modified in order to allow

the analyst to write its own deobfuscator and integrate it inside our tool. In

order to save bit of performance and simplify the process of recognize written

and executed code, we avoid tracking meaningless instructions usually not

related to the unpacking process such as writes on the stack (since this is

not a common behavior observed in packers) and writes on the Process En-

vironment Block (PEB). Due to the deep differences among packers in their

packing and run-time unpacking routines, a full generic unpacking algorithm

that can fit all of them and can correctly reconstruct a working de-obfuscated

program is really hard to develop, so we have decided to implement a series

of ad-hoc techniques in order to take care also of particular run-time unpack-

ing strategies that we have identified in some packers. These techniques can

be enabled or not using a set of flags that can be passed to PinDemonium

when starting the instrumentation process. In order to validate our work

we have conducted two experiments, the first one is aimed to demonstrate

the generality of our unpacking process against two known programs packed

with 15 different known packers. With these tests we want to demonstrate

that PinDemonium can extract the original program code from its packed

5

version independently of the packer employed to obfuscate the binary. The

second experiment has the goal to demonstrate the effectiveness of PinDemo-

nium against samples collected in the wild, packed with both known packers

and not known ones. In these tests we have configured PinDemonium in

the most generic way as possible and we have automatized the unpacking

process over 1,066 malware collected from Virus Total. The final results of

the latter experiment have been manually validated in order to discover if a

working de-obfuscated program has been produced or not. The final results

of this experiment show that PinDemonium manage to reconstruct a work-

ing de-obfuscated binary for 63% of the collected samples. These results can

be further raised by resolving some of the PinDemonium limitations that we

have identified and for which we have thought possible solutions proposed

as future works. In conclusion, PinDemonium is a tool that can offer an un-

packing service aimed to speed up the work of professional malware analysts

in their daily battle against malicious packed programs.

Chapter 2

Approach

2.1 Dynamic Binary Instrumentation

Dynamic Binary Instrumentation is a technique for analysing the behaviour

of a binary application through the injection of instrumentation code. The in-

strumentation code can be developed in an high level programming language

and is executed in the context of the analysed binary with a granularity up

to the single assembly instruction. The injection of instrumentation code is

achieved by implementing a set of callbacks provided by the DBI framework.

The most common and useful callbacks are:

• Instruction callback: invoked for each instruction.

• Image load callback: invoked each time an image (Dynamic Loaded

library (DLL) or Main image) is loaded into memory.

• Thread start callback: invoked each time a thread is started.

Besides the callbacks the DBI framework allows to intercept and modify

operative system Application Programming Interfaces (APIs) and system

calls and this is very useful to track some behaviours of the binary, like the

allocation of dynamic memory areas.

2.2. Approach overview 7

2.2 Approach overview

Our tool exploits the functionality provided by the Intel PIN DBI frame-

work to track the memory addresses which are written and then executed

with an instruction level granularity. More in details for each instruction the

following steps are performed:

1. Written addresses tracking: keep track of each memory address which

is written (even in a remote processes address space) in order to create

a list of memory ranges of contiguous writes defined Write Intervals

(Section 2.3.1).

2. Write xor Execution (WxorX) addresses notifier: check if the currently

executed instruction belongs to a Write Interval (Section 2.3.2). This

is a typical behaviour in a packer that is executing the unpacked layer

and for this reason we trigger a detailed analysis which consists of:

(a) Dump the memory range which triggered the WxorX rule vio-

lation: depending on its location this can be the main image of

the Portable Executable (PE), a memory range on the heap (Sec-

tion 2.3.3) or a memory range inside a different process address

space.

(b) Reconstructing the IAT and generating the correct Import Direc-

tory (Section 3.2.5).

(c) Applying a set of heuristics to evaluate if the current instruction

is the OEP (Section 2.3.5):

• entropy: Check if the delta between the starting value of the

entropy and the current one is above a certain threshold.

• long jump: Check if the difference between the address of the

current Extended Instruction Pointer (EIP) and the previous

one is above a certain threshold.

• jump outer section: Check if the current EIP is in a different

section from the one of the previous EIP.

• yara rules: Check if a set of yara rules is matched inside the

dump which has broken the WxorX rule.

2.3. Approach details 8

The result of our tool is a set of memory dumps or reconstructed PEs

depending on the success of the IAT fixing phase and a report which includes

the values of each heuristic for every dump. Based on these information we

can choose the best dump, that is the one that has the greatest chance of

work.

2.3 Approach details

In this section we are going to describe in details the steps introduced in

the previous section.

2.3.1 Written addresses tracking

All packers, in order to work correctly, present a common behaviour: they

have to write the original program in memory and then execute it. For

detecting this behaviour our tool tracks each write operation made by the

program and builds a set of memory ranges which identify contiguously writ-

ten memory addresses. A memory range is identified by a starting address

and an end address and it is managed in order to take into account the mem-

ory operations that overlap it: the starting address and the end address are

decreased or increased respectively when an overlapping writes is detected

(see Figure 2.1).

Memory range 1 Memory range 2 Memory range 3Current
Memory range

Write 1 Write 2 Write 3Write operations

Updated
Memory range

Memory range 3Memory range 2Memory range 1

Figure 2.1: Memory range management

2.3. Approach details 9

2.3.2 WxorX addresses notifier

As normal behaviour (except for Just in time (JIT) compilers) a particular

memory address used by a program is either written or executed. For this

reason we can say that usually the memory addresses handled by the binary

satisfy the WxorX rule. On the other hand packers in order to unpack the

original malware need to use addresses which breaks the WxorX rule since

the original code needs to be written in memory and then executed.

Therefore, the first time we detect that the instruction pointer is inside one

of the tracked memory ranges, all the analysis (Section 3.2.6) and dumping

routines (Section 3.2.3) are triggered and the memory range is marked as

broken. It is easy to deduct that the definition of a broken memory range is:

a written memory range in which the execution has been redirected to.

The initial approach was to dump the code and trigger the analysis of it once

the WxorX rule was broken in a Write Interval (set of contiguous memory

address previously written) for the first time and then ignore all the subse-

quent executed instructions from the same Write Interval. However, when

analysing a binary packed with mpress [46], we noticed the behaviour in Fig-

ure 2.2 that forced us to slightly modify the initial approach.

2.3. Approach details 10

W
rit

e
se

t
STUB:

Ins 1
Ins 2
[…]
JMP OEP

OEP:
Ins 1
Ins 2
Ins 3
[…]

Stub that
decrypts
the IAT

Original
program
code

IAT NOT reconstructed

EIP

W
rit

e
se

t STUB:
Ins 1
Ins 2
[…]
JMP OEP

OEP:
Ins 1
Ins 2
Ins 3
[…]

IAT reconstructed

EIP

The reconstructed PE is not runnable
(a)

The reconstructed PE is runnable
(b)

Stub that
decrypts
the IAT

Original
program
code

Figure 2.2: Mpress behaviour

When mpress [46] enters for the first time in the Write Interval that

contains the original code (Figure 2.2(a)), it does not immediately execute

the original program’s code from the OEP but it starts the execution from

an area of memory that contains a small stub, created by the packer itself,

that reconstructs the IAT and eventually jumps to the original code (Fig-

ure 2.2(b)), that resides few bytes after in the same Write Interval. Using our

original approach we would have dumped the code in the situation presented

in Figure 2.2(a) since it is the first time that the WxorX rule is broken in-

side this Write Interval, but we would not have taken a dump after the jump

showed in Figure 2.2(b), and so we would not been able to recreate a running

PE because the IAT was not reconstructed yet.

Since this behavior can be shared among different packers, we have decided

to generalize better our algorithm introducing the concept of intra-write set

analysis. The intra-write set analysis, enabled optionally, specifies how many

dumps should be taken inside the same Write Interval. An arbitrary number

of dumps can be set, but, in this case, an intra-write set analysis of two

jumps solves the problem raised during the analysis of mpress [46] since the

2.3. Approach details 11

dump is taken both the first time the execution violates the WxorX rule

(Figure 2.2(a)) and also in the situation displayed by Figure 2.2(b). In the

second scenario the IAT is correctly fixed and it is possible to rebuild the

Import Directory and reconstruct the PE.

However, in order to correctly implement this technique we need to take

care also of another problem: we do not want to waste additional dumps

by dumping the memory for each instruction inside the same Write Inter-

val, since this would not increase the chance of reconstruction the PE and

would generate a huge number of dumps. In order to understand better this

problem we will use the next picture.

Figure 2.3: Inter write set analysis explanation

As we can see from the Figure 2.3 we are going to take the Dump 1

marked with the green arrows since it is the first time that the WxorX rule

is broken in the write set, but after that we do not want to take the Dump

2.3. Approach details 12

2 marked with the red arrow because in that case we would have the same

problem that we would have dumped the process’s memory when the IAT

is not yet reconstructed. Rather we want to take the Dump 2 marked with

the green arrow because in that moment the IAT has been reconstructed

and we would be able to rebuild a working PE. In order to make the dump

in the correct moment we have determined a threshold dependent on the

write interval’s size representing the minimum variation of the EIP needed

to take the dump. This threshold has been determined through a small

survey explained in Chapter 3 and its use allows us to avoid taking a dump

for each instruction. Moreover a common behaviour in packer is to have

a long jump right before reaching the OEP and therefore taking the dump

only when the delta between the current and the previous EIP is above the

threshold will not prevent us to dump the memory at the correct moment.

Obviously the fixed threshold we have identified is only a possible value, but

not absolutely general since, as said, packers’ behaviors are really different

and the layout of write intervals in memory can change deeply. In order to

getting rid of this problem we have decide to propose our default value for

the threshold to 5% of the write interval’s size, but let finally the user to

tune this value at his disposal.

2.3.3 Dumping process

Many memory dumping tools, programs that take care of copying the

memory allocated by a process to a file, share a common behavior: they

only dump the main module of the target program. The main module of

a program is made up by different sections containing the code, the data

and the resources used by the binary. An example of a main module of a

Windows PE is shown in Figure 2.4.

The approach of dumping only this memory range correctly dumps all the

sections of the binary, but fails to collect code that has been unpacked on

dynamic memory regions such as the heap.

2.3. Approach details 13

Figure 2.4: Main module of MessageBox in the red square

When packer’s stub unpacks new code on the heap and then redirects the

execution there, we correctly catch this using the WxorX rule, but using a

naive dump strategy we would dump something meaningless since the Write

Interval in which the WxorX rule is violated is not included in the dump, as

we can see in Figure 2.5.

Main module
of program

Ins1
Ins2
[…]

Heap

EIP

Dump here

OEP

PE reconstructed

Figure 2.5: Heap not dumped using naive strategy

2.3. Approach details 14

In fact, when the EIP reaches the heap we trigger the dump of the main

module, but this will reconstruct a meaningless PE, since it will not contains

the current write interval in which the EIP is.

A technique to solve this issue has been proposed by Jason Geffner in this

post [23]. The proposed solution is to add a new section to the binary before

the execution and then, following the code with a debugger, force the heap

allocation functions such as VirtualAlloc(), HeapAlloc() to return an address

inside the new added section. In this way, when a dump of the main module

is taken it will be dumped correctly, since the heap is positioned inside a

section. This technique has two main limits:

• It requires to add a new section to the binary before the unpacking and

this could be a problem since many packers create a stub which verify,

with an initial check-sum, the integrity of the PE and if this check fails

the stub aborts the execution.

• It is fundamentally a manual approach because we need to know which

is the right dynamic memory allocation used to contain the original

payload.

In order to solve this problem we have decided to mark the write intervals

on the heap with a flag that identifies them as heap write intervals. When

the execution comes from an heap write interval we not only dump the pro-

gram main module, but we also add to the final taken dump a new section

containing the heap write interval data and finally set the Entry Point of the

PE in this section (see Figure 2.6).

2.3. Approach details 15

Main module
of program

Ins1
Ins2
[…]Heap

EIP

Dump here

PE reconstructed

OEP

Figure 2.6: Heap dumped using our strategy

Besides dumping the heap write interval which triggers the WxorX rule

we dumps all the other heap write intervals since there can be some references

to data and code contained in them. In order to avoid dumping the same

heap write interval multiple times we check through an MD5 hash that the

same memory region hasn’t been previously dumped. Finally through an

IDA Python script we loads all the heap write intervals when the dump is

opened in IDA and in this way the analyst is able to evaluate the behaviour

of the unpacked stub through static analysis.

2.3.4 IAT Fixing and Import Directory Reconstruc-

tion

A PE in order to properly work must have a correct Import Directory. This

structure is fundamental in the loading process because the loader needs

to create the IAT starting from the Import Directory in order to allow the

2.3. Approach details 16

program to use the imported functions. That step is mandatory because,

for imported functions, the compiler does not know at compile time where

these functions will reside in memory. The Import Directory is structured

as a series of structs called IMAGE IMPORT DESCRIPTOR of 20 bytes

(5 DWORD). For each external DLL imported by the program is present a

IMAGE IMPORT DESCRIPTOR structure organized as follow:

• 1st DWORD: Denoted as OriginalFirtsThunk, it points to a Relative

Virtual Address (RVA) that, once followed, lends to a list of names of

functions imported from the current DLL.

• 2nd DWORD - 3rd DWORD: Not fundamental for the loading pro-

cedure.

• 4th DWORD: Denoted as ImportedDLLName, it points to the name

of the DLL.

• 5th DWORD: Denoted as FirstThunk, it points to the IAT address

that will be filled with the address of the imported functions at loading

time.

Figure 2.7 shows the structure of the Import Directory.

2.3. Approach details 17

Base address
Import Directory

1° dword 2° dword 3° dword 4° dword

5° dword

Image_import_descriptor

Pointer to the name of a function exported by a dll

Name of the function

Name of the dll

Other pointers to
function

Other names
Of function

Other names of dlls

po
inter

po
inter

po
inter

Figure 2.7: Import Directory structure

The loader parses the Import Directory and builds the IAT following

these steps:

1. Once located the Import Directory, the loader scans all the

IMAGE IMPORT DESCRIPTORs and for each imported DLL it loads

the entire library in his memory space.

2. Following the OriginalFirstThunk, it retrieves the name of all the func-

tions that the program needs in this DLL.

2.3. Approach details 18

3. It retrieves their address and puts it at the RVA pointed by the First-

Thunk of the IMAGE IMPORT DESCRIPTOR.

Packers, as standard behaviour, destroy the Import Directory of the origi-

nal program substituting it with the one useful to them. The IAT building

phase is performed directly by the packer itself while the loader, parsing

the substituted Import Directory, loads only those functions necessary to the

packer (usually LoadLibrary and GetProcAddress). More advanced packers

do not just destroy the Import Directory but they obfuscate the IAT hinder-

ing the process of reverse engineering. It is possible to divide these techniques

in two different categories:

• Static API Obfuscation: The obfuscation phase is done at packing

time and the functions’ instruction and addresses are the same for each

execution.

• Dynamic API Obfuscation: The obfuscation phase is done at run-

time while unpacking and the functions are read on the target machine

and then copied on the heap during the execution.

Our challenge was to build a tool that it is able to correctly de-obfuscate

the IAT at run-time, despite IAT obfuscation techniques, and consequently

to reconstruct a meaningful Import Directory for our dump such as, when the

dump is executed, the loader will be able to load the real functions imported

by the original program and not those imported by the packer.

Since a generic algorithm that deobfuscate these kind of techniques in a

generic way has not been developed yet, we decided to implement a system

that can allow an analyst to integrate its own deobfuscator into PINdemo-

nium without modifying it.

2.3.5 Heuristics description

The heuristics are a set of techniques that are used during the unpacking of

a packed sample in order to understand if the OEP has already been reached.

We need heuristics in order to accomplish this since, as demonstrated by Paul

2.3. Approach details 19

Royal et al. [41], understanding if the unpacking process is finished or not is

not a decidable problem. The heuristics we have collected come from different

works and books [45], [32], [11], and we use them to tag a taken dump. These

tags are useful at the end of the work of our tool in order to understand if

a taken dump and the associated reconstructed PE represent the original

program or not (since often the number of taken dumps is different than

one).

The heuristics included in our tools are triggered run-time when we decide

to dump the process and are the following:

Entropy

Entropy can be considered as a measure of the disorder of a program and can

be used in order to detect if an executable has been compressed or encrypted

and also when the process of decompression/decryption is nearly finished.

The entropy is calculated following these step:

1. A probabilistic experiment is done on the entire binary (i.e., calculate

the probability that a certain byte value appear in the binary).

2. Using the Shannon formula (Equation 2.1) with the probabilities re-

trieved in the previous point, the entropy value is calculated as:

H = −
255∑
i=0

P (i)log2(P (i)) (2.1)

According to the Equation 2.1 the higher is the entropy value the more ran-

dom is the distribution of the byte values. We trace the entropy evolution of

the main module of the target program and trigger the entropy flag when the

difference of the current entropy compared with the original one is greater

than a threshold. We adopt this heuristic because we expect that the entropy

of a compressed/encrypted program is deeply different from the original pro-

gram.

2.3. Approach details 20

Figure 2.8: Entropy difference between the PE of a test program not encrypted and

encrypted with Obsidium. This figures shows a representation of each byte of the

binary, organized for convenience in rows in order to have a rectangle representation,

along with its probability value expressed with a color scheme. The lower is the

probability that the byte value appears in the binary the more its color tend to magenta

As we can notice from the Figure 2.8 the encrypted program, due to the

fact that an encryption function must respect the principles of diffusion and

confusion returning as output a stream of bytes as random as possible, tend

to have an higher entropy value (i.e., low probability for each byte value to

appear in the binary) respect to the non-encrypted one as expected.

2.3. Approach details 21

Long jump

A long jump is defined as a jump in which the deviation from the previous

EIP address and the current one is greater than a fixed threshold.

Based on the observation that it is very uncommon to have in memory an

unpacking stub really near to the code where we can find the OEP (Figure 2.9,

cases (a) and (b)), we can say that usually the control transfer from the

packer’s stubs to the original program’s code is performed via a long jump

as presented in Figure 2.9, case (c). This behavior can be identified as the

final tail jump if it is from a stub to the original program’s code or simply

the control transfer from a stub to another stub.

(a) (b) (c)

Original code

Original code

Original code

Unpacking stub

Unpacking stub

Unpacking stub

Figure 2.9: Different jumps from the unpacking stub to the original code

A previous work [45] has noticed that the tail jump is characterized by a

long jump from a section to another different section: this is used also as an

additional heuristic in order to detect the final control transfer from packer’s

stub to the original program’s code.

Yara rules

Yara rules are a very powerful tool for identifying and categorizing known

malware samples. However since they are based on patterns they can’t work if

2.3. Approach details 22

the malicious payload is encrypted. For this reason we try to match the yara

rules inside the dumped and unpacked memory regions every time the WxorX

rule is broken. The currently matched rules have two main functionalities:

• Detect end of unpacking : if a yara rule, executed on one unpacked

layer, matches a know malware family it may mean that the unpacking

stub is ended the dump contains the final payload. Moreover we have

the information about the malware family which the current sample

belongs to.

• Identify evasion techniques detection: if a yara rule matches a know

evasion technique and the unpacking process seems to be finished pre-

maturely it may mean that the malware has identified the analysis

environment and the payload hasn’t been executed. Moreover knowing

the matched evasion technique the analyst can be able to handle the

evasion attempt and keep on analysing the malware.

Finally the user can define his own rules which will be matched on every

layer of the unpacking stub and reported inside the Pindemonium report.

Chapter 3

Implementation details

We have divided this chapter in two parts: in Section 3.1 we describe all the

external tools used by PinDemonium (PIN, Scylla and IDA); in Section 3.2

we show the implementation of all the modules described in Section 2.3 and

how they interact with each other.

3.1 System architecture

The high level overview of our generic unpacker can be summarized in Fig-

ure 3.1.

PIN

PinDemonium

WxorX
handler
module

Dumping
module

Hooking
module

Heuristics
module

Scylla

PE
Reconstruction

module

IAT search
and

Reconstruction
module

Filter
module

Figure 3.1: Overview of our generic unpacker

3.1. System architecture 24

After different discussions about which solutions would be better in order

to build a generic unpacker we finally decided, given our goals and final

purpose, to employ a DBI framework. We have taken this decision for these

reasons:

• It gives us full control over the code executed by a program and so the

possibility to analyze deeply what the binary is doing.

• It is intrinsically immune to anti-debugging and anti-disassembly tech-

niques. We are going to clarify the reason of this in the next section.

• It has a rich and documented API set really useful to extract infor-

mation from the running program and the possibility to modify its

behavior run-time.

There are different DBIs available online, some of the most discussed

and used are: PIN [31], Valgrind [36] and DynamoRIO [2]. We have finally

decided to employ PIN [31], a DBI framework developed by Intel, to build

our generic unpacker. In the next section we are going to explain briefly how

this DBI works and its pro and cons.

3.1.1 PIN

PIN is one of the most complete and well documented DBI framework, it is

easy to use and provides efficient instrumentation by using a JIT compiler.

PIN works with the so called pintools, user developed DLLs which implement

the routines to perform during the instrumentation of a target binary. Once

the program is launched with PIN it first spawns a new process for the target

binary and then injects inside that process the user developed pintool and

the pinvm.dll, a lightweight virtual machine used to control the execution of

the instrumented program. Moreover PIN allocates a memory region on the

heap called code cache which is used to copy instrumented traces that will

be afterward executed.

The granularity wherewith PIN works are essentially three (see Figure 3.2):

• Instruction: A single instruction inside a collected trace.

3.1. System architecture 25

• Basic blocks: A sequence of instructions terminated by a conditional

jump.

• Trace: A sequence of basic blocks terminated by an unconditional

jump.

Figure 3.2: Granularity overview

A pintool is essentially composed by two important components:

• Instrumentation routines: Callback executed when a trace / in-

struction is collected statically. They are useful in order to analyze the

properties of the code and insert the analysis routines in the appropri-

ate position.

• Analysis routines: Functions executed when the instructions placed

in the code cache are ran. Accordingly to the position specified in the

instrumentation routine, the analysis routine will be executed before

or after the current instruction.

After the injection PIN starts to statically build a trace from the first

instruction of the program to the first instruction representing an uncondi-

tional jump. Once this trace is copied on the heap the JIT recompile the

code and after that it is ready to be instrumented (see Figure 3.3).

3.1. System architecture 26

pintool.dll module

pinvm.dll module

Target program
memory

Target
program

main module

mov eax,0x7
add eax,0x1
Jmp <address>

mov eax,0x7
add eax,0x1
Jmp <address>heap

Figure 3.3: PIN collects a trace from the original program code

Now the trace collected is analyzed and modified using the functions that

we have specified inside our pintool. First of all PIN passes the control to

the instrumentation routines which will do all the tasks specified by the user

and will patch the trace inserting in the appropriate places the call to the

analysis routines, if specified. After these operations the code is placed in

the code cache (see Figure 3.4).

pintool.dll module

pinvm.dll module

Target program
Memory

Target
program

main module

mov eax,0x7
add eax,0x1
Jmp <address>

func1(Trace t){
 ...
 for BasicBlock bb in t:
 for INS i in bb
 INS_InsertCall(i,BEFORE,func2);
 ...
}

mov eax,0x7

add eax,0x1

Jmp <address>

pintool.dll module

pinvm.dll module

Target program
memory

mov eax,0x7
add eax,0x1
Jmp <address>

call func2
mov eax,0x7
call func2
add eax,0x1
call func2
Jmp <address>

Instrumentation
function

func2(){
 cont++
}

Analysis
function

heap

Code Cache

Figure 3.4: Before and after the insertion of the analysis routine

3.1. System architecture 27

Now the execution will start from the first instruction of the new modified

trace until reaching the end of it. When this happens an exception is thrown,

PIN catches it, resolves the target address of the execution, recreates a trace

and starts again the process explained before.

Note that, during the whole process, the original code (the one belonging

to the main image) is never modified or executed by PIN, but it is useful

only as a reference to collect traces.

In the Figure 3.5 we can see a diagram that schematically represents the

PIN flow just explained.

Init Fetch Next
Trace

Translate
code

Instrument
trace

Execute
from

cache

Place trace
in cache

Figure 3.5: Overview of the pin flow

A DBI is a quite complex tool, it not only has to take care of a tricky

process as it is a dynamic instrumentation, but also performances are really

important in order to avoid to add too much overhead during the execution

of the original program. Lots of details have been omitted in the previous

explanation that take care of different problems such as the performance.

For a complete and better explanation of PIN internal we refer to the official

documentation and user’s manual [28].

3.1. System architecture 28

3.1.2 Scylla

There are lots of different tools available to dump a process and reconstruct

a correct Import Directory Table such as ImpREC [5], CHimpREC [1] and

Imports Fixer [4]. Among these choices we have decided to employ Scylla [38]

since it has been recently developed and is currently supported. Moreover

this project is open source allowing us to fix some bugs and extend it in order

to deal also with IAT Redirection and Stolen API techniques.

The main features of Scylla are the IAT Search and the Import Directory

reconstruction. The IAT Search functionality tries to locate the starting

address and size of the IAT in memory employing two different techniques:

a basic one and a more advanced one. Since the structure of the IAT is

characterized by a set of contiguous addresses of the imported functions, the

basic idea behind the IAT Search is to look for call instructions whose target

addresses point to a set of close memory addresses.

Basic IAT search

The basic IAT search can be summarized as follows:

1. Scylla receives as input a start address from which try to search the

IAT.

2. The executable page which contains the start address is scanned to

identify calls or jumps. Each target address of these instructions is

considered as a candidate for a IAT entry pointer.

3. The value contained in the target address of the call or the jump is

check against a set of possible API addresses obtained by enumerating

the export functions of the loaded DLLs. The possible IAT pointers

are filtered considering only the addresses which pass the check before.

4. The memory is scanned starting from the IAT entry pointers found

before until four zero bytes are reached and this is the end address

of the IAT. The same approach is used to find the start address by

scanning the memory in the reverse way.

3.2. System details 29

Advanced IAT search

The only difference between the basic and the advanced search is that the

advanced one searches for IAT pointers through all the executable pages of

the program and not only through the executable page of the start address

given as input. Then, it filters all these pointers in order to eventually remove

the invalid ones.

3.2 System details

In this section we are going to explain in detail the implementation of the

most important components of our tool.

3.2.1 WxorX handler Module

Within this module we have implemented the core functionality of the en-

tire tool: it detects when an executed instruction has been previously written

by the program itself and it triggers all the other modules’ features. In order

to detect this behaviour two important functionality have been implemented:

• Written addresses tracking: keep track of the memory addresses written

by the program

• WxorX addresses notifier: notify when a previously written address is

executed

Written addresses tracking

The building block of the written address tracking phase is the WriteInter-

val, a structure that contains the characteristics of a set of contiguous writes:

the start address of the write interval, the end address representing the last

contiguous written address, a Boolean value that indicates if the write inter-

val has been analyzed yet and all the results of the heuristics applied to the

write interval (for more information about heuristic see Section 3.2.6). The

set of WriteIntervals created is stored inside a C++ vector called WritesSet.

Using these structures we check each instruction, including writes, to see if it

3.2. System details 30

executes from one of the WriteIntervals. If this is the case, then we proceed

with our analysis; in the other case we execute the instruction and go to the

next one. In both cases the Write Intervals are preserved, the reason will be

clear in Section 3.2.3.

The whole process can be summarized in Algorithm 1.

Algorithm 1: WxorX handler Module

Input: The instruction currently analyzed ins

1 if isWriteInstruction(ins) then

2 updateWritesSet(ins);

3 end

4 if isInsideWriteInterval(ins) then

5 TriggerHeuritics();

6 DumpAndFix();

7 MarkWriteIntervalAsAnalyzed();

8 end

The following steps explain how WriteIntervals are created and updated:

1. For each instruction we check if it is a write.

2. If so, we insert an analysis routine before it that will retrieve the address

where the operation will write and the size of the memory that will

be written. With these information we compute the start and end

addresses of the write.

3. Now we proceed to the construction or the update of the WriteInterval.

We have five cases:

(a) The memory written by the instruction neither is contained nor

overlaps with another. WriteInterval. In this case we create a new

one and add it to the WritesSet vector.

(b) The start address of the write is before the start of a WriteInter-

val, but the end address is inside it. In this case we update the

WriteInterval setting as start address the start of the write, but

leaving unaltered the end address.

3.2. System details 31

(c) The same as case (b), but this time regarding the end address.

Consequently, we only update the end of the WriteInterval.

(d) The memory written by the instruction completely contains a

WriteInterval. In this case we update both the start and the

end of the WriteInterval.

(e) The memory written by the instruction is completely contained

by an existing WriteInterval. In this case we do nothing.

WxorX addresses notifier

As described in details in Section 2.3.2, the WxorX addresses notifier identi-

fies when a written address is executed and it is useful to trigger the dumping

process. This happens when the WxorX rule is broken for the first time in-

side a Write Interval or when a jump bigger than a threshold is taken inside

the same Write Interval (Intra Write Intervals analysis). In order to estab-

lish an acceptable value for the threshold, we did a survey analyzing how we

can distinguish the tail jump to the OEP from the regular jumps inside the

Write Interval, whose results are schematized in Section 4.1.1.

Process Injection Handling

A slightly different approach for executing previously written memory is

based on the process injection techniques. A common behaviour of pack-

ers consist of hiding the malicious payload by injecting it in a legitimate

process. In order to achieve this result the packer need to perform a write

operation inside the memory space of the target process and trigger its ex-

ecution by using thread related functions. PinDemonium is able to identify

this behaviour by hooking the system calls used to write inside the remote

process memory:

• NtWriteVirtualMemory : system call eventually called when executing

memory writing functions.

• NtMapViewOfSection: system call which maps a view of a section into

the virtual address space of a process.

3.2. System details 32

When one of these system calls is invoked Pindemonium keep tracks of the

addresses written in the remote process by using an hashmap which maps

the pid of the injected process with a list of Write Intervals. Then our tools

monitor the execution of these addresses by hooking a set of thread related

functions commonly used to execute the injected payload:

• NtCreateThreadEx : Creates a thread that runs in the virtual address

space of another process.

• NtResumeThread : Resume the execution of a previously suspended

thread

• NtQueueApcThread : Adds user defined routine to thread’s APC queue.

This routine will be executed when thread will be signaled.

When one of the previous system calls is invoked Pindemonium checks if the

pid of the process involved is contained in the hashmap which keeps track

of remote write operations. If this happens our tool dumps all the memory

ranges written in the remote process and executes a set of heuristics on them.

3.2.2 Hooking Module

In the hooking module we have implemented all the hooks of the Win-

dows APIs and system calls we need in order to track the activity of the

instrumented program. This is possible by exploiting the PIN’s APIs, which

permits to insert callback functions before or after an API call or a system

call.

Windows API Hooks

Windows APIs hooks implemented in our tool are very few since these hooks

can be bypassed by malware using direct syscalls. For example, instead of us-

ing the IsDebuggerPresent API a malware can directly check if the BeingDe-

bugged byte-flag (located at offset 2 in the Process Environment Block (PEB)

structure) is True or not.

In order to give the possibility to easily add a new function hook we have

3.2. System details 33

implemented a simple hook function dispatcher that consists of 3 main com-

ponents:

• FunctionsMap: This is a configurable list of names of Windows APIs

that an user wants to hook.

• ImageLoadCallback: This callback is provided by PIN and executed

every time a new image of a DLL is loaded inside the process memory.

• HookDispatcher: This function is called inside the ImageLoadCall-

back and receives as parameter the image just loaded. This function

has the job to iterate over all the routine (RTN) objects (an abstraction

of the functions inside a DLL), in order to check their names against

the FunctionsMap: if a match is found, the PIN’s APIs are exploited

in order to insert a call to a predefined hook for that function whenever

it will be called during the execution (see Figure 3.6).

API name

VirtualFree

VirtualQueryEx

...

ImageLoad
callback

Image
Object

(IMG_1)

Hook
Dispatcher

FunctionsMap

RTN_1

RTN_2

RTN_3

RTN_4

RTN_3.name?

MATCH!
Inserting
hook

IMG_1.dll

RTN_1

Call hook_RTN_1

Pintool.dll

hook_RTN_1

Process memory

RTN_2.name?
RTN_1.name?

Figure 3.6: The hook function dispatcher places a hook before a routine

3.2. System details 34

We use this hooking functions system principally in order to keep track

of code unpacked on the heap for those functions that do not finally use a

call to the syscall NtVirtualAlloc (hooked as a syscall and explained in the

next section).

System calls Hooks

We use syscalls hooking in order to track the binary activity at the deepest

possible level. As before, we have implemented an hook syscall dispatcher

that based on the current called syscall, redirects the execution to the proper

hook before or after the system call. This hook syscall dispatcher consists of

3 components:

• SyscallHooksList: This is a configurable list of names of syscalls that

an user wants to hook with the corresponding hook to call. In this list

we also embed the information about the moment in which we want to

call the hook (before the syscall execution or after that).

• SyscallEntryGlobalHook: This is a global hook provided by PIN

called at the entry point of every syscall: this function has the job to

recognize the syscall called and, using the SyscallHookList, understand

if a call to an hook must be triggered or not.

• SyscallExitGlobalHook: This is a global hook provided by PIN

called at the exit of every syscall: this function has the job to rec-

ognize the syscall called and, using the syscallHookList, understand if

a call to an hook must be triggered or not.

The hook syscall dispatcher is schematized in Figure 3.7.

3.2. System details 35

SyscallEntryGlobal
Hook

Syscall name When Hook

NtAllocateVirtualMemory exit f1

NtQueryPerfCounter exit f2

...

SyscallsHooksList

NtAllocateVirtualMemory

check

SyscallExitGlobal
HookNtAllocateVirtualMemory

check

program

Hook_f1

call

return

1

2

3 4

5

6

7

Figure 3.7: The hook syscall dispatcher places a hook before the NtVirtualAlloc

We use this hooking system principally in order to keep track of code

unpacked on the heap. Since the Windows APIs that can allocate dynamic

memory are numerous, an ad-hoc hook for everyone of them would be a bad

solution, rather we have noticed that the majority of them eventually call

the NtAllocateVirtualMemory syscall and so we have decided to hook this

syscall.

The Figure 3.7 shows an example of the functioning of the hooking mod-

ule, in particular it shows the hook of the NtAllocateVirtualMemory.

1. Before the execution of the syscall the SyscallEntryGlobalHook is called.

2. It checks if the name of the syscall invoked has an hook bound to it at

the entry position, if so the hook is executed.

3. The original syscall is executed.

3.2. System details 36

4. After the end of the execution of the syscall the SyscallExitGlobalHook

is invoked

5–6 It checks if the name of the syscall invoked has an hook bound to it at

the exit position, if so the hook is executed.

7 The normal execution is restored.

3.2.3 Dumping module

The dumping module, as explained in Chapter 2, relies on the implemen-

tation made in Scylla. This takes care of creating the dumps and trying to

reconstruct the Import directory and the final PE.

As explained in Section 2.3.3, we do not use a naive approach that dumps

only the main module of the target program, but rather if the execution

comes from a dynamically allocated region we insert into the reconstructed

PE a new section containing the data in the write interval in which the EIP

was positioned and we finally set the OEP in this new section. In order to

do this, we need to track all the heap allocations, and as explained in the

previous section, this is the work of the hooking module.

When we find out that an instruction executes from one of the Write

Intervals the analysis goes through the steps illustrated in Figure 3.8:

Launch Scylla
in an external process

Scylla search the IAT
in the target process memory

Rebuild import directory

Reconstructed PE goes into
NotWorking folder

Scylla dumps the process
memory and reconstruct a PE

using the OEP passed

Reconstructed PE goes into
Working folder

Reconstructed PE goes into
NotWorking folder

fail

success
fail

success

Figure 3.8: Overview of the dumping process

3.2. System details 37

After these steps, if the dump has been triggered by a broken WxorX rule

inside an heap write interval, the corresponding data in that write interval

are inserted as a new section inside the reconstructed PE and the OEP is

moved inside that section.

3.2.4 IAT search and reconstruction Module

Our tool uses Scylla, an open source project, that tries to automatically de-

tect and fix the IAT and reconstruct the Import Directory of the dump made

(the process of how Scylla works has been explained in the Section 3.1.2).

Scylla can detect the IAT in memory using two different techniques: the

Basic search or the Advanced search (explained in details in Section 3.1.2).

During our tests we noticed that using only one of these was not sufficient in

order to obtain a generic result despite the packer analyzed, so we decided

to combine the two techniques together in order to obtain the best outcome

possible. The dump taken is marked as ’working’ or ’not working’ depending

on the results of the two search operation and the fix operation accordingly

with the Finite State Automata (FSA) of Figure 3.9.

3.2. System details 38

Adv. IAT
 search

IAT fix
After

adv s.

Bas. IAT
search

IAT fix
After

bas. s.

Working

Not
Working

Fo
un

d

Fixed

Found

N
o

t
F

ou
nd

Not
 F

ixe
d

N
ot

Found

F
ix

e
d

N
ot F

ixe
d

Figure 3.9: FSA IAT search and fix

The original code of Scylla implemented in the IAT fix operation does not

take into account any technique of IAT obfuscation such as API Redirection,

Stolen API or its generalization.

3.2.5 IAT Fixing and Import Directory Reconstruc-

tion

Due to the lack of an algorithm that can deal with IAT obfuscation tech-

niques in a generic way we decided to implement a system where an analyst

can integrate its own deobfuscation routine inside PINdemonium without

modifying it. In order to do so we extended the plugin system already present

inside Scylla to work even when the tool is used as Dll.

This system gives the analyst two important structure:

• An handle to the process that is beign analyzed. This allow to directly

modify the instrumented process from the plugin.

3.2. System details 39

• A list containing all the unresolved imports found by Scylla along with

their IAT addresses and the pointed targets.

and two fundamental helper functions :

• readMemoryfromProcess : this function gives the possibility to read

the memory of the instrumented process at a given address.

• writeMemoryToProcess : this function allow to write a local data buffer

to the memory of the instrumented process.

To test the proper functioning of this system we decided to implement

a custom plugin to defeat the IAT obfuscation technique employed by the

packer PESpin. In this techniques multiple part of the original API are copied

starting from the address pointed by the IAT entry and they are connected

together by absolute jumps until the last one reaches the original API code.

The process can be better understood following the example illustrated in

Figure 3.10.

Mov ebx, [esp]

Add eax, 4

0x04000000
IAT entry

MessageBox() + 0x18

0x75000000
Entry point

MessageBox API

Pop ebp

Push eax

Jmp 0x034a5a6

Mov ebx, [esp]

Add eax, 4

Pop ebp

Push eax

MessageBox() + 0x14

Jmp 0x04001000

Sub ecx, 1

Jmp 0x75000014

Sub ecx, 1
0x04001000

0x03a4a5a6

2

3 4

0x04000012

0x04000012

1

Figure 3.10: Pespin IAT obfuscation technique

3.2. System details 40

1. The execution is redirected to the address inside the IAT entry as usual.

2. The first two instructions of the original API are copied starting from

the address pointed by the IAT entry followed by a jump to the next

chunk of instructions.

3. The chunk is executed and another jump instruction lead the execution

to the next chunk of code.

4. The last instruction copied is executed and finally a jump goes inside

the original memory space of the API.

Exploiting the capabilities of our plugin system, we developed an algo-

rithm that can deal with this techniques using static analysis. We made

this choice because we noticed that each target of the jump was an absolute

address statically known. With this algorithm, for each IAT entry, listed in

the list of unresolved import, we statically follow the flow counting the num-

ber of instructions different from jumps (instructions belonging to the real

API) until the target of a jump is inside a memory region occupied by the

DLLs. When the target address and the instructions count are retrieved, the

value of the current analyzed IAT entry is patched, using the helper function

writeMemoryToProcess, as follow:

new IAT entry value = target address− instruction count (3.1)

The whole process can be summarized with the Algorithm 2.

3.2. System details 41

Algorithm 2: IAT deobfuscation

Input: List of unresolvedImport. every element has a pointer to the

IAT entry to be fixed (ImportTableAddressPointer) and its

content (InvalidAddress)

Output: The IAT correctly deobfuscated and patched

1 foreach unresolvedImport do

2 insDelta = 0;

3 invalidApiAddress = unresolvedImport->InvalidAddress;

4 IatEntryPointer =

unresolvedImport->ImportTableAddressPointer;

5 for j = 0; j <1000; j++ do

6 if not isMemoryMapped(invalidApiAddress) then

7 break;

8 end

9 instructionBuffer = readProcessMemory(invalidApiAddress);

10 disassembledInstruction = disassemble(instructionBuffer);

11 if not isValidInstruction(disassembledInstruction) then

12 invalidApiAddress += 1;

13 insDelta += 1;

14 continue;

15 end

16 if isJmpInstruction(disassembledInstruction) then

17 correctAddress = getJumpTarget(disassembledInstruction);

18 if isInsideDllMemoryRegion(correctAddress) then

19 correctAddress = correctAddress - insDelta;

20 writeProcessMemory(IatEntryPointer, correctAddress);

21 break;

22 end

23 else

24 invalidApiAddress = correctAddress;

25 continue;

26 end

27 end

28 else

29 insDelta = insDelta + size(disassembledInstruction);

30 invalidApiAddress = invalidApiAddress +

size(disassembledInstruction);

31 end

32 end

33 end

3.2. System details 42

3.2.6 Heuristics implementation

We use heuristics in our tool in order to evaluate the obtained dump: each

heuristic can set a flag in the final report and all the flags contribute to

identify the best dump, as explained later in this Section.

We have implemented five heuristics:

• Entropy heuristic: at the beginning of the analysis, when the main

module of the binary is loaded, we get its original entropy value. Each

time a dump is created we compute again its current entropy and com-

pare it with the initial one. We use the following formula to compute

the difference:

difference =

∣∣∣∣current entropy − initial entropy

initial entropy

∣∣∣∣ (3.2)

If this value is above a given threshold we set the correspondent flag

in the output report. In order to estimate an acceptable value for

the threshold we did a survey whose results are schematized in Sec-

tion 4.1.2.

• Jump outer section heuristic: for each executed instruction we keep

track of the EIP of the previous one. In this way we can retrieve the

section in which the previous instruction was located and compare it

to the section of the current one. If these two are not equal we set the

jump outer section flag.

• Long jump heuristic: as in the previous case we take advantage of

tracking the previous instruction’s EIP. In this case we simply compute

the difference between the previous and the current EIP:

difference = |current eip− previous eip| (3.3)

If this difference is above a given threshold we set the long jump flag

in the output report.

3.2. System details 43

• Pushad popad heuristic: during the execution of the binary we have

two flags indicating if we have encountered a pushad or a popad. For

every instruction we check if it is one of the previous two and if so we

set the corresponding flag. Then, when we produce a dump, if both

flags are active, we set the pushad popad flag in the output report.

• Init function call heuristic: the aim of this heuristic is to search through

the dumped code for calls to functions commonly used in the body of

the malware and not in the unpacker stub. We achieve this result by

using an IDAPython script: using IDA we are able to read the list

of the imports of the dump and to confront it with a list of ’suspi-

cious’ functions selected by us. Then we count the number of detected

functions and write it in the output report.

At the end of the execution of our tool we have a report which contains a

line for each dump that lists the results of every heuristic, as well as the dump

number, a string that says if the Import Directory is probably reconstructed

or not, the OEP, the begin and the end addresses of the Write Interval

considered for the dump. We use these information to choose the best dump

as follow:

• First we check if the Import Directory is probably reconstructed.

• If so, we count the number of the ’suspicious’ functions detected and

the number of active heuristics’ flags.

• If the previous numbers are the best result until this moment, we save

this dump number, eventually rewriting another one saved before.

• At the end of the procedure we choose the saved dump number as the

one that has the greatest chance to work.

If no dump has its Import Directory reconstructed, we return the value

’-1’.

Chapter 4

Experimental validation

This chapter is organized as follow: in Section 4.1 we show some surveys

we did to establish some constants (thresholds) that are used by our tool;

in Section 4.2 we show the effectiveness of our tool against known packers;

finally in Section 4.3 we show the ability of PinDemonium to deal with un-

known packed samples.

The goal of our experiments is proving the generality of the unpacking al-

gorithm and the effectiveness of our tool against packed malware spotted

in the wild. The first experiment against known packers aims to show that

our tool is able to correctly unpack the same binary packed with different

known packers, provided that the adequate flags are active, because they are

packer-dependent. The second experiment against random samples aims to

show that our tool correctly unpack binaries packed with packers not known

in advance or even with custom packers.

4.1 Thresholds evaluation

In this section we are going to explain how we established the two thresholds

that our tool needs: the threshold that ’defines’ if a jump is long enough

to be considered in the Inter Write Set Analysis (see Section 2.3.2) and the

threshold used in the entropy heuristic to evaluate the disorder of the taken

dump with respect to the original program (see Section 2.3.5).

4.1. Thresholds evaluation 45

4.1.1 Long jump threshold survey

In order to define the best value for this threshold (see Section 2.3.2) we did

a survey analysing how we can distinguish the tail jump to the OEP from the

regular jumps inside the Write Interval. Compared to the common jumps

we have noticed that the tail jump has a bigger length. Moreover, since the

number of shorter jumps is higher, choosing a good threshold we can be able

to filter a lot of false positives jumps to the OEP without losing the correct

one. As we can see from Figure 4.1 we noticed that the length of the jump to

the OEP grows about linearly with size of the Write Interval in which it is

contained and for this reason the threshold has been defined as a percentage

over the size of the current Write Interval.

Figure 4.1: Diagram displaying the linear correlation between the length of the JMP

to the OEP with the size of the Write Interval in which it is located

In order to determine the best value we packed a set of test programs

characterized by different sizes and compared the length of the jump to the

4.1. Thresholds evaluation 46

OEP to the Write Interval size. The results are summarized in Table 4.1.

Binary OEP jump
WI

Write Interval (WI) OEP jump

write test 12 % 18258 2301

MessageBox 12 % 95106 12321

7Zip 10 % 296018 30515

PeStudio 8.5 % 394048 33133

Autostarts 8 % 296018 43352

ProcMon 7 % 1478641 105724

WinRAR 7 % 1596762 118207

Table 4.1: Results of long jumps survey

From the results we can conclude that a threshold of 5% of the current

Write Interval’s length is enough to cover all the cases. The maximum

number of considered jumps has to be set by command line, as well as the

flag that enables the InterWriteSet analysis.

4.1.2 Entropy heuristic threshold survey

In order to identify a meaningful threshold used to understand if the current

dump is the correct one (see Section 3.2.6), we created a survey analyzing the

entropy difference between a known binary and the same binary packed with

different packers and crypters. We first calculated both the entropy of the

original binary and the entropy of the packed one, and finally we calculated

the difference between these two values, trying to derive a constant corre-

lation among the various packers. After this experiment we identify that a

deviation of the 40% from the final entropy to the initial one is sufficient to

detect the correct dump of almost all packers. The histogram in Figure 4.2

shows the results of our experiment. On the x-axis the various packers em-

ployed are listed while on the y-axis the percentage of the difference between

the initial and the final entropy normalized to 1 is shown.

4.2. Experiment 1: known packers 47

Figure 4.2: Entropy Threshold Survey Results

4.2 Experiment 1: known packers

This experiment has been conducted packing with more than 15 packers

available on-line two known binaries with different sizes: a simple Message-

Box (100KB) and WinRAR (2MB). This test should confirm that, regardless

of the packer employed to pack the same program, our tool used with the

correct flags can extract the original program PE. We have decided to use

two different programs with different sizes as targets because the behaviour

of the packer can be influenced by the size of the program to be packed.

We organized the results in the Table 4.2 using the following columns:

• Packer: the name of the packer used.

• Binary: the name of the packed program.

• Flags: the enabled flags used to unpack the packed binary.

4.2. Experiment 1: known packers 48

• Executable: this field shows if the reconstructed PE is runnable or

not.

• Unpacked: this fields shows if the original code of the binary is un-

packed, not matter if it working or not.

• Old imports: This number will represent the number of imports that

we can observe with a static analysis of the packed program.

• Reconstructed imports: This number will represent the number of

imports that we can observe with a static analysis of the reconstructed

PE.

Packer Binary Flags E1 U2 Old imports Recon. imports/Total imports

Upx MessageBox -unp yes yes 8 55/55

FSG MessageBox -unp yes yes 2 55/55

Mew MessageBox -unp yes yes 2 55/55

Mpresss MessageBox -unp -iwae 2 -adv-iatfix -nullify-unk-iat yes yes 2 55/55

Obsidium MessageBox -unp -iwae 2 no yes 4 4/55

PECompact MessageBox -unp -iwae 2 -adv-iatfix yes yes 4 55/55

EXEpacker MessageBox -unp yes yes 8 55/55

WinUpack MessageBox -unp yes yes 2 55/55

ezip MessageBox -unp yes yes 4 55/55

Xcomp MessageBox -unp yes yes 5 55/55

PElock MessageBox -unp -iwae 2 -adv-iatfix no yes 2 3/55

Asprotect MessageBox -unp -iwae 2 -adv-iatfix no yes 7 46/55

Aspack MessageBox -unp yes yes 3 55/55

eXPressor MessageBox -unp -iwae 10 -adv-iatfix no yes 14 42/55

exe32packer MessageBox -unp yes yes 2 55/55

beropacker MessageBox -unp yes yes 2 55/55

Hyperion MessageBox -unp yes yes 2 55/55

Upx WinRAR -unp yes yes 16 433/433

FSG WinRAR -unp yes yes 2 433/433

Mew WinRAR -unp yes yes 2 433/433

Mpress WinRAR -unp -iwae 2 -adv-iatfix -nullify-unk-iat yes yes 12 433/433

Obsidium WinRAR -unp -iwae 2 no yes 2 0/433

PEcompact WinRAR -unp -iwae 2 -adv-iatfix yes yes 14 433/433

EXEpacker WinRAR -unp yes yes 16 433/433

WinUpack WinRAR -unp yes yes 2 433/433

ezip WinRAR -unp yes yes 12 433/433

Xcomp WinRAR -unp yes yes 5 433/433

PElock WinRAR -unp -iwae 2 -adv-iatfix no yes 2 71/433

Asprotect WinRAR -unp yes yes 16 433/433

Aspack WinRAR -unp yes yes 13 433/433

Hyperion WinRAR -unp yes yes 2 433/433

1 Executable
2 Unpacked

Table 4.2: Results of the test against known packers

4.3. Experiment 2: unpacking wild samples 49

This experiment shows the effectiveness of our generic unpacking algo-

rithm and PE reconstruction system against different kinds of packers and

crypters. For some packers as ASProtect, eXpressor and Obsidium we man-

aged to take a dump at the correct OEP, but due to the presence of IAT

obfuscation technique not yet handled we cannot reconstruct a working PE.

4.3 Experiment 2: unpacking wild samples

In this Section we are going to explain all the phases of the evaluation of our

tool against random samples.

4.3.1 Dataset

We built our dataset with random samples collected from VirusTotal, but

since is not available a tag aimed to download only packed programs we have

decide to collect a very large pool of malicious PEs with the only constraint

that they must be 32 bits binaries. After that we have classified them with the

packer detection tool Exeinfo PE [12] in order to rule out not packed samples

and keep the packed ones. In this set we can find binaries protected by

commercial packers and also possibly custom packers tagged by our detection

tools as ’Unknown packer’. This is the final set that we have used in order

to test the effectiveness of PinDemonium against malicious samples spotted

in the wild protected with both known and unknown packers/crypters.

4.3.2 Setup

In order to automatize the analysis we have created a python script on the

host machine that using the VBoxManage commands does the following

steps:

1. Restores the virtual machine used for testing the samples in a clean

state.

2. Start the machine and once started launches the sample instrumented

with PinDemonium with a time out of 5 minutes.

4.3. Experiment 2: unpacking wild samples 50

3. After the timeout expiration or after the program has terminated its

execution, the results collected inside the guest are moved in a shared

folder on the host in order to avoid losing them in the next restoring

process.

4. Closes the guest and returns to point 1.

4.3.3 Results

After the analysis performed by our tool, all the results are finally validated

manually in order to classify them in three category:

• Fully Unpacked: in this category we have all the samples that has

been reconstructed and with a behavior identical to the original one.

• Unpacked: in this category we put all the samples that are correctly

reconstructed, but with a behavior different from the original one.

• Unpacked but not working: here we have all the samples for which

we have reconstructed the import directory and have a possible dump at

OEP, but they crash when we try to execute the reconstructed program.

• Not Unpacked: in this category we put all the samples for which we

do not have a reconstructed PE.

We consider two metrics to evaluate our results, the SUCCESS metric

take into consideration the sum of Fully Unpacked and Unpacked, while the

FULL SUCCESS metric only the Fully Unpacked results. We have decided

to introduce the SUCCESS metric because these results can also be used

to study the original program besides the fact that they are not perfectly

identical to it. In Table 4.3 and Table 4.4 we can find the results obtained

by PinDemonium.

4.3. Experiment 2: unpacking wild samples 51

Result Num

Fully Unpacked 519

Unpacked 150

Unpacked but not working 139

Not unpacked 258

Table 4.3: Results obtained by unpacking random samples collected from Virus Total

Metric %

FULL SUCCESS 49%

SUCCESS 63%

Table 4.4: Metrics about the collected results

As we can see, for 63% of the samples we successfully reconstruct a work-

ing de-obfuscated binary, given one packed with a not known at priori packer.

In the Not Unpacked category we have all the programs that cause problems

to PinDemonium for different reasons, such as:

• evading the virtual environment in which we are instrumenting them;

• detecting the presence of PIN and do not proceed with the unpacking;

• messing with the environment in a way that our script cannot manage

to move the collected results from the guest to the host;

• employing IAT obfuscation techniques not handled by the program

• exploiting packing techniques with a level of complexity out of scope

(i.e., greater than 4 as specified in the survey in Section ??)

4.3. Experiment 2: unpacking wild samples 52

List of Acronyms

API Application Programming Interface

AV Anti-Virus

DBI Dynamic Binary Instrumentation

DLL Dynamic Loaded library

EIP Extended Instruction Pointer

FSA Finite State Automata

IAT Import Address Table

JIT Just in time

OEP Original Entry Point

PE Portable Executable

PEB Process Environment Block

PID Process Identifier

RVA Relative Virtual Address

TEB Thread Environment Block

VM Virtual Machine

WI Write Interval

WxorX Write xor Execution

Bibliography

[1] CHimpREC. https://www.aldeid.com/wiki/CHimpREC.

[2] DynamoRIO is a Dynamic Instrumentation Tool Platform. http://

www.dynamorio.org/.

[3] IDA is a Windows, Linux or Mac OS X hosted multi-processor disas-

sembler and debugger. https://www.hex-rays.com/products/ida/.

[4] Imports Fixer. https://tuts4you.com/download.php?view.2969.

[5] ImpREC. https://www.aldeid.com/wiki/ImpREC.

[6] Malwr. https://malwr.com/.

[7] PEiD. https://www.aldeid.com/wiki/PEiD.

[8] PinDemonium. https://github.com/Seba0691/PINdemonium.

[9] UPX is a free, portable, extendable, high-performance executable packer

for several executable formats. http://upx.sourceforge.net/.

[10] Swinnen Arne and Mesbahi Alaeddine. One packer to rule them all:

Empirical identification, comparison and circumvention of current An-

tivirus detection techniques. https://www.blackhat.com/docs/us-14/

materials/us-14-Mesbahi-One-Packer-To-Rule-Them-All-WP.

pdf.

[11] LRohit Arora, Anishka Singh, Himanshu Pareek, and Usha Rani Edara.

A heuristics-based static analysis approach for detecting packed pe bi-

naries. 2013.

BIBLIOGRAPHY 54

[12] A.S.L. Exeinfo PE. http://exeinfo.atwebpages.com/.

[13] Piotr Bania. Generic unpacking of self-modifying, aggressive, packed

binary programs. 2009.

[14] Leyla Bilge, Andrea Lanzi, and Davide Balzarotti. Thwarting real-time

dynamic unpacking. 2011.

[15] BromiumLabs. The Packer Attacker is a generic hidden code ex-

tractor for Windows malware. https://github.com/BromiumLabs/

PackerAttacker.

[16] Juan Caballero, Noah M. Johnson, Stephen McCamant, and Dawn Song.

Binary code extraction and interface identification for security applica-

tions. 2009.

[17] Seokwoo Choi. API Deobfuscator: Identifying Runtime-obfuscated API

calls via Memory Access Analysis.

[18] Kevin Coogan, Saumya Debray, Tasneem Kaochar, and Gregg

Townsend. Automatic static unpacking of malware binaries. 2009.

[19] Aldo Cortesi. Visual analysis of binary files. http://binvis.io/.

[20] Gritti Fabio and Fontana Lorenzo. Pinshield: an anti-anti-

instrumentation framework for pintool. Master’s thesis, Politecnico di

Milano, 2015/2016.

[21] Francisco Falcon and Nahuel Riva. I know you’re there spy-

ing on me. http://www.coresecurity.com/corelabs-research/

open-source-tools/exait.

[22] Star force technology. ASPack is an advanced Win32 executable file

compressor. http://www.aspack.com/.

[23] Jason Geffner. Unpacking Dynamically Allocated Code. https://

github.com/NtQuery/Scylla.

BIBLIOGRAPHY 55

[24] Fanglu Guo, Peter Ferrie, and Tzi-cker Chiueh. A study of the packer

problem and its solutions. 2008.

[25] Hex-Rays. IDA Pro. https://www.hex-rays.com/products/ida/.

[26] Hex-Rays. Ida Universal Unpacker. https://www.hex-rays.com/

products/ida/support/tutorials/unpack_pe/index.shtml.

[27] Immunity Inc. Immunity Debugger. http://www.immunityinc.com/

products/debugger/.

[28] Intel. Pin User Manual. https://software.intel.com/sites/

landingpage/pintool/docs/71313/Pin/html/.

[29] Min Gyung Kang, Pongsin Poosankam, and Heng Yin. Renovo: A

hidden code extractor for packed executables. 2007.

[30] Julien Lenoir. Implementing Your Own Generic Unpacker.

[31] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur

Klauser, Geoff Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim

Hazelwood. Pin: Building customized program analysis tools with dy-

namic instrumentation. 2005.

[32] Robert Lyda and James Hamrock. Using entropy analysis to find en-

crypted and packed malware. 2009.

[33] Milkovic Marek. Generic unpacker of executable files. 2015.

[34] Lorenzo Martignoni, Mihai Christodorescu, and Somesh Jha. Omniun-

pack: Fast, generic, and safe unpacking of malware. 2007.

[35] mmiller@hick.org. Using dual-mappings to evade automated unpackers.

http://www.uninformed.org/?v=10&a=1&t=sumry.

[36] Nicholas Nethercote and Julian Seward. Valgrind: A framework for

heavyweight dynamic binary instrumentation. 2007.

[37] NTCore. CFF Explorer. http://www.ntcore.com/exsuite.php.

BIBLIOGRAPHY 56

[38] NtQuery. Scylla - x64/x86 Imports Reconstruction. https://github.

com/NtQuery/Scylla.

[39] Mario Polino, Andrea Scorti, Federico Maggi, and Stefano Zanero. Jack-

daw: Towards automatic reverse engineering of large datasets of bina-

ries. 2015.

[40] Danny Quist. Circumventing software armoring techniques.

https://www.blackhat.com/presentations/bh-usa-07/Quist_

and_Valsmith/Presentation/bh-usa-07-quist_and_valsmith.pdf.

[41] Paul Royal, Mitch Halpin, David Dagon, Robert Edmonds, and Wenke

Lee. Polyunpack: Automating the hidden-code extraction of unpack-

executing malware. 2006.

[42] Isawa Ryoichi, Kamizono Masaki, and Inoue Daisuke. Generic unpacking

method based on detecting original entry point. 2009.

[43] Yu San-Chao and Li Yi-Chao. A unpacking and reconstruction system

- agunpacker. 2009.

[44] Monirul Sharif, Vinod Yegneswaran, Hassen Saidi, and Wenke Lee. Eu-

reka: A framework for enabling static malware analysis. 2015.

[45] Michael Sikorski and Andrew Honig. Practical Malware Analysis. No

Starch Press, 2012.

[46] MATCODE Software. MPRESS compresses PE32 (x86), PE32+ (x64,

AMD64) programs and libraries. http://www.matcode.com/mpress.

htm.

[47] Xabier Ugarte-Pedrero, Davide Balzarotti, Igor Santos, and Pablo G.

Bringas. Sok: Deep packer inspection: A longitudinal study of the

complexity of run-time packers. 2015.

[48] Babak Yadegari, Brian Johannesmeyer, Benjamin Whitely, and Saumya

Debray. A generic approach to automatic deobfuscation of executable

code. 2015.

