

Cunning with CNG: Soliciting
Secrets from Schannel

“Black Hat Sound Bytes”

 Ability to decrypt Schannel TLS connections that use ephemeral key exchanges

 Ability to decrypt and extract private certificate and session ticket key directly
from memory

 Public Cert/SNI to PID/Logon Session Mapping

What you get out of this talk

Agenda
 A very short SSL/TLS Review

 A background on Schannel & CNG
 The Secret Data

 The Forensic Context
 Demo >.>

Disclaimer
 This is NOT an exploit

 It’s just the spec :D

 …and some implementation specific oddities

Microsoft has done nothing [especially] wrong
 To the contrary, their documentation was actually pretty great

Windows doesn’t track sessions for processes that load their own TLS libs
 I’m looking at you Firefox and Chrome

Windows doesn’t track sessions for process that don’t use TLS…
 That’d be you TeamViewer...

Background
TLS, Schannel, and CNG

The infamous TLS Handshake

Initial Connection TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256

The infamous TLSDR; Handshake

Session Resumption

Perfect Forward Secrecy
What we want to do

 One time use keys, no sending secrets!

What TLS actually does

 Caches values to enable resumption

 recommends `An upper limit of 24 hours is suggested for session ID lifetimes`

 When using session ticket extension, sends the encrypted state over the network

 basically returning to the issue with RSA, but using a more ephemeral key...

What implementations also do

 Store symmetric key schedules (so you can find the otherwise random keys...)

 Cache ephemeral keys and reuse for a while...

Schannel & CNG
Secure Channel

 It’s TLS -> the Secure Channel for Windows!

 A library that gets loaded into the “key isolation
process” and the “client” process
 Technically a Security Support Provider (SSP)

 Spoiler: the Key Isolation process is LSASS

The CryptoAPI-Next Generation (CNG)

 Introduced in Vista (yes you read correctly)

 Provides Common Criteria compliance

 Used to store secrets and ‘crypt them
 Storage via the Key Storage Providers (KSPs)

 Generic data encryption via DPAPI

 Also brings modern ciphers to Windows (AES for
example) and ECC

 Importantly, ncrypt gets called out as the “key
storage router” and gateway to the CNG Key
Isolation service

Schannel Prefered Cipher Suites

Windows 7

Windows 10

Windows Vista

*ListCipherSuites sample code found here: https://technet.microsoft.com/en-us/library/bb870930.aspx

https://technet.microsoft.com/en-us/library/bb870930.aspx

Microsoft’s TLS/SSL Docs
 ClientCacheTime: “The first time a client connects to a server through the Schannel SSP, a full TLS/SSL

handshake is performed.”

 “When this is complete, the master secret, cipher suite, and certificates are stored in the session cache on

the respective client and server.”*

 ServerCacheTime: “…Increasing ServerCacheTime above the default values causes Lsass.exe to consume

additional memory. Each session cache element typically requires 2 to 4 KB of memory”*

 MaximumCacheSize: “This entry controls the maximum number of cache elements. […] The default value

is 20,000 elements.” *

*TLS/SSL Settings quoted from here: https://technet.microsoft.com/en-us/library/dn786418(v=ws.11).aspx

https://technet.microsoft.com/en-us/library/dn786418(v=ws.11).aspx
https://technet.microsoft.com/en-us/library/bb870930.aspx

Schannel Ops

Diagram based on: https://technet.microsoft.com/en-us/library/dn786429.aspx

https://technet.microsoft.com/en-us/library/dn786429.aspx

CNG Key Isolation

Diagram based on: https://msdn.microsoft.com/en-us/library/windows/desktop/bb204778.aspx

https://msdn.microsoft.com/en-us/library/windows/desktop/bb204778.aspx
https://technet.microsoft.com/en-us/library/bb870930.aspx

Background Summary

Were Looking Here

For These

Because of That

LSASS.exe

What are we trying to accomplish?
We want to be able to see data that has been protected with TLS/SSL and subvert efforts
at implementing Perfect Forward Secrecy

We want to gather any contextual information that we can use for forensic purposes,
regardless of whether or not we can accomplish the above

We (as an adversary) want to be able to get access to a single process address space and
be able to dump out things that would enable us to monitor/modify future traffic, or
possibly impersonate the target

 We want to do this without touching disk

Secrets

The Keys

Master Secret Session Keys Ephemeral Private Key* Persistent Private Key
(Signing)

Session Ticket Key*

Pre-Master Secret

+

The Keys? What do they get us?

=
=
=
=

a single connection

a single session

multiple sessions

multiple sessions + identity

The Keys? We got ’em…all.

*
CSessionCacheServerItem

+0xF0
CSslCredential

+0x48
CSslServerKey

+0x08
NcryptSslKey

+0x10
NcryptsslpKey
pair +0x18

NcryptKey
+0x10

KPSPK
+0xD0

CSslContext
CEphemKeyData

+0x48
NcryptSslkey

+0x10
NcryptSslpEphemKey

+0x18
NcryptKey
+0x10

KPSPK
+0x60

*
CSessionCache<type>Item

+0xF0
NcryptSslkey

+0x10
NcryptsslpMasterKey

+0x30

CSslUserContext
+0x18, +0x20

NcryptsslpSessionKey
+0x18

BcryptKey
+0x10

MSSymmetricKey
+0x18

msprotectkey
BcryptKey
+0x10

MSSymmetricKey
+0x18

EccKey
+0x18

NcryptSslKey
+0x10

Session Keys
 Smallest scope / most ephemeral
 Required for symmetric encrypted comms
 Not going to be encrypted

Approach Premise:

 Start with AES
 AES keys are relatively small and pseudo-random
 AES key schedules are larger and deterministic
 … they are a “schedule” after all.

 Key schedules usually calculated once and stored*

 Let’s scan for matching key schedules on both

hosts

FindAES from: http://jessekornblum.com/tools/

http://jessekornblum.com/tools/
https://technet.microsoft.com/en-us/library/bb870930.aspx

Session Keys
_SSL_SESSION_KEY

4 cbStructLength

4 dwMagic [“ssl3”]

4 dwProtocolVersion

4/8 pvCipherSuiteListEntry

4 IsWriteKey

4/8 pvBcryptKeyStruct

_BCRYPT_KEY_HANDLE

4 cbStructLength

4 dwMagic [“UUUR”]

4/8 pvBcryptProvider

4/8 pvBcryptSymmKey

_MS_SYMMETRIC_KEY

4 cbStructLength

4 dwMagic [“MSSK”]

4 dwKeyType

... ...

4 KeyLength

? SymmetricKey

? SymmKeySchedule

CSslUserContext

Look familiar? Bcrypt keys are used a lot: think Mimikatz

https://technet.microsoft.com/en-us/library/bb870930.aspx

The Ncrypt SSL Provider (ncryptsslp.dll)

These functions do three things:

 Check the first dword for a size value
 Check the second dword for a magic ID
 Return the passed handle* if all is good

Ncryptsslp Validation function Symbols Ncryptsslp Validation function Symbols

*Handles are always a pointer here

https://technet.microsoft.com/en-us/library/bb870930.aspx

The Ncrypt SSL Provider (ncryptsslp.dll)

SSL Magic Size (x86) Size (x64) Validation Functions

ssl1 0xE4 0x130 SslpValidateProvHandle

ssl2 0x24 0x30 SslpValidateHashHandle

ssl3 ? ? <none>

ssl4 0x18 0x20 SslpValidateKeyPairHandle

ssl5 0x48 0x50 SslpValidateMasterKeyHandle

ssl6 0x18 0x20 SslpValidateEphemeralHandle

ssl7 ? ? <none>

ssl3 was already discussed,
appears in the following functions:

TlsGenerateSessionKeys+0x251
SPSslDecryptPacket+0x43
SPSslEncryptPacket+0x43
SPSslImportKey+0x19a
SPSslExportKey+0x76
Ssl2GenerateSessionKeys+0x22c

Pre-Master Secret (PMS)
 The ‘ssl7’ struct appears to be used specifically

for the RSA PMS

 As advised by the RFC, it gets destroyed quickly,

once the Master Secret (MS) has been derived

 Client generates random data, populates the

ssl7 structure, and encrypts

 In ECC the PMS is x-coordinate of the shared

secret derived (which is a point on the curve), so
this doesn’t /seem/ to get used in that case

Functions where ssl7 appears:

ncryptsslp!SPSslGenerateMasterKey+0x75
ncryptsslp!SPSslGenerateMasterKey+0x5595
ncryptsslp!SPSslGeneratePreMasterKey+0x15e
ncryptsslp!TlsDecryptMasterKey+0x6b

Bottom line:

It’s vestigial for our purposes - it doesn’t do

anything another secret can’t

Master Secret
 Basically the Holy Grail for a given connection

 It always exists
 It’s what gets cached and used to derive

the session keys

 Structure for storage is simple - secret is
unencrypted (as you’d expect)

 This + Unique ID = decryption, natively in tools

like wireshark

 So...how do we get there?

_SSL_MASTER_SECRET

4 cbStructLength

4 dwMagic [“ssl5”]

4 dwProtocolVersion

0/4 dwUnknown1* [alignment?]

4/8 pCipherSuiteListEntry

4 bIsClientCache

48 rgbMasterSecret

4 dwUnknown2 [reserved?]

Master Secret

_SSL_MASTER_SECRET

4 cbStructLength

4 dwMagic [“ssl5”]

4 dwProtocolVersion

0/4 dwUnknown1* [alignment?]

4/8 pCipherSuiteListEntry

4 bIsClientCache

48 rgbMasterSecret

4 dwUnknown2 [reserved?]

Master Secret Mapped to Unique Identifier
 The Master Key is linked back to a unique ID

through an “NcryptSslKey”

 The NcryptSslKey is referenced by an
“SessionCacheItem”

 The SessionCacheItem contains either the
SessionID, or a pointer and length value for a
SessionTicket

 Instantiated as either client or server
item

At this point, we can find cache items, and extract
the Master Secret + Unique ID

 … Houston, we has plaintext.

_SESSION_CACHE_CLIENT_ITEM

4/8 pVftable

… …

@0x10 pMasterKey

… …

@0x88 rgbSessionID[0x20]

… …

@0x128 pSessionTicket

@0x130 cbSessionTicketLength

_NCRYPT_SSL_KEY_HANDLE

4 cbStructLength

4 dwMagic [“BDDD”]

4/8 pNcryptSslProvider

4/8 pNcryptSslKey

_SSL_MASTER_SECRET

4 cbStructLength

4 dwMagic [“ssl5”]

4 dwProtocolVersion

0/4 dwUnknown1* [alignment?]

4/8 pCipherSuiteListEntry

4 bIsClientCache

48 rgbMasterSecret

4 dwUnknown2 [reserved?]

Master Secret Mapped to Unique Identifier
RSA Session-
ID:97420000581679ae7a064f3e4a350682dca9e839ebca0
7075b1a944d8b1b71f7 Master-
Key:897adf533d0e87eadbc41bc1a13adb241251a56f0504
35fad0d54b1064f83c50cedb9d98de046008cde04a409779
5df2

RSA Session-
ID:f5350000be2cebcb15a38f38b99a20751ed0d53957890
1ddde69278dbbf9738e Master-
Key:716a1d493656bf534e436ffb58ff2e40000516b735db
d5dfaff93f37b5ac90ba1c3a25ba3e1505b8f3aa168a657e
007b

RSA Session-
ID:bcb3aff3581fccb9fe268d46f99f5e2c6cc9e59e51c67
14d70997e63b9c6fe73 Master-
Key:e45e18945197c2f0a2addb901a9558f194241d2b488c
dc3d1f81e1271acb4dc776e3c772177c7d0462afeca57a3d
9cb2

RSA Session-
ID:c7d0f952fb3fc4999a692ce3674acb1a4b2c791ece2c6
d1621af95e6414ec3b0 Master-
Key:db93026b71e0323b60e2537f0eeebf4fc321094b8a9a
6ccd8cf0f50c7fa68c294f6c490d5af3df881db585e2a10a
0aea

Wireshark SSL Log Format

Wireshark SSL input formats found here: https://github.com/boundary/wireshark/blob/master/epan/dissectors/packet-ssl.c

https://technet.microsoft.com/en-us/library/bb870930.aspx

Ephemeral & Persistent Private Keys
 Both share the same structure
 Both store secrets in a Key Storage Provider

Key struct (KPSK)
 The “Key Type” is compared with different

values
 ssl6 gets compared with a list stored in

bcryptprimitives
 ssl4 gets compared with a list stored in

NCRYPTPROV

 The Key Storage Provider Key (KPSK) is
referenced indirectly through an “Ncrypt
Key” struct*

*NcryptKey not to be confused with NcryptSslKey

_SSL_KEY_PAIR

4 cbStructLength

4 dwMagic [“ssl4” | “ssl6”]

4 dwKeyType

4 dwUnknown1 [alignment?]

4/8 pKspProvider

4/8 pKspKey

_NCRYPT_KEY_HANDLE

4 cbStructLength

4 dwMagic [0x44440002]

4 dwKeyType

4 dwUnknown1 [alignment?]

4/8 pKspProvider

4/8 pKspKey

_KSP_KEY

4 cbStructLength

4 dwMagic [“KSPK”]

4 dwKeyType

... ...

@0x60 pMSKY

@0xD0 pDpapiBlob

@0xD8 dwDpapiBlobLength

https://technet.microsoft.com/en-us/library/bb870930.aspx

Ephemeral Private Key
 For performance, reused across connections

 Given the public connection params, we can
derive the PMS and subsequently MS

 Stored unencrypted in a LE byte array

 Inside of MSKY struct

 The curve parameters are stored in the KPSK

 Other parameters (A&B, etc) are stored in MSKY
w/ the key

 Verified by generating the Public & comparing

 The Public Key is also stored in the first pointer
of the CEphemData struct that points to “ssl6”

In-line with suggestion of this paper: http://dualec.org/DualECTLS.pdf

https://technet.microsoft.com/en-us/library/bb870930.aspx

“Persistent” Private Key
 The RSA Key that is stored on disk

 Unique instance for each private RSA Key – by
default, the system has several

 E.g. one for Terminal Services

 RSA Keys are DPAPI protected

 Lots of research about protection / exporting
 Note the MK GUID highlighted from the Blob

 The Key is linked to a given Server Cache Item

 Verified by comparing the DPAPI blob in
memory to protected certificate on disk

 Also verified through decryption

Decrypting Persistent Key - DPAPI
 Can extract the blob from memory and decrypt w/ keys

from disk
 DPAPIck / Mimikatz

 OR

 Can decrypt directly from memory :D

 MasterKeys get cached in Memory
 On Win10 in: dpapisrv!g_MasterKeyCacheList
 See Mimilib for further details
 Even though symbols are sort of required, we

could likely do without them
 There are only two Bcrypt key pointers in lsasrv’s

.rdata section (plus one lock)
 Identifying the IV is more challenging

 Cached DPAPI MK + Params to Decrypt

Decrypting Persistent Key - DPAPI

Session Tickets
 Not seemingly in widespread use with IIS?

 Comes around w/ Server 2012 R2
 Documentation is lacking.

 Enabled via reg key + powershell cmdlets?

 Creates an “Administrator managed”
session ticket key

 Schannel functions related to Session Tickets

load the keyfile from disk

 Export-TlsSessionTicketKey :D

Reference to DISABLING session tickets in Win8.1 Preview release notes: https://technet.microsoft.com/en-us/library/dn303404.aspx

https://technet.microsoft.com/en-us/library/bb870930.aspx

Session Ticket Key
 Keyfile contains a DPAPI blob, preceded by a

SessionTicketKey GUID + 8 byte value

 Key gets loaded via schannel

 The heavy lifting (at least in Win10) is done
via mskeyprotect

 AES key derived from decrypted blob via

BCryptKeyDerivation()

 Key gets cached inside mskeyprotect!

 No symbols for cache : /
 No bother, we can just find the Key GUID

that’s cached with it :D

Session Ticket Key GUID

Possibly Salt or MAC?

Size of ensuing DPAPI Blob

DPAPI Blob (contains it’s own fields)

Decrypting Session Tickets
 Session Ticket structure pretty much follows the

RFC (5077), except:
 MAC & Encrypted State are flipped (makes

a lot of sense)

 After extracting/deriving the Symm key, it’s just

straight AES 256

 Contents of the State are what you’d expect:

 Timestamp
 Protocol/Ciphersuite info
 MS struct

Key GUID
IV

MAC

Encrypted
TLS

State

Decrypting Session Tickets

Master Secret

Secrets are cool and all...
But Jake, what if I don’t have a packet capture?
(And I don’t care about future connections?)

The Context

Inherent Metadata TLS Provides
Core SSL/TLS functionality

 Timestamps

 The random values *typically* start with a 4-byte
timestamp (if you play by the RFCs)

 Identity / fingerprinting

 Public Key

 Session ID*

 Offered Cipher Suites / Extensions

 Session ID’s are arbitrary, but are not always
random -> Schannel is a perfect example
 uses MaximumCacheEntries parameter when creating

the first dword of the random, leading to a(n
imperfect) fingerprint of two zero bytes in 3/4th byte*

TLS Extensions

 Server Name Indication (SNI)

 Virtual hosts

 Application-Layer Protocol Negotiation (ALPN)
 Limited, but what protocol comes next

 fingerprinting?

 Session Tickets
 Key GUID

*Referenced in this paper: http://dualec.org/DualECTLS.pdf

https://technet.microsoft.com/en-us/library/bb870930.aspx

Schannel Caching Parameters
Parameters:

 The following control upper-limit of cache time:

 m_dwClientLifespan
 m_dwServerLifespan
 m_dwSessionTicketLifespan

 All of which:
 are set to 0x02255100 (10hrs in ms)

 Also of Interest:
 m_dwMaximumEntries (set to 0x4e20 or 20,000
 entries by default)

 m_dwEnableSessionTicket controls use of
 session tickets (e.g. 0, 1, 2)

 m_dwSessionCleanupIntervalInSeconds (set
 to 0x012c or 300 seconds by default)

HOWEVER:

 Schannel is the library, the process has control

 Proc can purge its own cache at will
 For example, IIS reportedly* purges after

around two hours

 Schannel maintains track of process, frees cache
items after client proc terminates : <

 Haven’t looked at the exact mechanism

 As you’ll see, the upside is that the Process
ID is stored in the Cache

This is your Schannel Cache (x64)
'_SSL_SESSION_CACHE_CLIENT_ITEM': [0x148, {
 'Vftable': [0x0, ['pointer64', ['void']]],
 ‘MasterKey': [0x10, ['pointer64', ['void']]],
 'PublicCertificate': [0x18, ['pointer64', ['void']]],
 'PublicKey': [0x28, ['pointer64', ['void']]],
 'NcryptSslProv': [0x60, ['pointer64', ['void']]],
 'SessionIdLen': [0x86, ['short short']],
 'SessionId': [0x88, ['array', 0x20, ['unsigned char']]],
 'ProcessId': [0xa8, ['unsigned long']],
 'MaxLifeTime': [0xB0, ['unsigned long']],
 'CertSerializedCertificateChain': [0xB0, ['pointer64', ['void']]],
 'UnkList1Flink': [0xB8, ['pointer64', ['void']]],
 'UnkList1Blink': [0xC0, ['pointer64', ['void']]],
 'UnkCacheList2Flink': [0xC8, ['pointer64', ['void']]],
 'UnkCacheList2Blink': [0xD0, ['pointer64', ['void']]],
 'ServerName': [0x108, ['pointer64', ['void']]],
 ‘LogonSessionUID': [0x110, ['pointer64', ['void']]],
 'CSessCacheManager': [0x120, ['pointer64', ['void']]],
 'SessionTicket': [0x138, ['pointer64', ['void']]],
 'SessionTicketLen': [0x140, ['int']],
 }],

This is your Schannel Cache (x64)
'_SSL_SESSION_CACHE_SERVER_ITEM': [0x110, {
 'Vftable': [0x0, ['pointer64', ['void']]],
 'NcryptKey': [0x10, ['pointer64', ['void']]],
 'NcryptSslProv': [0x60, ['pointer64', ['void']]],
 'SessionId': [0x88, ['array', 0x20, ['unsigned char']]],
 'ProcessId': [0xa8, ['unsigned long']],
 'MaxLifeTime': [0xB0, ['unsigned long']],
 'LastError?': [0xE8, ['unsigned long']],
 'CSslCredential': [0xF0, ['pointer64', ['void']]],
 }],

This is your Schannel Cache on Drugs Vista
'_SSL_SESSION_CACHE_CLIENT_ITEM': [0xf0, {
 'Flink': [0x0, ['pointer', ['void']]],
 'Blink': [0x4, ['pointer', ['void']]],
 'ProcessId': [0x8, [['unsigned long']],
 'MasterKey': [0x14, ['pointer', ['NcryptSslKey']]],
 'CipherSuiteId': [0x1C, ['pointer', ['void']]],
 'ECCurveParam': [0x20, ['pointer', ['void']]],
 'NcryptSslProv': [0x28, ['pointer', ['void']]],
 'PublicCertificate': [0x2C, ['pointer', ['void']]],
 'PublicCert2': [0x34, ['pointer', ['void']]],
 'PublicKeyStruct': [0x3C, ['pointer', ['void']]],
 'PublicCertStruct3': [0x44, ['pointer', ['void']]],
 'ServerName': [0x80, ['pointer', ['void']]],
 'SessionIdSize': [0x94, ['short short']],
 'SessionId': [0x98, ['array', 0x20, ['unsigned char']]],
 'ErrorCode': [0xEC, ['pointer64', ['void']]],
 }],

Automating it

Volatility / Rekall
 Plugins for both – by default (no args) they:

 Find LSASS
 Scan Writeable VADs / Heap for Master Key

signature (Volatility) or directly for
SessionCacheItems (Rekall)

 Dump out the wireshark format shown
earlier

 Hoping to have functional powershell module or

maybe incorporation into mimikatz? (Benjamin
Delphy is kinda the man for LSASS)

Limitations
 We’re working with internal, undocumented structures

 They change over time -- sometime around April 2016, an element appears to have been inserted in
cache after the SessionID and before the SNI
 Not a huge deal, except when differences amongst instances of same OS (e.g. ones that have

and have not been updated)

 Relying on symbols for some of this

 MS giveth and can taketh away.
 Still, can be done without them, just slightly less efficiently.

 You need to be able to read LSASS memory

 Not a huge deal in 2016, but still merits mention -- you need to own the system
 If you own the system, you can already do bad stuff (keylog / tap net interface)
 This is why it’s probably most useful in a forensic context

Demo

Fin.

Questions?

@TinRabbit_

Special Thanks

Áine Doyle - Badass Extraordinaire (OCSC)

Dr. John-Ross Wallrabenstein - Sypris Electronics

Dr. Marcus Rogers - Purdue Cyber Forensics Laboratory

Michael Hale Ligh (MHL) - Volexity

Tatiana Ringenberg - Sypris Electronics

For general support, helpful comments, their time, and encouragement.

	Slide Number 1
	Cunning with CNG: Soliciting Secrets from Schannel
	“Black Hat Sound Bytes”
	Agenda
	Disclaimer
	Background
	The infamous TLS Handshake
	The infamous TLSDR; Handshake
	Perfect Forward Secrecy
	Schannel & CNG
	Schannel Prefered Cipher Suites
	Microsoft’s TLS/SSL Docs
	Schannel Ops
	CNG Key Isolation
	Background Summary
	What are we trying to accomplish?
	Secrets
	The Keys
	The Keys? What do they get us?
	The Keys? We got ’em…all.
	Session Keys
	Session Keys
	The Ncrypt SSL Provider (ncryptsslp.dll)
	The Ncrypt SSL Provider (ncryptsslp.dll)
	Pre-Master Secret (PMS)
	Master Secret
	Master Secret
	Master Secret Mapped to Unique Identifier
	Master Secret Mapped to Unique Identifier
	Ephemeral & Persistent Private Keys
	Ephemeral Private Key
	“Persistent” Private Key
	Decrypting Persistent Key - DPAPI
	Decrypting Persistent Key - DPAPI
	Session Tickets
	Session Ticket Key
	Decrypting Session Tickets
	Decrypting Session Tickets
	Secrets are cool and all...
	The Context
	Inherent Metadata TLS Provides
	Schannel Caching Parameters
	This is your Schannel Cache (x64)
	This is your Schannel Cache (x64)
	This is your Schannel Cache on Drugs Vista
	Automating it
	Volatility / Rekall
	Limitations
	�Demo
	Fin.
	Questions?
	Special Thanks

