
Next Generation Of Exploit Kit Detection By Building
Simulated Obfuscators

Tongbo Luo
∗

Palo Alto Networks Inc
4401 Great America Pkwy

Santa Clara, CA 95054
tluo@paloaltonetworks.com

Xing Jin
Palo Alto Networks Inc

4401 Great America Pkwy
Santa Clara, CA 95054

xijin@paloaltonetworks.com

ABSTRACT

Recently, drive-by downloads attacks have almost reached
epidemic levels, and exploit-kit is the propulsion to signify
the process of malware delivery. One of the key techniques
used by exploit-kit to avoid firewall detection is obfuscat-
ing malicious JavaScript program. There exists an engine
in each exploit kit, aka obfuscator, which transforms the
malicious code to obfuscated code.

In this paper, we tracked and collected over 20000 obfus-
cated JavaScript samples of 5 exploit kit families from 2014
to 2016. This research is the first attempt to approach the
problem from a different angle: reverse engineering the ob-
fuscator from obfuscated samples. We leverage JavaScript
normalization technique and hierarchical cluster algorithm
to minimize the manual effort when reproducing the obfus-
cator. We utilize agglomerative approach to measure the
proper threshold to best classify samples by their obfusca-
tor version and variant. We implement our design to cluster
normalized samples, and illustrate the life cycle of obfuscator
version and variant for all 5 families. This is the first work
that depicts the timeline of exploit kit from the perspective
of the evolution of its obfuscator. We derive patterns on how
obfuscator evolved and tend to predict the next obfuscator
variation. We share our research with the larger security
community through open source the project release, aiming
to provide better protection of the cyber-world1.

Keywords

Exploit Kit, JavaScript Obfuscation, JavaScript Normaliza-
tion, Obfuscator

1. INTRODUCTION
The cyber space is the number one source of malware (a

term that combines“malicious”and“software”), and the ma-
jority of these malware threats come from what is called a
drive-by download. Attackers developed a toolkit, called ex-
ploit kit, that automates the exploitation of client-side vul-
nerabilities, usually targeting browsers and plugins that a
website can access through the browser exposed APIs. Ex-
ploit kit packaged all functionalities in 5 stages : entry point,
distribution, exploit, infection, and execution, to launch a

∗Sr Staff Security Researcher in IPS Team.
1 Source Code at
https://github.com/irobert-tluo/rebuild obfuscator.git
Online Detection Tool at http://www.jsDarwin.com

web attack. The earliest hack toolkit, named Mpack, was
available in the crimeware market in 2006. From then on,
exploit kits have become the most popular method for cyber-
criminals to compromise hosts and to leverage those hosts
for various methods of profit. Exploit kit can cost anywhere
between free to thousands of dollars in underground market.
Typically, relatively unsophisticated kit may cost US$500
per month. Licenses for advanced kits have been reported
to cost as much as $10,000 per month. Currently, there are
70 different exploit kits in the wild that take advantage of
more than a hundred vulnerabilities [1].

A key characteristic of an exploit kit is the heavily obfus-
cation of their malicious JavaScript code. By virtue of the
dynamic feature of JavaScript language (e.g. code within
an eval, dynamic type dependent object creation), exploit
kit regularly changes the obfuscation techniques to evade
detection and/or analysis. Therefore, the world of exploit
kits is an ever-changing one, and if people happen to look
away even just for one month, they will come back to find
that almost everything has changed. This arguably makes
detection of exploit kits most pressing problem.

We observed that prior studies focused on extracting fea-
tures (e.g. static characteristics [2, 3, 4], dynamic behaviors
[5, 6] or a combination of both of them [7]) to separate
benign and malicious JavaScript code. They usually lever-
aged machine learning algorithms to train a model based on
these features on huge sample set, and adopt the model to
classify a sample to either malicious or benign. Till recently,
security researchers proposed approaches to detect the vari-
ant of an existing exploit kit samples [8, 9, 10]. We have
seen lots of articles or blogs [11, 12, 13, 14] that share their
analysis on the obfuscation techniques, but they only focus
on analyzing the specific techniques utilized by the exploit
kits.

In this paper, we approach the problem from a different
angle: reverse engineering the obfuscator from the obfus-
cated script samples. Of the massive number of samples
we collected over 2 years, we propose a novel clustering ap-
proach to identify the evolution of the obfuscator variant,
and significantly reduce the manual effort to reverse engi-
neering the obfuscator to an affordable level.

Our work is motivated by the benefit of reverse-engineering
the obfuscator. Purchasing an obfuscator utilized by the real
exploit kit is extremely expensive in the underground mar-
ket, and it may even involve legal issues. This prevents secu-
rity community from understanding the other side of the ob-
fuscated script. Rebuilding the obfuscator from samples can
solve the difficulty of acquiring one in the wild. The rebuilt

https://github.com/irobert-tluo/rebuild_obfuscator.git
http://www.jsDarwin.com

obfuscators can solve the shortage of exploit kit samples as
well. Nearly every exploit kit leverages various evasion tech-
niques (e.g. IP cloaking, DGA), which makes consistently
sample collecting quite challenging. Using rebuilt obfusca-
tors, we can generate unlimited number of samples.

Reverse engineering an obfuscator is challenging. Unlike
develop an arbitrary obfuscator, reverse engineering an ob-
fuscator is more time consuming since we have to manually
analyze massive samples to derive how the obfuscator works.
However, due to the special functionality of the obfuscator,
which is designed to conceal the purpose and logic of the
code, the obfuscator deliberately obfuscates the malicious
script each time it is requested. Moreover, multiple obfus-
cator variants are active in the wild at the same time. As a
result, from the collected samples, it is extremely difficult to
distinguish which obfuscator variant generates a given sam-
ple. A feasible approach is required to identify an obfuscator
variant and cluster samples in a way that the samples within
the same group are generated by the same obfuscator vari-
ant. In addition, the samples in each cluster should be as
similar as possible to facilitate manual reverse engineering
of the obfuscator.

This paper makes the following contributions: (1) New
Angle: Based on our knowledge, this research is the first at-
tempt to systematically rebuild the obfuscator from the ob-
fuscated samples. (2) New Techniques: We developed a new
evolution-based hierarchical clustering algorithm to identify
obfuscator variants. (3) Implementation: We implemented
our design and shared our implementation with the security
community.

2. BACKGROUND
We begin with an example of obfuscator and obfuscation

techniques that gives a high-level overview of how obfuscator
works.

2.1 Obfuscation Techniques
Examining the samples we collected in detail, we find that

there are three major obfuscation techniques used by obfus-
cator. (1) Randomization Obfuscation: An obfuscator may
randomly insert or modify some elements of the JavaScript
program without changing the semantics of the codes, such
as whitespace, comments, variable names, function names
randomization. They may also change the order of function
declarations. (2) Constant Value Obfuscation: An obfusca-
tor utilizes the bracket notation to access a property of an
object (e.g. String[”fromCharCode”]). However, they con-
struct the property names at runtime as the computation
result of other variables or constants. String manipulation
is the most common used technique (e.g. s=”from”+ ”Char”
+ ”Code”; String[s];). (3) Encoding Obfuscation: An ob-
fuscator may encode malicious payloads into escaped ASCII
characters, unicode, hexadecimal format or even customized
representation. They put the encoded malicious payloads
and implement the decoding algorithm as the part of the
script. The script unpack the encoded payloads and launch
the attack.

2.2 Obfuscator
To evade manual analysis, browser emulators, or antivirus

detection, adversaries craft their code while remaining effec-
tive at exploiting regular users. This keeps the malicious
pages for a longer period of time ”under the radar” before

adding to the public blacklists [8]. Therefore, all exploit
kits implement an obfuscator, which leverage obfuscation
techniques to deliberately hide the malicious JavaScript pro-
gram.

Figure 1: Overview of Obfuscator.

From the released source code of exploit kits, we observe
that the design of an obfuscator involves two components:
template and engine. Since obfuscators need a convenient
way to generate HTML and JavaScript dynamically, they
rely on a template to define the static parts of the desired
output, as well as, special syntax describing how dynamic
content will be integrated. The engine construct the dy-
namic content (usually a randomized data) and feed it to
the template to generate the output. Figure 2 illustrates
a snippet of obfuscator code from Nuclear exploit kit [15,
16]. One of the key step to reverse engineering an obfusca-

Figure 2: Nuclear Exploit Kit Obfuscator Example.

tor is to identity which part of the sample are generated by
the template and which part are generated by the engine.
In order to perform the previous step, we need to distin-
guish whether two samples come from the same variants. In
the rest of the paper, we will discuss the method to auto-
matically retrieve the obfuscator template and reduce the
number of samples in order to manually reverse-engineering
an obfuscator engine.

Figure 1 only shows one level of the obfuscation iterations.
An exploit kit normally obfuscates the payload several times.
For example, the output of the first level obfuscation will be
used as the input of the second level. In this work, we will
only demonstrate how to reverse engineering the first level,

however our approach can be applied to any level in theory
since the obfuscator design at each level is quite similar to
each other.

2.3 Challenges
We face several challenges in reverse-engineering the ob-

fuscator:
C1: Code Complexity. Each obfuscated page has more

than hundread lines of code, which also contain a lot of ran-
dom variables inside. This challenge makes it very hard to
identity which part of the sample are generated by template
and which part are generated by the engine.

C2: Data Complexity. Our sample data set contains
more than 20,000 samples over 2 years period. There also
may be different versions or variants mixed together at the
same time. This challenges make it even harder to do the
reverse engineering for the obfuscator.

Despite all the challenges involve, reverse engineering ob-
fuscator would be great help to the researcher/engineer to
better understanding and track the evolution of exploit kit

3. OUR APPROACH
In this section, we discuss how we leverage the normal-

ization technique and clustering algorithm to minimize the
manual effort when reproducing obfuscators from samples.

3.1 Overview
Figure 3 shows the overview of our approach. First we

normalize the JavaScript code to abstract away superficial
obfuscation and significantly reduce the number of samples
with unique code structure. Then we leverage hierarchical
clustering model to cluster the samples so that samples in
each cluster are generated by the same obfuscator version or
variant. We utilize different merge criterions to incorporate
sample to cluster when we identify obfuscator version and
variant. These criterions are adopted to simulate the evolu-
tion of the obfuscator version or variant during clustering.
Therefore, the cluster result reflects the evolution of an ob-
fuscator. We demonstrate how our approach works using
the exploit kit samples we have collected in the wild. The
data we collected from both public blogs/websites [17] and
malicious or compromised servers.

Figure 3: Overview of our approach

We defined some terms we used in this paper to describe
obfuscator evolution. We define an obfuscator version when
it changes its template (either EVAL template or Unpack
template) and an obfuscator variant when it changes its
engine logic. The major difference between this two types of
obfuscator mutation is the impact on the obfuscated code.

Obfuscator upgrades to a new version normally involves ma-
jor changes on the obfuscator side (e.g. new encoding mech-
anism) and it leads to a different unpacker template which
at least takes half of the obfuscated page. On the contrary,
an obfuscator variant upgrade causes less impact.

3.2 JavaScript Normalization
We propose to analyze the structure of the JavaScript

code rather than the source code itself. The rationale be-
hind normalization is to abstract away randomized informa-
tion from the obfuscated source code that are irrelevant to
the template of obfuscator. As we explained, the obfuscator
engine generates random variable names and garbage data
that does not change the syntax of the script (e.g. whites-
pace, comments).

Figure 4: JavaScript Normalization Example.
In order to filter out the randomized data from the obfus-

cated script, we propose to normalize the script. We utilize
a JavaScript lexer to parse the source code and tokenize it
into a sequence of tokens. For each type of token, we map it
to one unique character. Then we construct the normalized
script by concatenating all of the characters together. As
Figure 4 shows, keyword function and return will be con-
verted to character F and R; symbol I represents any vari-
able or identifier regardless of its value; we keep the original
content for punctuations (e.g. bracket, comma).

3.3 Normalized Samples

Statistics. In conducting our analysis, we found out that
the number of unique sample is significantly reduced after
normalization. Table 1 previews our result. For example,
among the 7834 Angler examples we have collected, we only
identify 613 unique normalized script. In other words, the
rest of them share the identical code structure but with ran-
domized content (e.g. variable names).

Family Angler Nuclear Rig KaiXin Fiesta
TOTAL # 7834 1303 1793 10291 79
UNIQUE # 613 107 344 1543 48

Table 1: Statistics on Normalized Samples

We believe that such massive percentage of identical exploit-
kit samples can be leveraged by security researchers. There-
for, we further investigated the duplicated normalized sam-
ples. We observed that the majority of them are collected
within a short span of time, as described in Figure 6. For
example, of the samples from Nuclear family, 91.2 percent
of the samples share the same script structure. The chance
to find an identical normalized sample off by a day drops to
77.2 percent. For samples collected one week apart, there is
only 20 percent chance to find an identical sample.

(a) Angler version 1 (b) Angler version 3 (c) Nuclear version 5

Figure 5: Pairwise Sample Similarity Distribution Angler Varient

Figure 6: Percentage of Duplicated Normalized Samples
within N days sapn

Similarity. Due to the heavy obfuscation used by exploit-
kits, the similarity score between the source code of two sam-
ples is quite low. We have described how to identify scripts
with identical code structure using normalization. We can
also compare the similarity of the structure of scripts.

Since normalized script reflects the structure of the script,
we can leverage sequence or string similarity algorithm to
measure the closeness of scripts in term of their structure.
We derive a similarity score from Levenshtein Edit Distance
which stays in interval [0, 1] using the following formula:

SimScore(norm1, norm2) = 1−
EditDist(norm1, norm2)

max(len(norm1), len(norm2))

3.4 Cluster Samples by Their Obfuscator
Due to the lack of knowledge on exploit kit, we are not

capable of collecting samples along with obfuscator infor-
mation. Currently, researchers tend to manually analyze a
large amount of samples and identify different variants. This
process is time-consuming and not reliable since there is not
a clearly rule to define new variants. Leveraging the nor-
malization techniques, we significantly reduces the number
of unique samples. Since we only filter out the superficial
differences in the scripts (e.g. random variable names), the
number of unique normalized samples is still quite large for
manual analysis. In order to reverse engineering obfuscators,
we need to reduce the number of samples to an affordable
level. It requires us to group the samples in such a way that
samples in the same group are generated from the same ob-
fuscator variant. We then analyze samples within each group
and reverse engineering each obfuscator variant.

Flat vs Hierarchical. Obviously, clustering algorithm
is our best solution to solve the problem. There are two
major types of clustering model: flat and hierarchical. Flat
model is simple and efficient, but it has several drawbacks.
Algorithms in flat model, such as the most popular one K-
Means, require a predefined number K as the input which
is the number of clusters. This K can be interpreted as the
number of obfuscator version in our case. However, it is
hard to predict the number of obfuscator version from the
samples and it is actually one of the question we wants to
answer in our research.

Therefore, we adopt hierarchical clustering model. Unlike
the unstructured result returned by flat model, the result
from the hierarchical model conveys the structure informa-
tion. The result can be visualized as a dendrogram, which is
a tree diagram to illustrate the arrangement of the clusters.
A predefined threshold can be used to cut the dendrogram
into subtrees and the leaves in each subtree is a cluster.

Threshold. A dendrogram allows us to adjust the thresh-
old in order to find the best one to identify obfuscator version
and variant. We utilize agglomerative (bottom-up) approach
to build the dendrogram for each exploit kit family. To mea-
sure the threshold, we manually analyzes a couple of samples
and marked whether the samples come from the same ob-
fuscator version and obfuscator variants. These samples will
be clustered into different places in the dendrogram after we
ran the algorithm. We use the marked samples as an anchor
to find the proper threshold.

The advantage of hierarchical clustering model model is
that we can measure the threshold. The threshold reflects
the nature of how an obfuscator evolves, and it is unlikely to
be dramatically changed as time goes by (our result spans 2
years). However, the number of new obfuscator versions or
variants will definitely increase over time, and we are unable
to know it.

Based on our experiment, to identify a new obfuscator
version, we believe the threshold needs to between 0.4 and
0.5. Since an obfuscator is designed to conceal the purpose
and logic of the code, the obfuscator deliberately make it
as different from another at each time the malicious script
is generated. The evolution of an obfuscator (e.g. vari-
ant with new obfuscation algorithm) happens to lead to the
same effect. Although both behaviours could be the expla-
nation of script structure change, we noticed that the latter
reason leads to a much significant impact on the changes of

Figure 7: Evolution of Angler Obfuscator Version 1

the script structure. Moreover, obfuscator normally changes
a large portion of itself (e.g. adopting new data obfusca-
tion algorithms) to make a new variant. This portion (e.g.
unpacker/decoder code) is more than 50% of the malicious
script. Therefore, our experiment result is reasonable.

To identify a new obfuscator variant, the threshold can
be set between 0.8 and 0.9. Each variant only makes mi-
nor change on its previous version when evolving, and most
of modification is to upgrade its engine logic. For example,
the previous variant (say 1.1) engine utilizes concat-based
approach to construct sensitive function name ‘eval’ (e.g.
a=‘ev’+‘al’;); and the next variant (say 1.2) engine switch
to replace-based approach a=‘e*al’. replace(‘*’,‘v’);. Com-
paring the randomization from the obfuscator engine, the
variant changes has a litter more impact on the script struc-
ture. This is because polymorphism generated by obfuscator
engine normally under certain range (e.g. number of unused
garbage variable declaration is in a predefined range). On
the other hand, minor obfuscation technique upgrade may
comes from developer’s random thought that are much ir-
regular.

Within-Cluster Similarity. We measure the pairwise
similarity score among samples within each cluster. We find
out that the majority of samples within each cluster (for
obfuscator version) are not similar to each other. Figure 5
depicts the distribution of the pairwise similarity score for
samples generated by Angler version 1, Angler version 3 and
Nuclear version 7. The horizontal axis represents the sim-
ilarity score and the vertical axis represents the number of
sample pairs has certain similarity score. We choose them
because these obfuscator versions last for a relatively longer
time and the number of samples we collected for each clus-
ter is large. The majority of the similarity score is in the
range from 0.25 to 0.55. A good clustering model pursues
high within-clustering similarity and low inter-cluster simi-

larity. It does not mean our hierarchical clustering algorithm
is wrong but the feature of the samples.

The evolution of the obfuscator variant leads to such a di-
verse script structures among the samples generated by the
same obfuscator version. Since for certain obfuscator ver-
sion, it evolves its obfuscator engine logic to perform poly-
morphism. The evolution of obfuscator variant are irregular.
Due to the dynamic feature of JavaScript, attackers can eas-
ily make a new variant with an arbitrary. We monitor the
samples generated by the Angler obfuscator version 1 which
is active from 2014 to 2016. This obfuscator version keeps
evolving, and so far it has 11 variants. We observe that each
of the variant utilizes different obfuscation implementations
to construct the sensitive API name fromCharCode, which is
a key method of String object to unpack payload. Figure 7
shows the evolution of obfuscator variants in term of their
way to construct string fromCharCode.

The fromCharCode example and our within-cluster statis-
tics imply a fact that, with the obfuscation variant evolution,
the samples changes dramatically. It is possible that samples
with similarity score less than 0.2 can be grouped into same
cluster. It means security researchers has to keep track of
all of the variants in order to name a new version or variant
correctly. If they miss the samples for a period of time, even
for a week, they may name a new variant which should be
an continuation of existing variant. However, our approach
can solve this problem.

Life Cycle of Obfuscator Version and Variant. Al-
though the main purpose of our approach is to reproduce ob-
fuscator, it can also be used to identify the life cycle of obfus-
cators. Since prior reports always leverage the browser/plugin
vulnerability targeted by the payload to identify exploit kit
changes, we will show the mutation of exploit kit from the
evolution of its obfuscator. We use threshold 0.43 to iden-
tify obfuscator version and use threshold 0.81 to identify

obfuscator variant. We applied our approach on the sample
we collected in real-world and draw a timeline to show the
life cycle of each obfuscator.

Figure 8 depicts the timeline of obfuscator version for 5
exploit kit families from 2014 to 2016, and Figure 9 illus-
trates the timeline of obfuscator variant. Each line in both
figures represents an individual obfuscator version, and each
block in Figure 9 represents an obfuscator variant.

Different exploit kit family has a diverse life cycle of their
obfuscators. Nuclear exploit-kit has constantly evolved from
2009. The life cycle of its obfuscator version has an unique
pattern, non-overlapping. It means one obfuscator version
died right after a new version get deployed to the server.
Obfuscators in the rest of the exploit kit families all has
multiple version active in parallel. It is not common that
multiple obfuscator variant running at the same time, but
we do detect that it is the case for KaiXin exploit kit ob-
fuscator version 1. Angler exploit-kit is the most popular
and complicated exploit kit. But it actually has less num-
ber of obfuscator version and variant (Figure 9a). Couple of
obfuscator versions are active at the same time, especially
during the forth quarter of 2015 we collected samples from 4
obfuscator versions. This is may be one of the reasons that
people believe it is complex.

Another interesting observation is that, our result matches
the fact how exploit kit evolved. According to the report
from website WebSense [18], nuclear pack completely replace
the older version to a new version at December 2014. And
our timeline reflect that the obfuscator also upgraded to a
new version.

3.5 Rebuild Obfuscator
Leveraging our clustering algorithm, we cluster samples

that generated by a same obfuscator variant into a group.
Since the number of unique normalized samples in each group
is quite small. By comparing the common structure of the
samples in the same group, we can easily rebuild the tem-
plate used by the obfuscator. For the variable or string
whose name or value is randomly mutated, they are server-
side variable in the template (e.g. $varp[11]). Otherwise, it
is the fixed content in the template (e.g. ‘.length > 0)’). The
last step is to rebuild the obfuscator logic. It is not hard to
reverse engineering the decoding mechanism and implement
an encoder. All of these can be easily done since our algo-
rithm cluster the number of samples to an affordable level
(average around 15 samples and extremely similar).

4. EVALUATION
We evaluate our cluster result in two ways. Due to the lack

of information related evolution of obfuscator, we cannot ex-
actly measure our result. Alternatively, we give the timeline
of obfuscator version/variant to the security researchers in
our company who focus on exploit kit coverage for several
years. Based on their expert knowledge, they believe that is
how the obfuscator evolved. We also manually analyzed 50
samples and marked the ones from the same obfuscator ver-
sion and variant. We checked them in the overall clustering
result, and found out that only 2 of them are misplaced.

5. RELATED WORK

Generic Malicious JavaScript Detection ADSand-
box [19] proposes to execute suspicious JavaScript in a con-

trolled environment (sandbox). It modified SpiderMonkey,
Mozilla’s JavaScript engine, to monitor the behavior of JavaScript
programs during the runtime. More specifically, ADSandbox
intercepts access to every JavaScript object at each time
and log it. By applying predefined heuristics (e.g. regu-
lar expressions for pattern match) on the resulting logs, the
system can detect malicious behaviors.

Zozzle [3] is a static JavaScript malware detector that is
fast enough to be used in a browser. Zozzle utilized the
browser to extract features from JavaScript AST for both
benign and malicious training set. It applied machine learn-
ing approach to build the Bayesian classifier model. One of
the shortcoming of Zozzle is that it highly depends on the
feature robustness of the knowledge model. For the exploit
kit scenario,

Environment Detection in Malicious JavaScript Ma-
licious script will try to fingerprint the browser and OS en-
vironment, and it will launch the attack only if the environ-
ment is vulnerable (e.g. launch attack on IE vulnerability
only if the browser is IE with specific version). If the envi-
ronment is not matched, malware will run the benign code
instead. Rozzle [20] focuses on using Symbolic Execution
as a way to explore multi-path execution to improve both
static and runtime JavaScript detection.

Obfuscation Detection The paper, Caffeine Monkey
[21], executes suspicious JavaScript code in a sandbox and
recorded the count of each function calls. It marks the script
as malicious If the percentage of specific function calls is
above a predefined threshold. This paper is the first one to
formally address the problem of obfuscation.

Likarsh etc. [2] propose to apply machine learning to the
features of obfuscated malicious JavaScript. They extract 65
features in this paper, which include keywords and symbols
from static and dynamic analysis. They also apply multiple
models to do the classification.

Lu and Debray [22] propose to automatically de-obfuscate
JavaScript code, generate the simplified version of it but
preserve the semantic as well. They utilize the dynamic
slicing algorithm to mark instructions that are relevant to
the malware logic.

6. ACKNOWLEDGMENTS
We would like to thank Xin Ouyang and Wei Xu of Palo

Alto Networks Inc for their support on this project and
Rongbo Shao of Palo Alto Networks Inc for collecting ex-
ploit kit samples.

7. REFERENCES

[1] De Maio, G., Kapravelos, A., Shoshitaishvili, Y.,
Kruegel, C., and Vigna, G., 2014. “Pexy: The other
side of exploit kits”. In International Conference on
Detection of Intrusions and Malware, and
Vulnerability Assessment, Springer, pp. 132–151.

[2] Likarish, P., Jung, E., and Jo, I., 2009. “Obfuscated
malicious javascript detection using classification
techniques.”. In MALWARE, Citeseer, pp. 47–54.

[3] Curtsinger, C., Livshits, B., Zorn, B. G., and Seifert,
C., 2011. “Zozzle: Fast and precise in-browser
javascript malware detection.”. In USENIX Security
Symposium, pp. 33–48.

(a) Angler Exploit Kit

(b) Nuclear Exploit Kit

(c) Rig Exploit Kit

(d) KaiXin Exploit Kit

Figure 8: Life-Cycle of Exploit Kit Obfuscator version

[4] Xu, W., Zhang, F., and Zhu, S., 2013. “Jstill: mostly
static detection of obfuscated malicious javascript
code”. In Proceedings of the third ACM conference on
Data and application security and privacy, ACM,
pp. 117–128.

[5] Cova, M., Kruegel, C., and Vigna, G., 2010.
“Detection and analysis of drive-by-download attacks
and malicious javascript code”. In Proceedings of the
19th international conference on World wide web,
ACM, pp. 281–290.

[6] Tzermias, Z., Sykiotakis, G., Polychronakis, M., and
Markatos, E. P., 2011. “Combining static and dynamic

analysis for the detection of malicious documents”. In
Proceedings of the Fourth European Workshop on
System Security, ACM, p. 4.

[7] Canali, D., Cova, M., Vigna, G., and Kruegel, C.,
2011. “Prophiler: a fast filter for the large-scale
detection of malicious web pages”. In Proceedings of
the 20th international conference on World wide web,
ACM, pp. 197–206.

[8] Kapravelos, A., Shoshitaishvili, Y., Cova, M., Kruegel,
C., and Vigna, G., 2013. “Revolver: An automated
approach to the detection of evasive web-based
malware”. In Presented as part of the 22nd USENIX

(a) Angler Exploit Kit

(b) Nuclear Exploit Kit

(c) Rig Exploit Kit

(d) KaiXin Exploit Kit

(e) Fiesta Exploit Kit

Figure 9: Life-cycle of Minor version of Obfuscator variants

Security Symposium (USENIX Security 13),
pp. 637–652.

[9] Stock, B., Livshits, B., and Zorn, B., 2015. “Kizzle: A
signature compiler for exploit kits”. In International
Conference on Dependable Systems and Networks.

[10] Taylor, T., Hu, X., Wang, T., Jang, J., Stoecklin,
M. P., Monrose, F., and Sailer, R., 2016. “Detecting
malicious exploit kits using tree-based similarity
searches”. In Proceedings of the Sixth ACM
Conference on Data and Application Security and
Privacy, ACM, pp. 255–266.

[11] Jones, J., 2012. “The state of web exploit kits”.

[12] Oliver, J., Cheng, S., Manly, L., Zhu, J., Dela Paz, R.,
Sioting, S., and Leopando, J., 2012. “Blackhole exploit
kit: A spam campaign, not a series of individual spam
runs”. Trend Micro Incorporated Research Paper,
pp. 1–19.

[13] Howard, F., 2012. “Exploring the blackhole exploit
kit”. Sophos White Paper.

[14] Xu, W., Zhang, F., and Zhu, S., 2012. “The power of
obfuscation techniques in malicious javascript code: A
measurement study”. In Malicious and Unwanted
Software (MALWARE), 2012 7th International
Conference on, IEEE, pp. 9–16.

[15] Blog, W. S. L., 2016. Happy nucl(y)ear - evolution of

an exploit kit. http://blog.checkpoint.com/wp-content/
uploads/2016/04/Inside-Nuclear-1-2.pdf .

[16] Research, S., 2015. Rig exploit kit - diving deeper into

the infrastructure. https://www.trustwave.com/Resources
/SpiderLabs-Blog/RIG-Exploit-Kit-%E2%80%93
-Diving-Deeper-into-the-Infrastructure/ .

[17] Duncan, B. Malware traffic analysis.

www.malware-traffic-analysis.net.
[18]

Research,

C.

P.

T.

I.

.,

2016.

Inside

nuclear’s

core:

Analyzing the nuclear exploit kit infrastructure.
http://community.websense.com/blogs/securitylabs/
archive/2015/01/15/evolution-of-an-exploit-kit
-nuclear-pack.aspx .

[19] Dewald, A., Holz, T., and Freiling, F. C., 2010.
“Adsandbox: Sandboxing javascript to fight malicious
websites”. In Proceedings of the 2010 ACM
Symposium on Applied Computing, ACM,
pp. 1859–1864.

[20] Kolbitsch, C., Livshits, B., Zorn, B., and Seifert, C.,
2012. “Rozzle: De-cloaking internet malware”. In 2012
IEEE Symposium on Security and Privacy, IEEE,
pp. 443–457.

[21] Feinstein, B., Peck, D., and SecureWorks, I., 2007.
“Caffeine monkey: Automated collection, detection
and analysis of malicious javascript”. Black Hat USA.

[22] Lu, G., and Debray, S., 2012. “Automatic
simplification of obfuscated javascript code: A
semantics-based approach”. In Software Security and
Reliability (SERE), 2012 IEEE Sixth International
Conference on, IEEE, pp. 31–40.

http://blog.checkpoint.com/wp-content/uploads/2016/04/Inside-Nuclear-1-2.pdf
https://www.trustwave.com/Resources/SpiderLabs-Blog/RIG-Exploit-Kit-%E2%80%93-Diving-Deeper-into-the-Infrastructure/
www.malware-traffic-analysis.net
http://community.websense.com/blogs/securitylabs/archive/2015/01/15/evolution-of-an-exploit-kit-nuclear-pack.aspx

	Introduction
	Background
	Obfuscation Techniques
	Obfuscator
	Challenges

	Our Approach
	Overview
	JavaScript Normalization
	Normalized Samples
	Cluster Samples by Their Obfuscator
	Rebuild Obfuscator

	Evaluation
	Related Work
	Acknowledgments
	References

