Exploit Two Xen Hypervisor Vulnerabilities

Shangcong Luan
Cloud Platform Security Team of Alibaba Cloud

shangcong.Isc @alibaba-inc.com

Abstract
The Xen Project is a widely used virtualization platform powering some of the largest
clouds in production today. In the process of virtualization security research on it, our team
has discovered two critical vulnerabilities in the PV mode Memory Management of Xen
Hypervisor. This paper aims to present a comprehensive study of Xen Hypervisor PV Guest
Memory Management and detail our two critical vulnerabilities. Furthermore, full exploitation
technologies will be discussed.

Keywords: Xen Security, XSA-148, Dome Breaking, XSA-182, Ouroboros, hypervisor
exploitation, VM Escape

1. Introduction

Xen is an open source project providing virtualization services that allow multiple computer op-
erating systems to execute on the same computer hardware concurrently. It originated as a research
project at the University of Cambridge and the first public release was made in 2003. Since then
the project has attracted extensive attention from virtualization and security researchers. In the past
decades, virtual machine escape was considered as an unreal story because of the complex and
effective isolation supported by virtualization technologies although some security vulnerabilities
had been found. But unfortunately, a SVGA emulation bug was reported on VMware in 2008 and
at the next year’s Blackhat conference, researchers from Immunity Team disclosured a fully work-
ing exploit which proved virtual machine escape isnt a joke. In 2012, the unbelievable SYSRET
vulnerability was disclosured and Xen was affected at this time. In 2015, the infamous VENOM
vulnerability in QEMU evoked worldwide repercussions although no one could exploit it in the
real scene.

There is no doubt that virtual machine escape is a real threat against virtualization security.
Thus our team started the research last year and the Xen project was our main target. After some
months, we found a series of risks and vulnerabilities which contained two critical logic issue:
XSA-148 and XSA-182. The XSA-148 vulnerability was reported in October 2015. The XSA-182
vulnerability was intended to be the theme of our presentation at Blackhat, but it was reported in
mid July by Quarkslab Team while we were writing this paper. The two vulnerabilities in XSA-148
and XSA-182 are both exploitable in reality and will be discussed in this paper.

The important content of this paper is arranged as follows:

» Section 2 will give an overview of Xen architecture.
 Section 3 will analyze details of the two vulnerabilities.

» Section 4 will discuss all kinds of exploitation technologies.

2. Xen Basis

This section gives a high level architectural overview of Xen and contains only basic infoma-
tion about the project. For a more complete description of its architecture please reference offical
documents.

2.1. Xen Hypervisor

Xen Hypervisor is the basic abstraction layer of software that sits directly on the hardware below
any operating systems. It is responsible for CPU scheduling and memory partitioning of the various
virtual machines running on the hardware device. It is a type-1, native or bare-metal hypervisor
and has no knowledge of networking, external storage devices, video, or any other common I/O
functions founded on a computing system.

DomN

s ~

Xen Hypervisor Gee,.

J

r ~

Hardwares

FIGURE 1. Xen Architecture

2.2. Guest Domain

The virtual machine running on the Xen Hypervisor is called guest domain. From the perspec-
tive of virtualization approach, guest domains could be simply grouped into two main types: PV
mode guest domains and HVM mode guest domains. Compared to PV mode guest domains, HVM
mode guest domains are virtualized with Hardware-assisted virtualization technologies supported
by modern hardwares.

2.3. Hypercall

A hypercall is a software trap from a domain to the hypervisor, just as a syscall is a software trap
from an application to the kernel. Domains will use hypercalls to request privileged operations like
updating pagetables.

2.4. Memory Management

For PV mode guest domains, Xen Hypervisor manage their memory using Direct Paging mech-
anism which allows MMU access guest page tables directly.

In this case, guest page tables must be validated before they are visiable to MMU. Xen Hy-
pervisor is responsible for registering guest page tables directly with the MMU, and restrict guest
domains to read-only access. Page table updates are passed to Xen via hypercalls to ensure safety
and requests are validated before being applied.

To aid validation, the hypervisor associate a type and reference count with each machine page
frame. A frame may have any one of the following mutually-exclusive types at any point in time:
page directory (PD), page table (PT), local descriptor table (LDT), global descriptor table (GDT),
or writable (RW). Note that a guest OS may always create readable mappings to its own page
frames, regardless of their current types. A frame may only safely be retasked when its reference
count is zero. This mechanism is used to maintain the invariants required for safety; for example, a
domain cannot have a writable mapping to any part of a page table as this would require the frame
concerned to simultaneously be of types PT and RW.

3. Two Awesome Vulnerabilities

3.1. XSA-148(Dome Breaking)

The vulnerability of XSA-148 was named as Dome Breaking by our team. This vulnerability
was titled as x86: Uncontrolled creation of large page mappings by PV guests by Xen Project
Team and its official description is:

The code to validate level 2 page table entries is bypassed when certain condi-
tions are satisfied. This means that a PV guest can create writeable mappings us-
ing super page mappings. Such writeable mappings can violate Xen intended invari-
ants for pages which Xen is supposed to keep read-only. This is possible even if the
dllowsuperpagecommand line option is not used.

When PV Guest update their level 2 page tables(aka. L2T or PDT), the mod_12_entry() function
is responsible to validate the new level 2 page table entries(aka. L2E, L2TE, PDE or PDTE). Code
1 give a simplified version of the mod_12_entry() function.

/% Xen 4.6 xen/x86/mm.c =/

/% Update the L2 entry at pl2e to new value nl2e. pl2e is within frame pfn. =/
1811 static int mod_12_entry (12_pgentry_t =pl2e,

1812 12_pgentry_-t nl2e,
1813 unsigned long pfn,
1814 int preserve_ad,
1815 struct vcpu =vcpu)
1816 {
1817 12_pgentry_t ol2e;
1818 struct domain xd = vcpu—>domain;
1819 struct page_info =12pg = mfn_to_page(pfn);
1820 unsigned long type = 12pg—u.inuse.type_info;
1821 int rc = 0;
1822
1823 if (unlikely (!is_guest_12_slot(d, type, pgentry_ptr_to_slot(pl2e))))
1824 {
// skip
1827 }

1828

1829 if (unlikely(-_copy-from_user(&ol2e, pl2e, sizeof(ol2e)) != 0))
1830 return —EFAULT;

1831
1832 if (12e_get_flags(nl2e) & _PAGE_PRESENT)
1833 {
1834 if (unlikely(12e_get_flags(nl2e) & L2.DISALLOW_MASK))
1835 {
// skip
1839 }
1840
1841 /%« Fast path for identical mapping and presence. =/
1842 if (!12e_has_changed(ol2e, nl2e, _PAGE_PRESENT))
1843 {
1844 adjust_guest_12e (nl2e, d);
1845 if (UPDATEENTRY (12, pl2e, ol2e, nl2e, pfn, vcpu, preserve_ad))
1846 return O;
1847 return —EBUSY;
1848 }
1849
1850 if (unlikely ((rc = get_page_from_12e(nl2e, pfn, d)) < 0))
1851 return rc;
1852
1853 adjust_guest_12e(nl2e, d);
1854 if (unlikely (!UPDATEENTRY (12, pl2e, ol2e, nl2e, pfn, vcpu,
1855 preserve_ad)))
1856 {
1857 ol2e = nl2e;
1858 rc = —EBUSY;
1859 }
1860 }
1861 else if (unlikely (!UPDATEENTRY (12, pl2e, ol2e, nl2e, pfn, vcpu,
1862 preserve_ad)))
1863 {
1864 return —EBUSY;
1865 }
1866
1867 put_page_from_12e (ol2e, pfn);
1868 return rc;
1869 }

Code 1. mod_I2_entry() function

In the Code 1, validation at line 1823 guarantees that the target L2T belongs to the current PV
Guest. The current PV Guest is the one who are requesting for the L2T update. Validation at line
1832 check whether the P flag of new L2TE is set or not. If not, the mod_12_entry() function consid-
ers its safe to update L2T with the new L2TE immediately. But if the P flag exists, more validations
should to be performed. At line 1834, flags defined by micro L2_DISALLOW _MASK should be
cleared in the new L2TE. These flags dont include PAGE_PRESENT, PAGE_RW, PAGE_USER,
_PAGE_ACCESSED, _PAGE_DIRTY, -PAGE_AVAIL and _PAGE_PSE. At line 1842, the fast-
update-path designed for performance improvement allows this update if MFN and P bits of new
entry are identical to those of the old one. At line 1850, the get_page_from_I2e() function will deter-
mine whether the update request should be applied if the fast-update-path rejected to executed. The

get_page_from_12e() function will perform other validations and we will analyze it at next section.
Now we will describe the weakness introduced by fast-update-path.

As described above, fast-update-path only checks two fields of new L2TE: MFN and P flag. If a
PV Guest gives a new L2TE satisfied with two rules:

1. new L2TEs 12_disallowed_flags ==
2. new L2TE.P == old L2TE.P ==
3. new L2TE.MFN == old L2TE.MFN

The fast-update-path would work and update operation would be applied. Based on the above
L2TE, append two another rules as follow:

4. new L2TE.PSE == 1
5. new L2TE.W ==

The enabled PSE flag let MMU work under Intel IA-32e 2M paging mode while W flag allows
the write access.

Because constraint 4 and 5 satisfy the fast-update-path validation, the new L2TE also would be
accepted. Then, we will immediately get a writable 2M memory bypass the superpage validation
that should be performed in the get_page_from_12e() function. If we have put a L1 page table in the
2M memory area before the malicious L2T update, the L1 page table could be writable directly.
We could create writable mappings to any machine frame by directly modifying the writable L1
page table without any hypercall requests or validations and all safe invariants of memory access
would be break out.

For clearly, important steps are described as follows:

1. Allocate PageA:

47 3938 3029 2120 1211 0

[s Joirpre] pir. [Table

4K PageB

PageA_mfn

2M

domB

barrier

alloc PageA (PageA_mfn): domA
PageA_mfn & Ox1FF) = 0x0
=> PageA_mfn = 0x123400

Memory

FIGURE 2. stepl

2. Allocate PageB:

47 3938 3029 2120 1211

[wmes Joirpee] pir. [Table

0

PageB_mfn —"
2M
domB
barrier
alloc PageB (PageB_mfn): domA
PageA_mfn < PageB_mfn < (PageA_mfn + Ox1FF)
=> PageA_mfn = 0x123400
=> PageB_mfn = 0x123456 Memory
FIGURE 3. step2
3. Register empty PageB as a page table:
W 3938 3029 2120 1211 o
[s Joirper] pir. [Table
50000000
00000000 (3 g
00000000
00000000
00000000 ZM
00000000
4K PageA
PageB_mfn
PS=0 W=1
00000000
L)
00000000
00000000 domB
00000000
barrier
PageB filled with 0 domA

PageB registered as a page table

Memory

FIGURE 4. step3

4. Register empty PageA as a page table:

47 3938 3029 2120 1211 0
| PML4 |Dir.Ptr| Dir. |Table
60060000 |
00000000 . 4K PageB
00000000 S
00000000 ™
00000000 2M
80000000 "
T 4K PageA
PageB_mfn T
PS=0 W=1
PageA_mfn
PS=0 W=1
00000000 domB
00000000
‘ barrier
PageA filled with 0 domA
PageA registered as a page table

Memory

FIGURE 5. step4

5. Enable PSE flag to gain writable access of PageB:

47 3938 3029 2120 1211
| PML4 | Dir.Ptr | Dir.

4K PageB
2M
4K PageA
PageB_mfn
PS=0 W=1
PageA_mfn
|
PS=1 W=1
00000000 domB
00000000
H barrier
domA
PS=1 => 2M area writable

Memory

FIGURE 6. step5

6. Modify PageB directly to access whole memory region:

47 3938 3029 2120 1211 0

| PML4 |Dir.Ptr| Dir. |Table

00000000
80000008 AL e
any mfn
w=1
00000000 2M
00000000
4K PageA
PageB_mfn
PS=0 W=1
PageA_mfn
Lpm
PS=1 W=1
00000000 domB
00000000
barrier
domA

Memory

FIGURE 7. step6

Since all machine memory could be read and write arbitrarily, the VM escape is on the way.
Some exploitation technologies for VM escape will be given at section 4.

3.2. XSA-182(Ouroboros)

Inspired by Ouroboros, an ancient symbol with a snake biting its tail, we found another critical
vulnerability in the memory management logic. The new vulnerability allow a level 2 page table
reference itself as a level 1 page table, or a level 3 page table reference itself as a level 2 page
table, or a level 4 page table reference itself as a level 3 page table while all of these page table
self-reference are assigned with W flags. For simplicity, I will only discuss the circumstance of
level 2 page table self-reference with W flag. Others are similar to this.

At section 3.1, we have mentioned that the mod_12_entry() function would call
get_page_from_12¢() function to perform more validations if fast-update-path check failed. Code
2 describes the implementation of get_page_from_12e() function.

/% Xen 4.6 xen/x86/mm.c =/

/% NB. Virtual address ’l2¢’ maps to a machine address within frame ’pfn’. =/
949 define_get_linear_pagetable (12);

950 static int

951 get_page_from_12e(

952 12_pgentry_t 12e, unsigned long pfn, struct domain =d)
953 {

954 unsigned long mfn = 12e_get_pfn(12e);

955 int rc;

956

957 if (!(12e_get_flags(12e) & _PAGE_PRESENT))

958 return 1;

959
960 if (unlikely ((12e_get_flags (12e) & L2 DISALLOW.MASK)))

961 {

962 MEMILOG(”Bad.L2_flags %x”, 12e_get_flags (l2e) & L2_.DISALLOW_MASK) ;
963 return —EINVAL;

964 }

965

966 if (!(12e_get_flags(l2e) & _PAGE_PSE))

967 {

968 rc = get_page_and_type_from_pagenr(mfn, PGT_11_page_table, d, 0, 0);
969 if (unlikely(rc == —EINVAL) && get_12_linear_pagetable (12e, pfn, d))
970 rc = 0;

971 return rc;

972 }

973

974 if (!opt_allow_superpage)

975 {

976 MEMLOG(” Attempt._to._map._superpage._without_allowsuperpage.”

977 ”flag._in_hypervisor”);

978 return —EINVAL;

979 }

980

981 if (mfn & (L1_.PAGETABLE_ENTRIES—-1))

982 {

983 MEMILOG(”Unaligned _superpage _map.attempt._mfn.%lx”, mfn);

984 return —EINVAL;

985 }

986

987 return get_superpage (mfn, d);

988 }

Code 2. get_page_from_12e() function

The code block from line 966 will verify whether the page type of target page is valid or not via
get_page_and_type_from_pagenr() function. The target page is indicated by the new L2TEs MFN
and the valid page type should be PGT_11_page_table at here. That means a level 2 table page entry
should refer to a level 1 page table. At most situations, the get_page_and_type_from_pagenr() func-
tion would return O means the target page has been assigned a correct page type. If the page type
of given page isnt consistent with the required one, the get_page_and_type_from_pagenr() function
return EINVAL and the get_12_linear_pagetable() function, actually defined by a micro, will get
involved. The get_12_linear_pagetable() function is defined as Code 3.

/% Xen 4.6 xen/x86/mm.c =/

/%

x* We allow root tables to map each other (a.k.a. linear page tables). It

* needs some special care with reference counts and access permissions:

1. The mapping entry must be read—only, or the guest may get write access
* to its own PTEs.

¥ 2. We must only bump the reference counts for an =already validated x

* L2 table, or we can end up in a deadlock in get_page_type() by waiting
* on a validation that is required to complete that validation.

x* 3. We only need to increment the reference counts for the mapped page

* frame if it is mapped by a different root table. This is sufficient and

* also necessary to allow validation of a root table mapping itself.
*/
660 #define define_get_linear_pagetable(level) \
661 static int \
662 get_##level## _linear_pagetable (\
663 level## _pgentry_t pde, unsigned long pde_pfn, struct domain =d) \
664 { \
665 unsigned long x, y; \
666 struct page_info =page; \
667 unsigned long pfn; \
668 \
669 if ((level##e_get_flags(pde) & PAGERW)) \
670 { \
671 MEMLOG(” Attempt._to_create._linear.p.t._.with_owrite_perms”); \
672 return 0; \
673 } \
674 \
675 if ((pfn = level##e_get_pfn(pde)) != pde_pfn) \
676 { \
// return 0 if validations failed \
698 } \
699 \
700 return 1; \
701 }

Code 3. get_12_linear_pagetable() function

At line 669 of the Code 3, the new L2TE with W flag will cause this function return 0 which
means validation failed. For a L2TE without W flag, its MFN field will be compared to the MFN
of current level 2 page table. If equals, some validations will be ignored and this function return
SUCCESS! In actually, this odd codes and logics are designed for recursive mappings. At here, the
memory management allows a level 2 page table has itself references and, of cause, line 669 of the
get_12 linear_pagetable() function only accepts read-only self-references.

Back to the fast-update-path of mod_12_entry() function at now. As is mentioned at section 3.1,
fast-update-path allows to update target L2T immediately for identical mappings. If we have has
a level 2 read-only self-reference, then we could transform the self-reference from read-only to
read-write. Consider seriously about the current level 2 page table references. L2T has an entry
with W flag referring to this L2T itself. It means this L2T will be treated as a normal level 1 page
table by MMU and the level last page table has a writable entry referring to the L2T. This recursive
mapping cause the malicious PV Guest could write its level 2 page table directly. Similar to what
we discussed at section 3.1, safe invariants of memory access would be broke out again and a
malicious could arbitrarily read and write the whole machine memory.

For clearly, important steps are described as follows:

1. Allocate PageA and registered is as a PDT:

47 3938 3029 2120 1211 0

| PML4 |Dir.Ptr| Dir. |Table

PageA as PDT: ..o 4K PageA
00000000 PageA mfn

Lo |
00088008
00000000
00000000
00066000 domB
00000000 -
barrier
domA

PageA registered as a page directory table

Memory

FIGURE 8. stepl

2. Modify PageA to let PageA[0] reference itself:

47 3938 3029 2120 1211 0
| PML4 |Dir.Ptr| Dir. |Table

PageA as PT:

PageA_mfn k
W=0
00000000
00000000
00000000
00000000

PageA as PDT: [_.....----"
PageA_mfn
Lo

4K PageA
PageA mfn

W=0
60000000
80008000 P
00000000 domB
00000000 .
A barrier
domA

PDT[0] = PageA_mfn & W=0

Memory

FIGURE 9. step2

3. Now PageA could be read-only accessed by PDT and PT PageA:

47 3938 3029 2120 1211 0
| PML4 |Dir.Ptr| Dir. |Table

PageA as PT:
PageA_mfn
W=0
00000000
00000000
00000000
00000000

PageA as PDT:

PageA_mfn
W=0

00000000

00000000
00000000

00000000

PDT[0] = PageA_mfn & W=0

4K PageA
PageA mfn

domB

barrier

domA

Memory

FIGURE 10. step3

4. Change PDT[1].W to 1 via fast-path update:

47 3938 3029 2120 1211 0
| PML4 |Dir.Ptr| Dir. |Table

. . PageA as PT:
PageA_mfn

W=1

00000000
00000000
00000000
00000000

PageA as PDT:
PageA_mfn
Lo
W=1
00000000

00000000
00000000

00000000

ppT[0] = PDT[O] | W=1
=> PageA is writable!!!

4K PageA
PageA mfn

domB

barrier

domA

Memory

FIGURE 11. step4

5. Add a writable PT PageB via direct PageA modification:

47 3938 3029 2120 1211 0
| PML4 | Dir.Ptr | Dir. | Table
. . PageB as PT:
00060000
seseoas
00000000 - PageB mfn
00000000
00000000
00000000 | .~
PageA as PDT: 4K PageA
PageA_mfn PageA mfn
W=1
L] PageB_mfn
W=1
00066000 domB
00000000
barrier
allocate a writeble PageB domA
modity PDT[1] directly

=> PageB as a writeble PT

Memory

FIGURE 12. step5

6. Access whole memory via direct PT PageB Modification

47 3938 3029 2120 1211 0
e Jowrie] o | s

PageB as PT:

00000000 | AT
006000000 4K PageB
i - PageB mfn

w=1 P
00000000 -
00000000 | =

PageA as PDT: 4K PageA
PageA_mfn PageA mfn

w=1
L | PageB_mfn
w=1
00060060 domB
006000000
barrier
domA

modity writeble PageB directly
=> access whole memory

Memory

FIGURE 13. step6

4. Exploitation Technologies

Since we have been able to read and write arbitrary machine memory, control any other domains
running on the same physical machine isnt difficult. Similar to traditional exploitation technologies

at system level, the fundamental principle is special memory search and modification.
At follow sections, some lethal exploitation technologies will be discussed.

4.1. Special Page Hijack

Under the virtualization environments, guest domains know nothing about other domains.

A special page refers to a page filled with special contents. Thus its certainly possible to locate
these pages via signatures of their contents. If a special page was filled with instructions that would
be executed by the target domain and has enough spare space to be used to deploy our malicious
payloads, the control flow of target domain would be easily hijacked. Typically, VSyscall page
or VDSO page in Linux based system or SharedUserData page in Windows are ideal target for
special page hijack attack. In this paper, we will discuss another special page introduced by Xen
and describe exploitation technologies based on it.

In order to facilitate guest domains to request hypercalls, Xen Hypervisor help every PV guest
domain to initialize a Hypercall Page for it. This page is in guest domain context but its content
is provided by the hypervisor, transparently to the guest. The content just is hypercall stub codes
which will be executed when guest domain kernel make hypercall requests.

d hypercall page initialis kernel(void *hypercall page)

;1 < (PAGE_SIZE / 32); i++)
__HYPERVISOR_iret)
)(hypercall_page + (i * 32));
= H

*)(hypercall page + (_ HYPERVISOR_iret *));

3

3

O D e

2
__HYPERVISOR _iret;

FIGURE 14. Hypercall Page Initialization

The page is 4096B while every hypercall stub codes is 32B in size. Bacause the hypervisor has
at most 64 hypercalls at now, the second half of this Hypercall Page is never used. Every PV guest
domain only hold one Hypercall Page and HVM guest domain would also hold one if it install a
PV driver. Thus, Hypercall Page is an wonderful target for hijack if we want to execute payloads
with OS kernel privilege in guest domains context. For example, if we want to get a root shell of
dom0, exploitation steps should be taken as follow:

1. Search Hypercall Page signature from memory beginning. The first match must belong to
dom0. This step maybe spent 10 to 30 minutes depended on specific environments. Accord-
ing to the content of Hypercall Page, its signature should be:

(hex bytes) 5141 53 B8 0000 00 00 OF 05 41 5B 59 C3 CC CC

2. Deploy malicious payloads or shellcodes at the second half of the Hypercall Page founded at
step 1. The memory of 2048 bytes is quite enough for the a basic implementation of a shell
program with a ring buffer.

+0x0000)| <- hypercall page stub codes begin

+Ox02EQ _iret stub

syscall <- replaced with “JMP xxx’

<- hypercall page stub codes end

+0x 6800

<- hook_restore codes

<- ret2usermode codes

<- fork codes

<- cxt restore codes

- et e

<- BUFFER

+OXOFFF|

FIGURE 15. Hypercall Page With Malicious Payloads

3. Modify hypercall stub codes to let control flow transfer to malicious payloads. Then we could
execute arbitrary commands with root privilege in dom0 context.

4.2. VMM Code Injection

This section will disscuss how to execute malicious shellcodes in VMM context.

Just like syscall table in Linux kernel, there is a hypercall table in Xen Hypervisor. The hypercall
table holds function pointers of hyercalls. It has 64 slots but only a half are in use. We could modify
this table and add custom hypercalls dynamicly.

/% Xen 4.6 xen/x86/x6_64/entry.S =/
726 ENTRY(hypercall_table)

727 .quad do_set_trap-table /% 0 =/
728 .quad do_mmu_update

729 .quad do_set_gdt

730 .quad do_stack_switch

731 .quad do_set_callbacks

732 .quad do_fpu_taskswitch /% 5 %/

// skip .
766 .quad do_ni_hypercall /% reserved for XenClient =/
767 .quad do_xenpmu._op /% 40 =/
768 .rept __HYPERVISOR_arch.0 —((.—hypercall_table)/8)
769 .quad do_ni_hypercall
770 .endr
771 .quad do_mca /% 48 =/
772 .quad paging_domctl_continuation
773 .rept NR_hypercalls —((.—hypercall_table)/8)
774 .quad do_ni_hypercall
775 .endr
776
777 ENTRY(hypercall_args_table)
778 .byte 1 /% do_set_trap_table x/ /% 0 %/
779 .byte 4 /x do_mmu_update %/
780 .byte 2 /% do_set_gdt %/
781 .byte 2 /x do_stack_switch %/
782 .byte 3 /% do_set_callbacks %/
783 .byte 1 /+ do_fpu_taskswitch w/ /x5 %/
784 .byte 2 /% do_sched_op_compat %/
785 .byte 1 /« do_platform_op %/
786 .byte 2 /% do_set_debugreg %/
787 .byte 1 /% do_get_debugreg %/
788 .byte 2 /% do_update_descriptor =/ /% 10 %/
// skip .
819 .rept __HYPERVISOR_arch.0—(.—hypercall_args_table)
820 .byte 0 /+ do_ni_hypercall %/
821 .endr
822 .byte 1 /=% do_mca x/ /% 48 =/
823 .byte 1 /+ paging_domctl_continuation =/
824 .rept NR_hypercalls —(.—hypercall_args_table)
825 .byte 0 /% do_ni_hypercall %/
826 .endr

Code 4. hypercall_table and hypercall_args_table

Malicious guest domain has to locate this table via memory search since we know nothing about
it. Although the hypercall table holds function pointers and doesnt have a well-marked signature,
we also could gain its location with the aid of another well-marked page, the hypercall args table.
The hypercall args table only stores arguments numbers for all hypercalls and its content is fixed.
The hypercall args table is contiguous to the hypercall table at the view of page frame number. If
mfn of hypercall args table we have gained equals to n, n-1 is the target mfn of hypercall table we
needed.

Besides the hypercall table location, another problem is how to map malicious shellcodes into
hypervisors memory space. Fortunately, we needn’t to gain and modify hypervisor’s page tables.
At the point of MMU, memory space of the guest domain is consistent with the one of hypervisor.
This is very like that the memory space of usermode process is visible by kernel in Linux. So as
a malicious guest domain, we just need allocate a malicious page and deploy our shellcode in it.
Then modify attributes of corresponding page table entry to allow this page to be executable in

privileged mode. While PV Guest request the fake hypercall, malicious codes will be executed
within hypervisor context.

For example, if our unprivileged guest domain want to get all privileges, the is_privileged field
of its domain struct should be set.

1. allocate a memory area and deploy code in it:

current —>domain—>is_privileged =1:
mov $Oxffffffffffff8000 ,%rax
and %rsp ,%rax
mov O0x7fe8(%rax),%rax
mov 0x10(%rax),%rax
movb $0x1,0x116(%rax)
retq

2. search hypercall_table and modify slot N to refer to the memory area
3. bypass SMEP and SMAP features: responded PTE.U/S =0

4. request this hypercall:
MOV N,%RAX / SYSCALL

5. Conclusions

Vulnerabilities like XSA-148 and XSA-182 are extremely rare. At the point of seriousness and
exploitation, they should belong to the top-class group and beyond over all others listed in Xen
Security Advisory board. VM escape is no longer just a unreal legend and there are more things
need to be explored. We expect our work in this paper could provide helpful guidelines for future
research on virtualization security.

6. Acknowledgements

I would like to thank my original team leaders, flashsky and _alert7, for instructing me to start
my research on virtualization security. And Im grateful to my colleagues, especially Donghai Zhu
and Zuozhi Fan, for their help on the verification of all kinds of ideas. This work is supported
by the Alibaba Cloud. Any views or opinions presented are solely those of the author and do not
necessarily represent those of Alibaba Cloud.

References

1.

A

Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho, Rolf Neugebauery, lan Pratt, An-
drew Wareld, “Xen and the Art of Virtualization”, 2003

Xen Project Security Team, “XSA-148/CVE-2015-7835", 2015, https://xenbits.xen.org/xsa/advisory-148.html
Xen Project Security Team, “XSA-182/CVE-2016-6258”, 2016, https://xenbits.xen.org/xsa/advisory-182.html
Xen Project Team, “Offical Documents on Xen”, http://wiki.xen.org/

Intel Inc., “Intel 64 and IA-32 Architectures Software Developers Manual”, Vol. 3.

