
Demystifying the
Secure Enclave Processor

Tarjei Mandt (@kernelpool)
Mathew Solnik (@msolnik)
David Wang (@planetbeing)

About Us

•  Tarjei Mandt
▫  Senior Security Researcher, Azimuth Security
▫  tm@azimuthsecurity.com

• Mathew Solnik
▫  Director, OffCell Research
▫  ms@offcellresearch.com

• David Wang
▫  Senior Security Researcher, Azimuth Security
▫  dw@azimuthsecurity.com

Introduction

•  iPhone 5S was a technological milestone
▫  First 64-bit phone

•  Introduced several technological advancements
▫  Touch ID
▫  M7 motion coprocessor
▫  Security coprocessor (SEP)

• Enabled sensitive data to be stored securely
▫  Fingerprint data, cryptographic keys, etc.

Secure Enclave Processor

•  Security circuit designed to perform secure
services for the rest of the SOC
▫  Prevents main processor from gaining direct

access to sensitive data
• Used to support a number of different services
▫  Most notably Touch ID

• Runs its own operating system (SEPOS)
▫  Includes its own kernel, drivers, services, and

applications

Secure (?) Enclave Processor

• Very little public information exists on the SEP
▫  Only information provided by Apple

•  SEP patent only provides a high level overview
▫  Doesn’t describe actual implementation details

•  Several open questions remain
▫  What services are exposed by the SEP?
▫  How are these services accessed?
▫  What privileges are needed?
▫  How resilient is SEP against attacks?

References

•  Patent US8832465 – Security enclave processor
for a system on a chip
▫  http://www.google.com/patents/US8832465

•  L4 Microkernels: The Lessons from 20 Years of
Research and Deployment
▫  https://www.nicta.com.au/publications/research-

publications/?pid=8988

Glossary

• AP: Application Processor
•  SEP: Secure Enclave Processor
•  SOC: System On a Chip

Talk Outline
•  Part 1: Secure Enclave Processor
▫  Hardware Design
▫  Boot Process

•  Part 2: Communication
▫  Mailbox Mechanism
▫  Kernel-to-SEP Interfaces

•  Part 3: SEPOS
▫  Architecture / Internals

•  Part 4: Security Analysis
▫  Attack Surface and Robustness

Demystifying the Secure Enclave Processor

SEP’s ARM Core: Kingfisher

• Dedicated ARMv7a “Kingfisher” core
▫  Even EL3 on AP’s core won’t doesn’t give you

access to SEP
• Appears to be running at 300-400mhz~
• One of multiple kingfisher cores in the SoC
▫  2-4 Other KF cores - used for NAND/SmartIO/etc
▫  Other cores provide a wealth of arch knowledge

• Changes between platforms (A7/A8/A9)
▫  Appears like anti-tamper on newer chips

Dedicated Hardware Peripherals
•  SEP has its own set of peripherals accessible by

memory-mapped IO
▫  Built into hardware that AP cannot access

�  Crypto Engine
�  Random Number Generator
�  Fuses
�  GID/UID

•  Dedicated IO lines -
▫  Lines run directly to off-chip peripherals

�  GPIO
�  SPI
�  UART
�  I2C

Shared Hardware Peripherals
•  SEP and AP share some peripherals
•  Power Manager (PMGR)
▫  Security fuse settings are located in the PMGR
▫  Lots of other interesting items

•  Memory Controller
▫  Can be poked at via iOS kernel

•  Phase-locked loop (PLL) clock generator
▫  Nothing to see here move along…

•  Secure Mailbox
▫  Used to tranfer data between cores

•  External Random Access Memory (RAM)

Physical Memory
•  Dedicated BootROM
▫  Located at 0x2_0da0_0000

•  Dedicated scratch RAM
▫  Appears to only be 4096 bytes

•  Uses inline AES to encrypt external RAM
▫  Segment encryption configured in bootrom
▫  Most likely to prevent physical memory attacks against

off SoC RAM chips (iPads)
•  Hardware “filter” to prevent AP to SEP memory

access
▫  Only SEP’s KF core has this filter

SEP KF Filter Diagram

From SoC To SoC

Demystifying the Secure Enclave Processor

SEP Initialization – First Stage
•  AP comes out of reset. AP BootROM releases SEP from

reset.
•  SEP initialization happens in three stages.
▫  Purpose of first stage is to bootstrap SEP into second stage.

•  SEP BootROM starts mapped at physical address (PA)
0x0.
▫  Basic exception vector at 0x0 that spins the processor upon

any exception.
▫  Real exception vector at 0x4000 that is used later.
▫  Reset handler for both at 0x4xxx.

•  Reset handler sets up address translation to use page
tables in BootROM.

SEP Initialization – Page Tables

VA PA Size Description
0x0000_4000 0x2_0DA0_4000 0x0000_1000 BootROM fragment

(allow first stage to
continue executing after
address translation is
enabled)

0x1000_0000 0x2_0DA0_0000 0x0010_0000 BootROM
0x1018_0000 0x0_8000_0000 0x0000_3000 Window into encrypted

external RAM
0x3000_0000 0x2_0000_0000 0x1000_0000 Peripherals

• Required since SEP is 32-bit and all peripherals
have high bits.

SEP Initialization – Bootstrapping into
second stage
•  Jump into second stage
▫  Addresses in 0x1000_0000 instead of

0x0000_0000 are now used.
• Exception vector set to the “real” one.
•  Stack pointer is set into SRAM

(0x2_0D60_0000)
•  Start the second stage message loop.

SEP Initialization – Second Stage

•  Listens for messages in the mailbox.
•  8-byte messages that have the same format

SEPOS uses.
• All messages use endpoint 255

(EP_BOOTSTRAP)
Opcode Description
1, 2 “Status check” (Ping)
3 Generate nonce
4 Get nonce word
5 “BootTZ0” (Continue boot)

Memory Protections
•  SEP needs more RAM than 4096 bytes of SRAM,

so it needs external RAM.
• RAM used by SEP must be protected against AP

tampering.
•  Two regions configurable by AP are setup:
▫  TZ0 is for the SEP.
▫  TZ1 is for the AP’s TrustZone (Kernel Patch

Protection).
•  SEP must wait for AP to setup TZ0 to continue

boot.

SEP Boot Flow

Configure TZ0 and TZ1

Send Ping

Send BootTZ0

Send Ping

AP

Acknowledge Ping

SEP

Map in TZ0

Setup Memory Encryption

Acknowledge BootTZ0

Begin Stage 3

iBoot
Kernel

Stage 3

Stage 2

SEP Memory Protection Bootstrap
•  Ping acknowledgement of

BootTZ0
•  Exit out of initial message

loop.
•  Checks whether TZ0 and TZ1

have been locked by reading
the registers at
0x2_0000_09xx (shared
between SEP and AP).
▫  If not, spin.

•  Map TZ0 region to physical
address 0x8000_0000. Page
tables in ROM already mapped
that PA to VA 0x1018_0000.

Configure TZ0 and
TZ1

Send Ping

Send BootTZ0

Send Ping

Acknowledge Ping

Map in TZ0

Setup Memory
Encryption

Acknowledge
BootTZ0

Begin Stage 3

iBoot

Kernel

Stage 3

Stage 2

Memory Encryption Setup
•  Use “True Random Number Generator” to generate

192 bits of randomness and store it in the TZ0 area
(not encrypted yet).

•  Use a standard key generation format (used for
generating ART for example) to generate final
encryption key:
▫  [4 byte magic = 0xFF XK1][4 bytes of 0s][192-bits of

randomness]
•  Copy key from AES result registers through SEP

registers directly into encryption controller registers
(without touching memory).

Memory Encryption Modes
• Appears to support ECB, CBC, and XEX.
• Capable of AES-128 or AES-256.
•  Supports two channels.
▫  BootROM uses channel 1.
�  All access to PA 0xC8_0000_0000 are encrypted

and decrypted into PA 0x8_0000_0000 (external
RAM).

▫  SEPOS uses channel 0.
�  All access to PA 0x88_0000_0000 are encrypted

and decrypted into PA 0x8_0000_0000 (external
RAM).

• Mode actually used is AES-256-XEX.
•  I factor of XEX being the physical address of the

block being encrypted left-shifted by 4 (i.e.
divided by AES block size).

• No validation: Possible to corrupt any 16 byte
block of SEP memory if you can tamper with
external RAM.

•  Transparent encryption and decryption:
▫  After boot, SEPOS itself has all page mappings to

0x88_0000_0000 with exception of hardware
registers and the shared memory region with AP.

Beginning Stage 3
•  SEP copies its page tables into

encrypted memory.
•  Reconfigures page tables to

map space for BSS, data and
stack in encrypted memory.

•  Initializes BSS, data, and
stack.

•  Begins a new message loop
with no shared code between it
and the initial low-capability
bootstrap.

Configure TZ0 and
TZ1

Send Ping

Send BootTZ0

Send Ping

Acknowledge Ping

Map in TZ0

Setup Memory
Encryption

Acknowledge
BootTZ0

Begin Stage 3

iBoot

Kernel

Stage 3

Stage 2

SEP Boot Flow: Stage 3

Send ART

AP

Acknowledge Ping

SEP

Acknowledge ART

Copy in ART

Send Shared Memory Addr

Send SEPOS

Copy in SEPOS

Validate SEPOS and ART

Acknowledge SEPOS

Boot SEPOS

Sending Anti-Replay Token
•  Stage 3 message loop will

receive earlier ping in mailbox
and respond.

•  Anti-Replay Token is sent
(opcode 7), encoding physical
address in top 4 bytes of
message.

•  SEP validates that the address is
not in TZ0 or TZ1 and is within
physical memory.
▫  Spin if it doesn’t validate.

•  SEP copies 4096 bytes from
specified address into buffer
within TZ0.

•  SEP acknowledges ART

Send ART Acknowledge Ping

Acknowledge ART

Copy in ART

Send Shared Memory Addr

Send SEPOS

Copy in SEPOS

Validate SEPOS and ART

Acknowledge SEPOS

Boot SEPOS

Sending SEPOS
•  SEPOS is sent (opcode 6),

encoding physical address in
top 4 bytes of message.

•  SEP exits message loop.
•  SEP validates address and

copies in first 4096 bytes.
•  Determines full size of DER

based on first 4096 bytes.
•  Validates the address of and

copies page-by-page rest of the
SEPOS DER.

Send ART Acknowledge Ping

Acknowledge ART

Copy in ART

Send Shared Memory Addr

Send SEPOS

Copy in SEPOS

Validate SEPOS and ART

Acknowledge SEPOS

Boot SEPOS

Sending SEPOS (Continued)
•  SEP validates the SEPOS and

ART that have been copied in.
▫  Spin if they don’t pass

validation.
•  If they do, send an

acknowledgement of the ”Send
SEPOS” message.

•  AP will send the address and
size of an area of physical
memory to be used as AP/SEP
shared memory on endpoint 254
(EP_L4INFO), to be used by the
SEPOS firmware once it’s
loaded.

Send ART Acknowledge Ping

Acknowledge ART

Copy in ART

Send Shared Memory Addr

Send SEPOS

Copy in SEPOS

Validate SEPOS and ART

Acknowledge SEPOS

Boot SEPOS

Boot-loading: Img4
•  SEP uses the “IMG4” bootloader format which is

based on ASN.1 DER encoding
▫  Very similar to 64bit iBoot/AP Bootrom
▫  Can be parsed with ”openssl -asn1parse”

•  Three primary objects used by SEP
▫  Payload –

�  Contains the encrypted sep-firmware
▫  Restore –

�  Contains basic information when restoring SEP
▫  Manifest (aka the AP ticket) -

�  Effectively the Alpha and the Omega of bootROM
configuration (and security)

ASN.1 Diagram
 IMG4 Manifest

sequence [
 0: string "IM4M"
 1: integer version - currently 0
 2: set [
 tag MANB [- Manifest body
 set [
 tag MANP [- Manifest Properties
 set [
 tag <Manifest Property> [
 content
]
 ... -Tags, describing other properties
]
]
 tag <type> [- SEPI, RSEP ...
 set [
 tag <tag property> [
 content
]
 <cut out for brevetiy>
]
 3: octet string signature
 4: sequence [- Containing certificate chain

]

 IMG4 Wrapper
sequence [
 0: string "IMG4"
 1: payload - IMG4 Payload, IM4P
 2: [0] (constructed) [
 manifest - IMG4 Manifest, IM4M
]
]

 IMG4 Payload
sequence [
 0: string "IM4P"
 1: string type - sepi, rsep ...
 2: string - '1'
 3: octetstring - the encrypted sep-firmware
 4: octetstring - containing DER encoded KBAG values
 sequence [
 sequence [
 0: int: 01
 1: octetstring: iv
 2: octetstring: key

 ‘‘ ‘‘
]

▫  Based on format from theiphonewiki.com

Img4 - Manifest
•  The manifest (APTicket) contains almost all the

essential information used to authenticate and
configure SEP(OS).

•  Contains multiple hardware identifier tags
▫  ECID
▫  ChipID
▫  Others

•  Is also used to change runtime settings in both
software and hardware
▫  DPRO – Demote Production
▫  DSEC – Demote Security
▫  Others…

Img4 – Manifest Properties (1/2)
Hex Name Description
CHIP Chip ID Fuse: Chip Family (A7/A8/A9)
BORD Board ID Fuse: Board ID (N61/N56 etc)
ECID Unique chip ID Fuse: Individual chip ID
CEPO Certificate Epoch Fuse: Current Certificate EPOC
CPRO Certificate Production Fuse: Certificate Production status
CSEC Certificate Security Fuse: Certificate Security Status
SDOM Security Domain Fuse: Manufacturing Security Domain
BNCH Boot Nonce Hash Hash of the one time boot nonce

IMG4 – Manifest Properties (2/2)
Hex Name Description
DGST Digest Boot Digest
DSEC Demote Security Modifies the device security status
DPRO Demote Production Modifies the device production status
ESEC Effective Security Usage unknown
EPRO Effective Production Usage unknown
EKEY Effective Key Usage unknown
AMNM Allow Mix and Match Usage unknown
Others…

Reversing SEP’s Img4 Parser: Stage 1

• How can you reverse something you cannot see?
▫  Look for potential code reuse!

• Other locations that parse IMG4
▫  AP BootROM – A bit of a pain to get at
▫  iBoot – Dump from phys memory - 0x8700xx000
�  Not many symbols…
�  But sometimes it only takes 1…

(iBoot from n51)

Reversing SEP’s Img4 Parser: Stage 2

•  Another file also contains the “Img4Decode” symbol
▫  /usr/libexec/seputil

•  Userland IMG4 parser with many more symbols
▫  May not be exact – but bindiff shows it is very close

•  From symbols found in seputil we can deduce:
▫  The ASN’1 decoder is based on libDER

�  Which Apple so kindly releases as OpenSource.
▫  The RSA portion is handled by CoreCrypto

•  LibDER + CoreCrypto = SEP’s IMG4 Parsing engine
▫  We now have a great base to work with

Img4 Parsing Basics
•  SEP BootROM copies in the sep-firmware.img4

from AP
•  Initializes the DER Decoder
▫  Decodes Payload, Manifest, and Restore Info

• Verifies all properties in manifest
▫  Checks against current hardware fusing

• Verifies digests and signing certificates
▫  Root of trust cert is hardcoded at the end of

BootROM
•  If all items pass – load and execute the payload

Img4 Parsing Flow
AP

Decode Payload & Manifest

SEP

Validate Digest

Validate Certificates Fail

Validate Manifest

Validate Properties Against Certificate

Validate Properties Against Hardware

Boot SEPOS

Read Fuses

SEP

Sends SEP IMG4

Img4 Property Validation Function

Demystifying the Secure Enclave Processor

Secure Mailbox

•  The secure mailbox allows the AP to
communicate with the SEP
▫  Features both an inbox (request) and outbox

(reply)
•  Implemented using the SEP device I/O registers
▫  Also known as the SEP configuration space

Secure Mailbox

• Actual mailbox implemented in
AppleA7IOP.kext
▫  Maps and abstracts I/O register operations

• AppleA7IOP provides functions for posting and
receiving messages
▫  AppleA7IOP::postMailbox(…)
▫  AppleA7IOP::getMailbox(…)

•  Implements a doorbell mechanism
▫  Enables drivers to register callback handler

AppleA7IOPV2 Mailbox I/O Registers
Offset Type Description
0x4000 uint32_t Disable mailbox interrupt
0x4004 uint32_t Enable mailbox interrupt
0x4008 uint32_t Inbox status bits
0x4010 uint64_t Inbox value
0x4020 uint32_t Outbox status bits
0x4038 uint64_t Outbox value

sep@DA00000 { "IODeviceMemory" = (({"address"=0x20da00000,"length"=0x10000})) }

Interrupt-based Message Passing

• When sending a message, the AP writes to the
inbox of the mailbox

•  This operation triggers an interrupt in the SEP
▫  Informs the SEP that a message has been received

• When a reply is ready, the SEP writes a message
back to the outbox
▫  Another interrupt is generated in order to let the

AP know a message was received

Mailbox Mechanism

Start Write
operation?

Read	
operation?No

Yes

Address	==	
Inbox

Data	written	to	
outbox?

Update	inbox	with	
write	data

Generate	interrupt	
for	SEP	processor

Yes

Ignore	write	
operation

No

Address	==	
Outbox

Yes

Respond	to	read	
with	nonce	data

No

Respond	to	read	
with	outbox	data

Yes

No

Yes

Done

Generate	interrupt	
for	AP	processor

No

Mailbox Message Format

• A single message is 8 bytes in size
•  Format depends on the receiving endpoint
•  First byte is always the destination endpoint

struct {
 uint8_t endpoint; // destination endpoint number
 uint8_t tag; // message tag
 uint8_t opcode; // message type
 uint8_t param; // optional parameter
 uint32_t data; // message data

} sep_msg;

SEP Manager

•  Provides a generic framework for drivers to
communicate with the SEP
▫  Implemented in AppleSEPManager.kext
▫  Builds on the functionality provided by the IOP

• Enables drivers to register SEP endpoints
▫  Used to talk to a specific SEP app or service
▫  Assigned a unique index value

• Also implements several endpoints on its own
▫  E.g. the SEP control endpoint

SEP Endpoint

• Each endpoint is represented by an
AppleSEPEndpoint object

•  Provides functions for both sending and
receiving messages
▫  AppleSEPEndpoint::sendMessage(…)
▫  AppleSEPEndpoint::receiveMessage(...)

•  SEP Manager automatically queues received
messages for each endpoint
▫  AppleSEPManager::_doorbellAction(…)

SEP Endpoints (1/2)
Index Name Driver
0 AppleSEPControl AppleSEPManager.kext
1 AppleSEPLogger AppleSEPManager.kext
2 AppleSEPARTStorage AppleSEPManager.kext
3 AppleSEPARTRequests AppleSEPManager.kext
4 AppleSEPTracer AppleSEPManager.kext
5 AppleSEPDebug AppleSEPManager.kext
6 <not used>
7 AppleSEPKeyStore AppleSEPKeyStore.kext

SEP Endpoints (2/2)
Index Name Driver
8 AppleMesaSEPDriver AppleMesaSEPDriver.kext
9 AppleSPIBiometricSensor AppleBiometricSensor.kext
10 AppleSEPCredentialManager AppleSEPCredentialManager.kext
11 AppleSEPPairing AppleSEPManager.kext
12 AppleSSE AppleSSE.kext
254 L4Info
255 Bootrom SEP Bootrom

Control Endpoint (EP0)

• Handles control requests issued to the SEP
• Used to set up request and reply out-of-line

buffers for an endpoint
•  Provides interface to generate, read, and

invalidate nonces
•  The SEP Manager user client provides some

support for interacting with the control endpoint
▫  Used by the SEP Utility (/usr/libexec/seputil)

Control Endpoint Opcodes
Opcode Name Description
0 NOP Used to wake up SEP
2 SET_OOL_IN_ADDR Request out-of-line buffer address
3 SET_OOL_OUT_ADDR Reply out-of-line buffer address
4 SET_OOL_IN_SIZE Size of request buffer
5 SET_OOL_OUT_SIZE Size of reply buffer
10 TTYIN Write to SEP console
12 SLEEP Sleep the SEP

Out-of-line Buffers

•  Transferring large amounts of data is slow using
the interrupt-based mailbox
▫  Out-of-line buffers used for large data transfers

•  SEP Manager provides a way to allocate SEP
visible memory
▫  AppleSEPManager::allocateVisibleMemory(…)
▫  Actually allocates a portion of physical memory

• Control endpoint is used to assign the request/
reply buffer to the target endpoint

Endpoint Registration (AP)

Allocate	SEP	visible	
memory

Create	
AppleSEPEndpoint	

object

Insert	endpoint	in	
endpoint	table

OOL	buffers	
required?

Yes

Assign	send	buffer	
to	endpoint

Allocate	SEP	visible	
memory

Register	OOL	buffer	
with	SEP	via	EP0

Register	OOL	buffer	
with	SEP	via	EP0

Assign	receive	buffer	
to	endpoint

DoneNo

Start

Physically	contiguious	
memory	region

AppleSEPManager::endpointForHandle()

Inserts	endpoint	at	the	
specified	table	index

Drivers Using SEP

•  Several drivers now rely on the SEP for their
operation

•  Some drivers previously located in the kernel
have had parts moved into the SEP
▫  Apple(SEP)KeyStore
▫  Apple(SEP)CredentialManager

• Most drivers have a corresponding app in the
SEP

Demystifying the Secure Enclave Processor

L4

•  Family of microkernels
•  First introduced in 1993 by Jochen Liedtke
▫  Evolved from L3 (mid-1980s)

• Developed to address the poor performance of
earlier microkernels
▫  Improved IPC performance over L3 by a factor

10-20 faster
• Numerous variants and implementations since

its introduction

L4-embedded

• Modified version of L4Ka::Pistachio
▫  Developed at NICTA in 2006

• Designed for use in resource-constrained
embedded systems
▫  Reduces kernel complexity and memory footprint

• Deployed at wide-scale
▫  Adopted by Qualcomm for CDMA chipsets

• Used in Darbat (L4 port of Darwin/XNU)

SEPOS

• Based on Darbat/L4-embedded (ARMv7)
▫  Custom modifications by Apple

•  Implements its own drivers, services, and
applications
▫  Compiled as macho binaries

•  The kernel provides only a minimal set of
interfaces
▫  Major part of the operating system implemented

in user-mode

SEPOS Architecture

SEP	Drivers SEP	ServicesSEPOS	
(Bootstrap	Server)

Secure	Key	Store Secure	Credential	
Manager

Secure	Biometric	
Engine

Hardware

SSEART	Manager	/	
ART	Mate

Embedded	Runtime	(ERT)

libSEPOS

Kernel	(L4)

Core	SEPOS	
Components

SEP	Applications

Kernel (L4)

•  Initializes the machine state to a point where it
is usable
▫  Initializes the kernel page table
▫  Sets up the kernel interface page (KIP)
▫  Configures the interrupts on the hardware
▫  Starts the timer
▫  Initializes and starts the kernel scheduler
▫  Starts the root task

•  Provides a small set (~20) of system calls

System Calls (1/2)
Num Name Description
0x00 L4_Ipc Set up IPC between two threads
0x00 L4_Notify Notify a thread
0x04 L4_ThreadSwitch Yield execution to thread
0x08 L4_ThreadControl Create or delete threads
0x0C L4_ExchangeRegisters Exchange registers wit another thread
0x10 L4_Schedule Set thread scheduling information
0x14 L4_MapControl Map or free virtual memory
0x18 L4_SpaceControl Create a new address space
0x1C L4_ProcessorControl Sets processor attributes

System Calls (2/2)
Num Name Description
0x20 L4_CacheControl Cache flushing
0x24 L4_IpcControl Limit ipc access
0x28 L4_InterruptControl Enable or disable an interrupt
0x2C L4_GetTimebase Gets the system time
0x30 L4_SetTimeout Set timeout for ipc sessions
0x34 L4_SharedMappingControl Set up a shared mapping
0x38 L4_SleepKernel ?
0x3C L4_PowerControl ?
0x40 L4_KernelInterface Get information about kernel

Privileged System Calls

•  Some system calls are considered privileged
▫  E.g. memory and thread management calls

• Only root task (SEPOS) may invoke privileged
system calls
▫  Determined by the space address of the caller

• Check performed by each individual system call
where needed
▫  is_privileged_space()

Privileged System Calls

SYS_SPACE_CONTROL (threadid_t space_tid, word_t control, fpage_t kip_area,
 fpage_t utcb_area)

{
 TRACEPOINT (SYSCALL_SPACE_CONTROL,

 printf("SYS_SPACE_CONTROL: space=%t, control=%p, kip_area=%p, "
 "utcb_area=%p\n", TID (space_tid),
 control, kip_area.raw, utcb_area.raw));

 // Check privilege
 if (EXPECT_FALSE (! is_privileged_space(get_current_space())))
 {

 get_current_tcb ()->set_error_code (ENO_PRIVILEGE);
 return_space_control(0, 0);

 }

 ...
} INLINE bool is_privileged_space(space_t * space)

{
 return (is_roottask_space(space);
}

Check for root task in
L4_SpaceControl

system call

from darbat 0.2 source

SEPOS (INIT)

•  Initial process on boot (root task)
▫  Can call any privileged L4 system call

•  Initializes and starts all remaining tasks
▫  Processes an application list embedded by the sep-

firmware
• Maintains a context structure for each task
▫  Includes information about the virtual address

space, privilege level, threads, etc.
•  Invokes the bootstrap server

SEPOS App Initialization

Initialize	Apps

proc_create() No Last	app	in	list?

Done

Yes

macho2vm() thread_create()

ertp_map_page()

Read	application	list	
from	sep-firmware

Compute	CRC	of	
loaded	images

CRC	valid?

Panic

Yes

No

Create	and	start	new	
thread	at	app	entry	point	
(L4_ThreadControl)

Reads	Mach-O	header	
and	maps	segments	

(L4_MapControl)

Creates	new	process	
and	address	space	
(L4_SpaceControl)

Maps	the	Mach-O	
header	from	physical	

memory

Compares	CRC	with	value	
stored	in	sep-firmware

Application List

•  Includes information about all applications
embedded by the SEP firmware
▫  Physical address (offset)
▫  Virtual base address
▫  Module name and size
▫  Entry point

•  Found 0xEC8 bytes prior to the SEPOS binary in
the sep-firmware image

Application List

Size Entry point

Virtual address

Physical address
(offset)

Bootstrap Server

•  Implements the core functionality of SEPOS
▫  Exports methods for system, thread and object

(memory) management
• Made available to SEP applications over RPC via

the embedded runtime
▫  ert_rpc_bootstrap_server()

• Enable applications to perform otherwise
privileged operations
▫  E.g. create a new thread

ert_rpc_bootstrap_server()

L4_ThreadId_t
ert_rpc_bootstrap_server()
{

 L4_Word_t dummy;
 L4_ThreadId_t server;

 server = bootstrap_server;

 if (!server)
 {
 (void) L4_ExchangeRegisters(
 __mrc(15, 0, 13, 0 , 3), // read thread ID register
 L4_ExReg_Deliver, // 1 << 9
 0, 0, 0, 0, L4_nilthread,
 &dummy, &dummy, &dummy, &dummy, &dummy, &server);

 bootstrap_server = server;
 }

 return server;

}

Privileged Methods

• An application must be privileged to invoke
certain SEPOS methods
▫  Query object/process/acl/mapping information

•  Privilege level is determined at process creation
▫  Process name >= ‘A ‘ and <= ‘ZZZZ’
▫  E.g. “SEPD” (SEPDrivers)

• Check is done by each individual method
▫  proc_has_privilege(int pid);

sepos_object_acl_info()

int sepos_object_acl_info(int *args)
{
 int result;
 int prot;
 int pid;

 args[18] = 1;
 *((_BYTE *)args + 104) = 1;
 result = proc_has_privilege(args[1]);
 if (result == 1)
 {
 result = acl_get(args[5], args[6], &pid, &prot);
 if (!result)
 {
 args[18] = 0;
 args[19] = prot;
 args[20] = pid;
 result = 1;
 *((_BYTE *)args + 104) = 1;
 }
 }
 return result;
}

Call to check if sender’s
pid is privileged

proc_has_privilege()

int proc_has_privilege(int pid)
{

 int result;

 if (pid > MAXPID)
 return 0;

 result = 0;

 if (proctab[pid].privileged)
 {
 result = 1;
 }

 return result;

}

Set on process creation
if name is upper-case

Entitlements

•  Some methods also require special entitlements
▫  sepos_object_create_phys()
▫  sepos_object_remap()

•  Seeks to prevent unprivileged applications from
mapping arbitrary physical memory

• Assigned to a process on launch
▫  Separate table used to determine entitlements

Entitlement Assignment

int proc_create(int name)
{

 int privileged = 0;

 ...

 if ((name >= 'A ') && (name <= 'ZZZZ'))

 privileged = 1;

 proctab[pid].privileged = privileged;
 proctab[pid].entitlements = 0;

 while (privileged_tasks[2 * i] != name)
 if (++i == 3)
 return pid;

 proctab[pid].entitlements = privileged_tasks[2 * i + 1];

 return pid;

}

Entitlement Assignment
Task Name Entitlements
SEPDrivers MAP_PHYS
ARTManager/ARTMate MAP_PHYS | MAP_SEP
Debug MAP_PHYS | MAP_SEP

•  MAP_PHYS (2)
▫  Required in order to access (map) a physical region

•  MAP_SEP (4)
▫  Same as above, but also needed if the physical region

targets SEP memory

SEP Drivers

• Hosts all SEP drivers
▫  AKF, TRNG, Expert, GPIO, PMGR, etc.
▫  Implemented entirely in user-mode

• Maps the device I/O registers for each driver
▫  Enables low-level driver operations

• Exposed to SEP applications using a dedicated
driver API
▫  Includes functions for lookup, control, read, and

write

Driver Interaction

• On launch, SEPDrivers starts a workloop to
listen for driver lookups
▫  Registered as “SEPD” bootstrap server service
▫  Translates driver lookups (name id) to driver

handles (thread id)
• Each driver also starts its own workloop for

handling messages
▫  Driver handle used to send message to a specific

driver

Driver Interaction

SEPOS

SEPDrivers

Lookup	handle	to	
SEPD	service

Driver

Driver	lookup Lookup	handle	to	
driver

Driver	control	/	
read	/	write

Perform	driver	
operation

DriverDriver

Registers	SEPD
	service

	on	startup

Retrieves	SEPD	thread	
handle	from	list

AKF Driver

• Manages AP/SEP endpoints in SEPOS
• Handles control (EP0) requests
▫  E.g. sets up objects for reply and response OOL

buffers
•  SEP applications may register new endpoints to

handle specific AP requests
▫  AKF_ENDPOINT_REGISTER (0x412C) control

request

SEP Services

• Hosts various SEP related services
▫  Secure Key Generation Service
▫  Test Service
▫  Anti Replay Service
▫  Entitlement Service

• Usually implemented on top of drivers
•  Service API provided to SEP applications
▫  service_lookup(…)
▫  service_call(…)

Service Interaction

•  Similar to how driver interaction is performed
• An initial workloop is responsible for handling

service lookups
▫  Registered as “sepS” bootstrap server service
▫  Does name-to-handle translation

• Additional workloops started for each registered
service
▫  Service handle used to send message to specific

service

Service Interaction

SEPOS

sepServices

Lookup	handle	to	
sepS	service

Service

Service	lookup Lookup	handle	to	
service

Service	call Issue	a	service
request

ServiceService

Registers	sepS
	service

	on	startup

Retrieves	sepS	thread	
handle	from	list

SEP Applications

•  Primarily designed to support various drivers
running in the AP
▫  AppleSEPKeyStore à sks
▫  AppleSEPCredentialManager à scrd

•  Some apps are only found on certain devices
▫  E.g. SSE is only present on iPhone 6 and later

• May also be exclusive to development builds
▫  E.g. Debug application

Demystifying the Secure Enclave Processor

Attack Surface: SEPOS

• Mostly comprises the methods in which data is
communicated between AP and SEP
▫  Mailbox (endpoints)
▫  Shared request/reply buffers

• Assumes that an attacker already has obtained
AP kernel level privileges
▫  Can execute arbitrary code under EL1

Attack Surface: AKF Endpoints

• Every endpoint registered with AKF is a
potential target
▫  Includes both SEP drivers and applications

• Does not require an endpoint to be registered
with the SEP Manager (AP)
▫  Can write messages to the mailbox directly
▫  Alternatively, we can register our own endpoint

with SEP Manager

Attack Surface: AKF Endpoints
Endpoint Owner OOL In OOL Out Notes
0 SEPD/ep0
1 SEPD/ep1 ✓
2 ARTM ✓ ✓ iPhone 6 and prior
3 ARTM ✓ ✓ iPhone 6 and prior
7 sks ✓ ✓
8 sbio/sbio ✓ ✓
10 scrd/scrd ✓ ✓
12 sse/sse ✓ ✓ iPhone 6 and later

List of AKF registered endpoints (iOS 9) and their use of out-
of-line request and reply buffers

Attack Surface: Endpoint Handler
SEP Biometrics

message handler

Attack Robustness

• How much effort is required to exploit a SEP
vulnerability?
▫  E.g. stack/heap corruption

• Determined by several factors
▫  Address space layout
▫  Allocator (heap) hardening
▫  Exploit mitigations
▫  And more

Address Space Layout - Image

•  SEP applications are loaded at their preferred
base address
▫  No image base randomization
▫  Typically based at 0x1000 or 0x8000 (depending

on presence of pagezero segment)
•  Segments without a valid memory protection

mask (!= 0) are ignored
▫  E.g. __PAGEZERO is never “mapped”

Address Space Layout - Objects

• Objects are mapped from low to high virtual
address
▫  No randomization of (non-fixed) object mappings
▫  Mapped address is always higher than the highest

existing mapping
• Object mappings are non-contiguous
▫  Skips 0x4000 bytes between each mapping
▫  Provides a way to catch out-of-bounds memory

accesses

Stack Corruptions

•  The main thread of a SEP application uses an
image embedded stack
▫  __sys_stack (0x1000) in __DATA::__common
▫  A corruption could overwrite adjacent DATA

segment data
•  Thread stacks of additional threads spawned by

SEPOS are mapped using objects
▫  Allocated with gaps à “guard pages”

Stack Corruptions

Stack

TEXTMain	Thread

Thread	2

Stack

DATA

Mapping
Thread	3

Stack

Virtual	Memory

System	stack	
(0x1000	bytes)

Application	
Image

Stack Corruptions

•  SEP applications are compiled with stack cookie
protection
▫  Cookie value is fixed to ‘GARD’
▫  Trivial to forge/bypass

•  Stack addresses are in most cases known
▫  Main thread stack is at a known address
▫  Addresses of subsequent thread stacks are

predictable

Heap Corruptions: malloc()

• Runtime allocator leveraged by SEP applications
▫  K&R implementation

•  Singly linked free list (ordered by size) with
header that includes pointer and block size
▫  struct Header { void * ptr, size_t size };
▫  Coalesces adjacent elements on free()

•  Size of heap determined on initialization
▫  malloc_init(malloc_base, malloc_top);
▫  Non-expandable

Heap Corruptions: malloc()

Next

Size

Data	(Free) Data	(In	Use)

Next

Size

Data	(Free)

Free	List Next

Size

Image	DATA	segment

Heap Corruptions: malloc()

• No protection of heap metadata
▫  Free list pointers can be overwritten
▫  Block size can be corrupted

• Allocation addresses are predictable
▫  Malloc area embedded by __DATA segment in

application image
▫  Allocations made in sequential order

No-Execute Protection

•  SEPOS implements no-execute protection
• Always set when a page is not marked as

executable
▫  space_t::map_fpage()
▫  Sets both XN and PXN bits in page table entries

• Non-secure (NS) bit also set for all pages outside
SEP memory region

SEPOS Mitigations Summary
Mitigation Present Notes
Stack Cookie Protection Yes (…) ‘GARD’ – mostly ineffective
Memory Layout Randomization

User No
Kernel No Image base: 0xF0001000

Stack Guard Pages Yes/No Not for main thread
Object Map Guard Pages Yes Gaps between object mappings
Heap Metadata Protection No
Null-Page Protection No Must be root task to map page
No-Execute Protection Yes Both XN and PXN

Attack Surface: BootROM

• Effectively only two major attack surfaces
▫  IMG4 Parser
�  Memory Corruption
�  Logic Flaws
▫  Hardware based

• Only minor anti-exploit mitigations present
▫  No ASLR
▫  Basic stack guard
▫  One decent bug = game over

Attacking IMG4
•  ASN.1 is a very tricky thing to pull off well
▫  Multiple vulns in OpenSSL, NSS, ASN1C, etc

•  LibDER itself actually rather solid
▫  “Unlike most other DER packages, this one does no

malloc or copies when it encodes or decodes”
 – LibDER’s readme.txt

▫  KISS design philosophy
•  But the wrapping code that calls it may not be
▫  Audit seputil and friends
▫  Code is signifigantly more complex then libDER itself

Attack Surface: Hardware
• Memory corruption attacks again data receivers

on peripheral lines
▫  SPI
▫  I2C
▫  UART

•  Side Channel/Differential Power Analysis
▫  Stick to the A7 (newer ones are more resistant)

• Glitching
▫  Standard Clock/Voltage Methods
▫  Others

Attacking the Fuse Array

•  Potentially one of the most invasive attack
vectors
▫  Requires a lot of patience
▫  High likelihood of bricking

•  Laser could be used
▫  Expensive method - not for us

•  Primary targets
▫  Production Mode
▫  Security Mode

End Game: JTAG

▫  Requires a 2000+ pin
socket
▫  Need to bypass CRC and

fuse sealing
▫  “FSRC” Pin - A line into

fuse array?

• Glitch the fuse sensing routines

• Attack the IMG4 Parser
▫  What exactly do DSEC and DPRO really do?

A8 SoC Pins

Demystifying the Secure Enclave Processor

Conclusion

•  SEP(OS) was designed with security in mind
▫  Mailbox interface
▫  Privilege separation

• However, SEP(OS) lacks basic exploit
protections
▫  E.g. no memory layout randomization

•  Some SEP applications expose a significant
attack surface
▫  E.g. SEP biometrics application

Conclusion (Continued)
•  Overall hardware design is light years ahead of

competitors
▫  Hardware Filter
▫  Inline Encrypted RAM
▫  Generally small attack surface

•  But it does have its weaknesses
▫  Shared PMGR and PLL are open attack to attacks
▫  Inclusion of the fuse source pin should be re-evaluated
▫  The demotion functionality appears rather dangerous

�  Why does JTAG over lightning even exist?

Thanks!

• Questions?

Demystifying the Secure Enclave Processor

SEPOS: System Methods
Class Id Method Description Priv

0 0 sepos_proc_getpid() Get the process pid

0 1 sepos_proc_find_service() Find a registered service by name

0 1001 sepos_proc_limits() Query process limit information x

0 1002 sepos_proc_info() Query process information

0 1003 sepos_thread_info() Query information for thread

0 1004 sepos_thread_info_by_tid() Query information for thread id

0 1100 sepos_grant_capability() - x

0 2000 sepos_panic() Panic the operating system

SEPOS: Object Methods (1/2)
Class Id Method Description Priv

1 0 sepos_object_create() Create an anonymous object

1 1 sepos_object_create_phys() Create an object from a physical region x (*)

1 2 sepos_object_map() Map an object in a task’s address space

1 3 sepos_object_unmap() Unmap an object (not implemented)

1 4 sepos_object_share() Share an object with a task

1 5 sepos_object_access() Query the access control list of an object

1 6 sepos_object_remap() Remap the physical region of an object x (*)

1 7 sepos_object_share2() Share manifest with task

SEPOS: Object Methods (2/2)
Class Id Method Description Priv

1 1001 sepos_object_object_info() Query object information x

1 1002 sepos_object_mapping_info() Query mapping information x

1 1003 sepos_object_proc_info() Query process information x

1 1004 sepos_object_acl_info() Query access control list information x

SEPOS: Thread Methods
Class Id Method Description Priv

2 0 sepos_thread_create() Create a new thread

2 1 sepos_thread_kill() Kill a thread (not implemented)

2 2 sepos_thread_set_name() Set a service name for a thread

2 3 sepos_thread_get_info() Get thread information

