Hardening AWS Environments and Automating Incident
Response for AWS Compromises

Abstract

Incident response in the cloud is performed differently than when performed in on-premise
systems. Specifically, in a cloud environment, a responder can not walk up to the physical
asset, clone the drive with a write-blocker, or perform any action that requires hands on time
with the system in question. Incident response best practices advise following predefined
practiced procedures when dealing with a security incident, but organizations moving
infrastructure to the cloud may fail to realize the procedural differences in obtaining forensic
evidence. Furthermore, while cloud providers produce documents on handling incident
response in the cloud, these documents may fail to address the newly released features or
services that can aid incident response or help harden cloud infrastructure.

This paper covers AWS APIs and services that can be leveraged to increase an incident
response procedure. Additionally, we introduce a suite of four, newly released, and open source
tools we wrote to demonstrate how programmatic use of the AWS API can be used to augment
many areas of the incident response process. Finally, we discuss other open source tools and
illustrate techniques to use several tools in order to augment each area of the incident response
process.

Authors & Contributors

Andrew Krug is a Senior Software Engineer at a large cyber security company. Krug has been
Consultant, Network Architect, Systems Administrator, Operations Manager, Technical Trainer,
and Software Engineer. Currently Krug works to develop gamified security education through
security simulation scenarios.

Alex McCormack is a software developer who assists in the design and implementation of

capture the flag (CTF) competitions and training events. Alex has designed CTF challenges
since 2013 and given training since 2012. Prior to developing CTFs, Alex worked in Incident
Response and Malware Analysis.

Joel Ferrier is the creator of Margarita Shotgun. Joel currently works as a Systems
Administrator. Previously Joel worked as a Systems Engineer with a focus in Security
Operations.

Jeff Parr is the Frontend Guru for the project. He has been developing web technologies for
over 15 years; primarily Rails for the last 5. Parr claims, "l love seeing people use what | build."
Parr has been a subcontractor through engineering/design firms, innovation consultant, and
more; specializing in pairing, reviewing code, and contributing to open source.



Incident Response in AWS

At first glance, incident response within AWS may appear more challenging than incident
response in an on-premise environment. Not only are servers not physically available, but
techniques associated with virtual machines such as taking a full disk and memory snapshot are
not available.

However, by leveraging the APIs provided by AWS, organizations can prepare themselves to
automatically collect evidence and mitigate compromises of AWS instances. Before
implementing such a solution, the organization should understand what preparations need to be
made, mitigations need to be performed, and what evidence needs to be collected.

Preparing for an Incident within AWS

Before an incident ever occurs, an organization should ensure it is in the best possible place to
deal with an incident. Two areas an organization should address include strengthening
defenses to reduce the attack surface, and increasing visibility to detect, understand, and
prevent future attacks. AWS has several services to aid in these objectives including
CloudWatch, CloudTrail, Config and IAM.

CloudWatch is a monitoring service that can be used to monitor metrics of AWS resources or
even custom metrics supplied by an organization’s own applications. Alarms can be placed on
these metrics so that if a threshold is exceeded, an action is taken such as sending a
notification or even terminating a resource. One of the most common alarms is one that watches
the estimated charges of an AWS account. An estimated charge alarm is useful for detecting
scenarios where an 1AM key is compromised, and used to spin up many resources. Default
metrics include attributes of EC2 instances, S3 buckets, and several other AWS resources.

“The forensic value of CloudTrail Logs can not be understated.”

CloudTrail is an AWS service that records data about AWS API calls. The API calls may come
from the AWS Management console, AWS CLI or AWS SDK. For each call made, the record will
contain the time of the call, IAM identity of the user making the call, the source IP address of the
call, the request parameters and the response elements returned. The forensic value of these
logs can not be understated. In the event of an IAM compromise, CloudTrail could be the only
source indicating what actions an attacker took. You can even use CloudWatch to monitor the
number of incoming events logged to a trail. This is especially useful in environments where
AWS changes are relatively minimal, and an alert should be sent if several API calls are made
in a short period of time.



AWS Config provides logging configuration details, called a “configuration item” for supported
AWS resources whenever that resource is created, deleted, or changed. The configuration item
represents state information about the resource. For example, a configuration item would
include things like the resource identifier, the contents of key-value tags, the availability zone of
the object and information about related objects such as attached volumes for an EC2 instance.

AWS Config Rules is a distinct offering from Config. Config Rules is responsible for evaluating
the configuration item against a set of predefined criteria and then alerting AWS users if that
criteria is not met. AWS provides a set of default configurable rules users may use, as well as
the ability to make custom rules and integrate with AWS Lambda. Lambda, a service that runs
code as a service, can be used to take programmatic steps to remediate misconfigurations that
have been identified with AWS Config. AWS Config provides a powerful historical view of the
configuration state of AWS resources most organizations should enable even if they choose not
to leverage the Rules capability.

The Identity and Access Management or IAM service allows delegating specific permissions to
individual users. IAM users can also be created for specific services such as running on an EC2
instance or granting permissions to a Lambda function. With IAM, an organization can attach
policies to an IAM user that allow specific access for particular AWS resources. Organizations
should monitor these accounts using the JAM Access Advisor. Access Advisor will show the
services for which a particular user has access, and will report the last time that user accessed
that service. The organization can then decide to remove access to services that the user has
not used.

IAM also includes a role mechanism that allows an instance to assume the privileges of an IAM
user at runtime. Once a role is attached to an instance, the instance will be granted the
permissions of an IAM user by obtaining credentials from the AWS Security Token Service. The
tokens are automatically rotated every 15 or so minutes.

Mitigations to Perform

In March of 2016, Toni de la Fuente wrote a blog post detailing steps to perform using the AWS
command line utility in order to collect evidence and mitigate a compromise. The mitigations
included isolation, tagging, and shutting down an instance.

Isolation consists of creating a security group with exceptionally prohibitive access rules.
Outbound traffic should be blocked completely, and inbound traffic should only be allowed by
the specific IP address of the examiner.

The instance should then be tagged with a case number for record keeping and to alert other
users that this instance should be treated with care. Evidence is then collected and the instance
is shut down.


https://blogs.aws.amazon.com/security/post/Tx280RX2WH6WUD7/Remove-Unnecessary-Permissions-in-Your-IAM-Policies-by-Using-Service-Last-Access
http://blyx.com/2016/03/11/forensics-in-aws-an-introduction/

Evidence to Collect

Two of the most informative pieces of evidence to collect during an incident are disk and
memory images. Disk image preservation is important because the disk of a compromised host
may contain host specific logs detailing what happened, copies of malware, or other artifacts left
by an attacker. Some attackers will alter the code of web applications to insert back doors, or
collect sensitive data. Without forensic disk data, it may be impossible to determine what an
attacker did after gaining access to the system.

Memory analysis is increasingly becoming a critical technique for forensic investigations.
Memory analysis can be used to collect malware that may have been deleted from the disk, or
never written to the disk in the first place. Memory analysis can be used to collect commands
typed into a shell, discover programs hidden by rootkits, and much more.

In addition to disk and memory evidence, there are many AWS specific data points that may aid
in an investigation. Metadata of an instance will reveal the public and private IP addresses of an
instance, and the associated security groups. Console output and console screen shots may
provide debugging messages from crashed services. VPC Flow logs may illustrate where an
attack came from, and the destination of exfiltrated data. Finally, logs from CloudTrail may
provide insights into actions performed by IAM users.

Automating IR with ThreatResponse Tools

Nothing can make handling an incident more frustrating than not having a plan to follow. Without
a plan, responders may accidentally delete or fail to collect important evidence and inadequately
remove access from the attacker. This could lead the responder to fail to understand what
happened, and therefore prevent the attacker from getting back in.

“An incident response plan can reduce the stress of an incident. ”

Having an incident response plan can greatly reduce the stress of responding to an incident.
Responders can walk through the plan and know they are doing the right thing. However,
following the plan still introduces the risk of human error, as a responder may skip a step or
perform sensitive data acquisitions out of order.

By automating the collection of evidence and compromise mitigations, organizations can be fully
prepared should a compromise occur. To help organizations with this automation, we are
releasing four distinct tools that demonstrate how to automatically prepare, collect evidence and
mitigate compromises. These tools are available at www.threatresponse.cloud.



http://www.threatresponse.cloud/

Margarita Shotgun: Capturing Memory from AWS Instances

Margarita Shotgun is a python module and a standalone command line tool that automates the
process of acquiring memory from remote systems, both on premise and in Amazon Web
Services. Margarita Shotgun makes heavy use of paramiko to securely connect to remote
systems and secure memory in transit between the compromised server and the incident
responder workstation.

Margarita Shotgun makes use of LIME to capture memory. A configurable repository of prebuilt
LIME kernel modules is available to streamline the memory acquisition process.

After determining the remote system's kernel version and architecture the appropriate LIME
kernel module is loaded and system memory is streamed over an ssh tunnel to the incident
responder's workstation. Memory can be saved to disk or streamed directly to an s3 bucket.

Memory acquisitions are performed in parallel with the help of Python's multiprocessing library,
decreasing the period that compromised instances must be left running.

AWS-IR: Automatic Evidence Collection and Mitigation

AWS-IR is a python module and standalone command line tool that can be used to collect
evidence, mitigate compromises, or start an AWS specific incident response workstation. The
command line tool has three subcommands: host compromise, key compromise and
create workstation.

AWS-IR is built on top of boto3, an AWS SDK for the python language. In order to use AWS-IR,
a user should set up their environment for use with the AWS SDK or have the appropriate
credentials in place.

When using one of the compromise commands, AWS-IR collects evidence and tags instances
according to a case number. The case number can be provided with the -n flag, and if one isn't
provided, a case number will be randomly assigned. The case is the basic organization of
evidence and logging for a particular incident. All evidence collected by AWS-IR is stored in an
S3 bucket for that specific case. Additionally, every action performed by AWS-IR is logged and
stored with the case.


https://github.com/paramiko/paramiko
https://github.com/504ensicsLabs/LiME
http://boto3.readthedocs.io/en/latest/
http://docs.aws.amazon.com/cli/latest/userguide/installing.html

AWS-IR: Automatic Response to a Host Compromise

When the host compromise subcommand is used, AWS-IR starts collecting evidence and
then mitigates the affected host. To use the host compromise command, the user only
needs to provide an IP address. An SSH username with root privileges and SSH key should
also be provided if that information is available as this information is used to facilitate memory
collection.

Once the host compromise command is initialized, AWS-IR will start mitigating the compromised
host by attaching a new, highly restrictive security group to the instance. This is designed to
sever any existing session an attacker may have and stop the exfiltration of data. AWS-IR will
then snapshot all attached volumes, attempt to capture memory, collect metadata about the
instance, grab console output and save a console screenshot. After the evidence has been
collected, AWS-IR will shutdown the instance and provide the case number.

AWS-IR: Automatic Response to a Key Compromise

When the key compromise subcommand is used, the user must provide the AWS access key
id of the compromised key. AWS-IR will locate the IAM account associated with the key and
disable the key. The key compromise subcommand should be used with the -c flag to
automatically create a workstation so the user can perform more analysis to see what actions
may have been taken with the compromised key.

Users can load the evidence of a case into an incident response workstation by using the
create workstation subcommand. Additionally, by specifying the -c flag, with either of the
compromise subcommands, a workstation will automatically be created for the responder.

ThreatResponse-Web: An Incident Response Workstation for AWS

ThreatResponse-Web is an incident response workstation, packaged as an AMI, that
demonstrates pipelining multiple open source tools to both analyze the collected evidence, or
collect additional evidence from other instances. After connecting to the workstation, a
dashboard is displayed. The dashboard will illustrate the AWS regions instances are running in,
recently launched instances, and the different types of AMIs those instances are running.

From the workstation a responder can take advantage of a full-text search to find other
instances by AMI-ID, IP address or availability zone. If the responder determines another
instance needs to be processed, that instance can be added to the case right from the
workstation. When an instance is added to a case, either from inside the workstation or within
AWS-IR, the workstation provides memory, disk, and configuration analysis capabilities.



Analysis with ThreatResponse-Web

The memory view allows the responder to analyze a memory dump using the volatility memory
forensics framework. By leveraging a Javascript terminal, a volatility shell is provided inside the
workstation. This allows the full feature set of volatility, and results can be copied and pasted
out of the shell.

The disk analysis view leverages a full data analysis pipeline to automatically process the disk
images collected. When a disk is analyzed, an EC2 instance is created and the snapshot of
that disk is mounted as a volume to that instance. Plaso's Log2Timeline is then run on the
attached volume to collect well formatted log files into a single .plaso file. Finally, TimeSketch
reads the file to present a web view to the responder for further inspection. By leveraging AWS,
multiple disks can be processed in parallel.

Finally, a view is available for an interactive configuration checking tool called ThreatPrep.

ThreatPrep: Preparing Your Environment for Optimal Evidence Collection.

ThreatPrep is a tool to examine an AWS environment with two main objectives. Firstly, identify
areas where the security posture could be increased and secondly, identify areas where the
amount of forensic evidence could be increased.

ThretPrep has many built in checks, including ensuring each S3 bucket has versioning and
logging enabled and public reading or writing has been disabled. It checks each IAM user to
ensure Multi-Factor Authentication has been enabled and that credentials have recently been
rotated. It also checks each IAM user to ensure it is not attached to the AdministratorAccess
policy. It will check each VPC to ensure flow logs have been enabled, ensure a CloudWatch
alarm is set for Estimated Cost, and ensure roles and a multi-regional CloudTrail is enabled.

ThreatPrep can be used either from a command line, or used in a python project. In fact, the
ThreatResponse-Web project includes output from ThreatPrep in the advice section.

ThreatPrep offers similar advice as AWS Trusted Advisor. Trusted Advisor is only available with
a costly service plan. Further, Trusted Advisor can not be accessed programmatically. Because
ThreatPrep can be used programmatically, it is easy to extend it to add additional checks or
whitelist resources. ThreatPrep also shares similarities to AWS Config Rules, discussed above.
However AWS Config Rules are not yet available in every AWS region and each rule costs two
dollars per month per rule, and possibly more depending on how many times the rule is
evaluated. The cost of the rules may make it prohibitive to smaller organizations who are price
sensitive.


http://www.volatilityfoundation.org/
https://github.com/log2timeline/plaso
https://github.com/google/timesketch

Additional Open Source Tools

In addition to the ThreatResponse tools discussed above and the built in AWS services like
CloudTrail or Config and, organizations should also consider increasing their incident response
process with other open source tools. Two of the larger open source projects in this area are
Netflix's Security Monkey and Capital One’s Cloud Custodian. Organizations can get a better
idea of which tools they should use by considering where these tools can be used to augment
the incident response procedure. The following graphic explains where each tool can augment a
particular area of the incident response workflow.

Iltem Incident Handling Forensics Compliance Continuous Monitoring
AWS-IE Yes S Mo
Threat Prep

Margarita Shotgun

Security Monkey

Cloud Custodian

Netflix is continuously releasing updates to_Simian Army, which is a set of tools focused on
many performance and compliance areas within cloud environments. One member of Simian
Army is Security Monkey, which is described as a tool that “monitors policy changes and alerts
on insecure configurations in an AWS account”. For organizations wanting to try Security
Monkey, Netflix recommends using their quick start docker container, and while it is not
considered currently ready for production use, it will help organizations get started more quickly.

Cloud Custodian is an open source rules engine for managing an AWS environment. It
describes itself as “[allowing] users to define policies to enable a well managed cloud
infrastructure, that's both secure, and cost optimized”. The policies are written in YAML
configuration files for specific AWS resource types. Cloud Custodian integrates with lambda and
cloudwatch events to validate and verify policies as changes are made to an AWS account.
Cloud Custodian is a relatively new tool, being open sourced in April of 2016, but does appear
to help address areas in compliance and continuous monitoring.

A variety of tools should be used in order to enhance the incident response workflow. But
picking the right set of tools for a particular environment can be challenging. Organizations
should arrange their environments to encourage experimentations and evaluations of the
various tools to determine what works best for their environment.


https://github.com/Netflix/SimianArmy
https://github.com/Netflix/security_monkey
https://github.com/Netflix-Skunkworks/zerotodocker/wiki/Security-Monkey
https://github.com/capitalone/cloud-custodian

Recommendations for Augmenting Incident Response

As organizations move towards an automated incident response process, they should consider
separating their environments into multiple AWS accounts, building a continuous integration
culture around their IR tooling, and utilizing Incident Response game days or security
simulations.

Separate environments for testing, development, and production can be created by using
multiple AWS accounts with consolidated billing. There are several high impact benefits to
implementing environments in this manner. One advantage is that separating environments into
multiple accounts allow the engineers or developers running that account to focus on the areas
that most affects them. This separation of concerns can be empowering, as engineers
understand that they can take risks and try new ideas without affecting the entire operation of
the company. This allows and encourages testing and perfecting automatic responses to
misconfigurations or instructions.

After separate environments are created, an organization should dedicate time to continuously
improving their incident response tooling. These tools should be tested in the test and staging
environment before being pushed into production. Even though many of the tools being utilized
may be one-off scripts or not feel like “real” software projects, the authors should still maintain
documentation, a bug tracker, and source code management. Encouraging security engineers
to follow software development best practices will assist in avoiding technical debt around aging
automated incident response tooling.

Finally, organizations should test their tooling with incident response game days or security
simulations. Incident Response game days are exercises that allow the security team to practice
how the organization would respond, should an incident occur. Generally speaking, a small set
of employees are designated as the “red” team, and are supposed to see how far they can get
into the organization’s systems before the blue team discovers and stops them. Some
organizations let their blue team know about the testing, and others keep them in the dark.
Organizations may also “skip ahead”, by disclosing an IAM access key to one of the red team
members at the start of the exercise. This allows the security team to scope the assessment as
understanding what would happen if a key were compromised. It should be noted that AWS
does allow for incident response game days or security simulations but_the terms of service
require advanced notice of the event. For more information on how to host a successful security
simulation, check out the AWS re:Invent talk “AWS re:Invent 2015 | (SEC316) Harden Your
Architecture w/ Security Incident Response Simulations”.

Help Improve ThreatResponse

The ThreatResponse team encourages anyone interested in developing or providing feedback
to connect with us on GitHub or send us an email at info@threatresponse.cloud.



http://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/consolidated-billing.html
https://aws.amazon.com/security/penetration-testing/
https://www.youtube.com/watch?v=u-mRU44Q5u4
https://www.youtube.com/watch?v=u-mRU44Q5u4
https://github.com/ThreatResponse
mailto:info@threatresponse.cloud

References and Related Work

> AWS re:lnvent 2015 | (SEC316) Harden Your Architecture w/ Security Incident
Response Simulations
o https://www.youtube.com/watch?v=u-mRU44Q5u4
> AWS Policy for Penetration Testing and Security Game Days
o https://aws.amazon.com/security/penetration-testing/
> Boto3 python module for AWS SDK
o http://boto3.readthedocs.io/en/latest/
> Cloud Custodian
o https://github.com/capitalone/cloud-custodian
> Forensics in AWS, an introduction
o http://blyx.com/2016/03/11/forensics-in-aws-an-introduction/
> Installing the AWS SDK
o http://docs.aws.amazon.com/cli/latest/userguide/installing.html
> LiME Linux Memory Extractor
o https://github.com/504ensicslLabs/LiME
> LogZ2timeline Project
o https://github.com/log2timeline/plaso
> Paramiko Python SSH Module
o https://github.com/paramiko/paramiko
> Remove Unnecessary Permissions in Your IAM Policies by Using Service Last
Accessed
o https://blogs.aws.amazon.com/security/post/Tx280RX2WH6WUD7
> Security Monkey
o https://github.com/Netflix/security _monkey
> Security Monkey Docker Installation
o https://github.com/Netflix-Skunkworks/zerotodocker/wiki/Security-Monkey
> Simian Army
o https://github.com/Netflix/SimianArmy
> ThreatResponse
o http://www.threatresponse.cloud
> ThreatResponse, GitHub
o https://github.com/ThreatResponse
> TimeSketch
o https://github.com/google/timesketch
> Volatility Memory Forensics
o http://www.volatilityfoundation.org/



https://www.youtube.com/watch?v=u-mRU44Q5u4
https://aws.amazon.com/security/penetration-testing/
http://boto3.readthedocs.io/en/latest/
https://github.com/capitalone/cloud-custodian
http://blyx.com/2016/03/11/forensics-in-aws-an-introduction/
http://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://github.com/504ensicsLabs/LiME
https://github.com/log2timeline/plaso
https://github.com/paramiko/paramiko
https://blogs.aws.amazon.com/security/post/Tx280RX2WH6WUD7
https://github.com/Netflix/security_monkey
https://github.com/Netflix-Skunkworks/zerotodocker/wiki/Security-Monkey
https://github.com/Netflix/SimianArmy
http://www.threatresponse.cloud/
https://github.com/ThreatResponse
https://github.com/google/timesketch
http://www.volatilityfoundation.org/

