
I n t e l l i g e n c e D r i v e n S e c u r i t y

Pwning Your Java Messaging With De-
serialization Vulnerabilities
Matthias Kaiser of Code White
Blackhat USA 2016
08/03/2016

Pwning Your Java Messaging With Deserialization Vulnerabilities – Matthias Kaiser of Code White
Blackhat USA 2016
08/03/2016

Page 1

1 Introduction to Java’s Serialization prob-

lem

1.1 Overview

Java deserialization vulnerabilities are a bug class on its own. Although several security researchers have pub-

lished details in the past,the bug class is still fairly unknown.

In 2015 Christopher Frohoff and Gabriel Lawrence of Qualcomm published great research with their presenta-

tion ”Marshalling Pickles” at AppSecCali 20151. They presented several unique exploitation vectors for common

third party libraries and also the tool ysoserial, used to generate payloads for easy exploitation of deserialization

vulnerabilities.

Since then, several researchers have been further researching Java deserialization and numerous vulnerabilities

were found in commercial and open-source products.

1.2 The core problem

Suppose the following lines of Java Code are found in an application. The ObjectInputStream instance reads an

object from untrusted input using the readObject()-method.
...
ObjectInputStream untrustedInput = new ObjectInputStream(...);
Object inObject = (Object) untrustedInput.readObject();
...

Listing 1.1: Deserializing an object from untrusted input

During the process of deserialization several methods are invoked on objects of classes implementing the java

.io.Serializable-interface. Specifically, the methods readResolve() and readObject() are invoked by the

1http://www.slideshare.net/frohoff1/appseccali-2015-marshalling-pickles

Pwning Your Java Messaging With Deserialization Vulnerabilities – Matthias Kaiser of Code White
Blackhat USA 2016
08/03/2016

Page 2

ObjectInputStream class on serializable objects, thus allowing to trigger code to be executed. If the code is

reading from the untrusted input stream and invoking potentially unsafe methods (e.g. reflection), this can be

exploited.

1.3 Code reuse attacks with gadgets

For exploiting deserialization vulnerabilities we need to find serializable classes with methods doing file writes,

dynamic methods calls, JNDI lookups, etc. and reuse them. If those methods can be triggered during deseri-

alization of an object (e.g. readObject), we can reuse them as a gadget for exploitation. Several gadgets were

found by security researchers in Java third party libraries (e.g. Commons Collection) or even the Java Runtime

Environment.

1.4 Ysoserial - Making exploitation easy

Ysoserial is a ”Proof of Concept”-tool to support the exploitation of Java deserialization vulnerabilities. It was

released by Chris Frohoff and Gabriel Lawrence at AppSecCali 2015. Furthermore, researchers have been con-

tributing new gadgets so that ysoserial is admitted as the public repository for deserialization gadgets.

Figure 1.1: Generating a serialized object stream with Ysoserial

At the time of writing, ysoserial allows to generate serialized gadgets for around 12 different libraries.

Pwning Your Java Messaging With Deserialization Vulnerabilities – Matthias Kaiser of Code White
Blackhat USA 2016
08/03/2016

Page 3

2 The Java Message Service

The Java Message Service (JMS) is an API for sending messages asynchronously using Message-Oriented-

Middleware (MOM). Several versions of the standard exists:

• JMS 1.0.2b (no JSR, 2001)

• JMS 1.1 (JSR 914, released 2002)

• JMS 2.0 (JSR 343, released 2013)

• JMS 2.1 (JSR 368, currently in Early Draft Review phase)

JMS is also an integral part of Java EE since version 1.4, thus requiring all Java EE application servers to support

it. The latest version 2.0 of JMS is part of JEE7. With OpenMQ Oracle maintains a reference implementation for

JMS 1.1/2.0 .

2.1 Products supporting JMS

Several Java enterprise products support JMS, either as JMS Broker or JMS client.

Pwning Your Java Messaging With Deserialization Vulnerabilities – Matthias Kaiser of Code White
Blackhat USA 2016
08/03/2016

Page 4

Figure 2.1: Products supporting JMS

JMS Brokers provide clients with connectivity andmessage storage and delivery functions. JMS brokers usually

run as a standalone application or as an embedded broker inside a JEE application server. Integration Platforms

such as Enterprise Service Buses mostly have embedded brokers but also can act as a JMS Client only.

2.2 Wire Protocols

Since JMS is only an Application Programming Interface(API), it doesn’t require any specific wire protocol to

be implemented. In the past JMS providers implemented JMS on top of proprietary protocols. Since several

years open standards exit and were adopted by vendors. The most important ones found in open-source and

commercial products are:

• AMQP - Advanced Message Queuing Protocol

• MQTT - MQ Telemetry Transport

• STOMP - Streaming Text Oriented Messaging Protocol

• OpenWire

• Websocket

Just as a side note, JMS Brokers also often provide separate Java APIs for specific protocols like AMQP, MQTT

and STOMP. But those APIs do not follow any standard. This is also one of the reason whys JMS is still used in

modern systems.

The following Figure 2.2 shows the supported wire protocols of various message brokers along with default

ports for each supported protocol.

Pwning Your Java Messaging With Deserialization Vulnerabilities – Matthias Kaiser of Code White
Blackhat USA 2016
08/03/2016

Page 5

Figure 2.2: JMS broker supported wire protocols with default broker ports (without SSL)

Wire protocol/port combinations marked as red are of special interest as those are supported in the JMS-

implementation of the broker and hence are in the focus for our research.

2.3 JMS Basics

JMS defines several key entities as shown in Figure 2.3.

Figure 2.3: JMS key entities

JMS Broker Provide clients with connectivity and message storage and delivery functions
JMS Client An application that uses the services of the message broker
Message A Message object comprised of header, properties and payload
Destination The destination to where a message is sent
Connection Permanent interaction of a JMS client with a broker using a specific protocol and credentials
Session Used for a transactional context if required

Pwning Your Java Messaging With Deserialization Vulnerabilities – Matthias Kaiser of Code White
Blackhat USA 2016
08/03/2016

Page 6

JMS provides two different communication models implemented in different destination types:

JMS Queue

A queue allows a producer to send a message to a destination and exactly one consumer will receive it from the

destination .

Figure 2.4: ”Point-To-Point” communication model

JMS Topic

To support multiple receivers, JMS provides topic destinations. A publisher sends a message to a topic and the

message gets distributed to all subscribers by the broker.

Figure 2.5: ”Publish/Subscribe” communication model

Depending on the broker implementation destinations need to be defined beforehand or can be created at run-

time. JMS also supports the creation of temporary destinations using methods of the JMS API.

Pwning Your Java Messaging With Deserialization Vulnerabilities – Matthias Kaiser of Code White
Blackhat USA 2016
08/03/2016

Page 7

2.4 The JMS API

The JMS API implements the key concepts as described in section 2.3. Figure 2.6 shows a good overview how

the key entities interact (for details see 1).

Figure 2.6: Overview of the JMS API

Listing 2.1) shows a JMS client sending a message to the queue ”orders”. Receiving a message using a Mes-

sageConsumer is shown in Listing 2.2. Both sending and receiving require first to set up a Connection using the

ConnectionFactory and then to establish a Session. A ConnectionFactory instance can be referenced/created

either by using the Java Naming and Directory Service (JNDI) or programmatically by using the JMS implemen-

tation classes. In both examples the ConnectionFactory implementation of Apache ActiveMQ is used. Connec-

tionFactory objects encapsulate JMS implementation dependent configurations like the protocol, target address

and port to be used. The Enterprise Java Bean (EJB) technology, as included in all JEE standard versions, de-

fines three different serverside component models called ”Enterprise Java Beans”. To support JMS in serverside

environments, the ”Message Driven Bean” component has been introduced in EJB 2.0 (2001). Message Driven

Beans require to implement the javax.jms.MessageListener-interface which defines themethod onMessage(). The

onMessage()-method is called by the embedded JMS broker of an JEE application server, when a message has

been received.
1”The Java EE 6 Tutorial - The JMS API Programming Model”

Pwning Your Java Messaging With Deserialization Vulnerabilities – Matthias Kaiser of Code White
Blackhat USA 2016
08/03/2016

Page 8

import javax.jms.Connection;
import javax.jms.ConnectionFactory;
import javax.jms.MessageProducer;
import javax.jms.Queue;
import javax.jms.Session;
import javax.jms.TextMessage;

import org.apache.activemq.ActiveMQConnectionFactory;

public class Producer {

public static void main(String[] args) throws Exception{

ConnectionFactory factory = new ActiveMQConnectionFactory("tcp://broker:61616");
Connection connection = factory.createConnection("user", "pass");

Session session = connection.createSession(false, Session.AUTO_ACKNOWLEDGE);

Queue queue = session.createQueue("orders");
MessageProducer producer = session.createProducer(queue);

connection.start();

TextMessage message = session.createTextMessage();
message.setText("This is the payload");

producer.send(message);

connection.close();

}

}

Listing 2.1: Sending a TextMessage using the JMS API

Pwning Your Java Messaging With Deserialization Vulnerabilities – Matthias Kaiser of Code White
Blackhat USA 2016
08/03/2016

Page 9

import javax.jms.Connection;
import javax.jms.ConnectionFactory;
import javax.jms.Message;
import javax.jms.MessageConsumer;
import javax.jms.Queue;
import javax.jms.Session;
import javax.jms.TextMessage;

import org.apache.activemq.ActiveMQConnectionFactory;

public class Consumer {

public static void main(String[] args) throws Exception {

ConnectionFactory factory = new ActiveMQConnectionFactory("tcp://broker:61616");
Connection connection = factory.createConnection("user", "pass");

Session session = connection.createSession(false, Session.AUTO_ACKNOWLEDGE);

Queue queue = session.createQueue("orders");
MessageConsumer consumer = session.createConsumer(queue);

connection.start();

Message message = consumer.receive();

if (message instanceof TextMessage) {

System.out.println(((TextMessage) message).getText());

}

connection.close();

}

}

Listing 2.2: Receiving a TextMessage using the JMS API

import javax.ejb.ActivationConfigProperty;
import javax.ejb.MessageDriven;
import javax.jms.Message;
import javax.jms.MessageListener;
import javax.jms.TextMessage;

@MessageDriven(activationConfig = { @ActivationConfigProperty(propertyName = "destination", propertyValue = "
cwqueue"),

@ActivationConfigProperty(propertyName = "destinationType", propertyValue = "javax.jms.Queue") },
mappedName = "cwqueue")

public class CwMessageDriven implements MessageListener {

public void onMessage(Message message) {

try {
if (message instanceof TextMessage) {

System.out.println(((TextMessage) message).getText());

}
} catch (Exception e) {
}

}
}

Listing 2.3: Receiving a TextMessage using a Message-Driven Bean

Pwning Your Java Messaging With Deserialization Vulnerabilities – Matthias Kaiser of Code White
Blackhat USA 2016
08/03/2016

Page 10

2.5 JMS messages

The JMS standard requires a JMS provider to implement five different message types. As shown in Figure 2.7

message types are defined as interfaces.

Figure 2.7: JMS message type hierarchy

Every JMS message consists of a header, properties and a body (see Figure 2.8). The JMS header contains

predefined header fields such as ”JMSMessageID” or ”JMSTimestamp” (see 2 for more details).

The message properties contain a set of key/value pairs which can be set by a JMS client. Furthermore the

message properties allow to implement selectors to filter JMSmessages. For details on message selectors see
3.

Figure 2.8: Message structure
2The Java EE 6 Tutorial
3The Java EE 6 Tutorial - JMS Message Listeners

Pwning Your Java Messaging With Deserialization Vulnerabilities – Matthias Kaiser of Code White
Blackhat USA 2016
08/03/2016

Page 11

The following message type definitions are taken from the JMS 1.1 specification:

Figure 2.9: Message types from the JMS 1.1 specification

The ObjectMessage type is of special interest as it requires a JMS provider to implement (de)-serialization based

on the Java Object Serialization Specification (see 4). An ObjectMessage provides twomethods. With the setOb-

ject()-method a serializable object is stored into the ObjectMessage. And with the getObject()-method the object

is reconstructed from the message body.

package javax.jms;

import java.io.Serializable;

public abstract interface ObjectMessage
extends Message

{
public abstract void setObject(Serializable paramSerializable)
throws JMSException;

public abstract Serializable getObject()
throws JMSException;

}

Listing 2.4: Interface definition of ObjectMessage

4https://docs.oracle.com/javase/8/docs/platform/serialization/spec/serialTOC.html

Pwning Your Java Messaging With Deserialization Vulnerabilities – Matthias Kaiser of Code White
Blackhat USA 2016
08/03/2016

Page 12

3 Attacking JMS

3.1 Vulnerability Discovery and Patch Status

Code White’s research focused on JMS client libraries of JMS brokers and Java EE application servers. We

haven’t looked at integration platforms at all because they are often based on JEE application servers (e.g. Oracle

Weblogic and IBM WebSphere).

Several Java EE application servers implement JMS capabilities by embedding a JMS broker:

Java EE server Embedded JMS Broker
IBM WebSphere IBM WebSphere MQ
Oracle GlassFish Oracle OpenMQ
Redhat EAP <7 (WildFly <10) Redhat HornetQ
Redhat EAP >=7 (WildFly >=10) Apache ActiveMQ-Artemis

Table 3.1: Java EE application servers with embedded JMS brokers

As already mentioned in section 2.5 the ”ObjectMessage” message type conveys a serialized object. All Ob-

jectMessage implementations were found vulnerable to deserialization of untrusted input. Table 3.2 shows the

vulnerabilities found in JMS client libraries and the corresponding patch status.

Pwning Your Java Messaging With Deserialization Vulnerabilities – Matthias Kaiser of Code White
Blackhat USA 2016
08/03/2016

Page 13

Vendor Target Vendor Discl. CVE Patch
1 Apache ActiveMQ 09/02/2015 CVE-2015-5254 Yes
2 Redhat/Apache HornetQ 03/18/2016 No No
3 Oracle OpenMQ 03/18/2016 No No
4 IBM WebSphereMQ 03/18/2016 No No
5 Oracle Weblogic 03/18/2016 CVE-2016-0638 Yesa

6 Pivotal RabbitMQ 03/24/2016 No No
7 IBM MessageSight 03/24/2016 CVE-2016-0375 Yes
8 IIT Software SwiftMQ 05/30/2016 No No
9 Apache ActiveMQ Artemis 06/02/2016 No No
10 Apache QPID JMS Client 06/02/2016 CVE-2016-4974 Yes
11 Apache QPID Client 06/02/2016 CVE-2016-4974 Yes
12 Amazon SQS Java Messaging 06/14/2016 No No

Table 3.2: Affected JMS client libraries with patch status
aOracle implemented blacklisting of gadget classes

3.2 Vulnerability Exploitation

Exploitation of deserialization vulnerabilities in ObjectMessage implementations is straight-forward. It just re-

quires to send a serialized gadget in an ObjectMessage to the target destination of a JMS broker.

ConnectionFactory factory = new ActiveMQConnectionFactory("tcp://broker:61616");
Connection connection = factory.createConnection("user", "pass");

Session session = connection.createSession(false, Session.AUTO_ACKNOWLEDGE);

Queue queue = session.createQueue("target");
MessageProducer producer = session.createProducer(queue);

connection.start();

ObjectMessage message = session.createObjectMessage();
message.setObject(-->PUTYOURGADGETHERE <--);

producer.send(message);

connection.close();

Listing 3.1: Exploitation of ObjectMessage-implementations

As soon as the message consumer receives the ObjectMessage and invokes the getObject() method on it, the

payload gets deserialized. Since the message consumer might expect a different object, chances are high that

a ClassCastException will occur. Message brokers usually try to redeliver the message several times and give up

in the end.

Pwning Your Java Messaging With Deserialization Vulnerabilities – Matthias Kaiser of Code White
Blackhat USA 2016
08/03/2016

Page 14

3.3 Exploitation Success Factors

Successful exploitation depends on several factors:

• Which JRE version is used (relevant for JDK gadgets)?

• Which libraries are bundled with the application?

• Which libraries are in the classpath of the Runtime Environment (e.g. Application Server)?

• Has the Runtime Environment separate classloaders with limited resolution scope (e.g. OSGI)?

• Is the Java Security Manager enabled ?

Since JMS is asynchronous there is neither feedback nor an error message/stack trace. As a result, Code White

developed a tool for blackbox assessment of JMS.

Pwning Your Java Messaging With Deserialization Vulnerabilities – Matthias Kaiser of Code White
Blackhat USA 2016
08/03/2016

Page 15

4 The Java Message Exploitation Tool

The Java Message Exploitation Tool (JMET) is a simple command line tool to make exploitation of ObjectMes-

sage implementations easy. It integrates Chris Frohoffs’/Gabriel Lawrence’s ”Ysoserial”-tool for gadget payload

generation. The focus of JMET lies in the exploitation of deserialization flaws but it also supports the exploitation

of XML parsers using XXE. Furthermore, custom scripts written in Javascript can be used to integrate further

common serialization technologies like XStream, Jackson, Kryo, etc.

4.1 Supported JMS client libraries

Currently, JMET supports the following client libraries of JMS brokers.

Vendor Target Supported
1 Apache ActiveMQ Yes
2 Redhat/Apache HornetQ Yes
3 Oracle OpenMQ Yes
4 IBM WebSphereMQ Yes
5 Oracle Weblogic No
6 Pivotal RabbitMQ Yes
7 IBM MessageSight No
8 IIT Software SwiftMQ Yes
9 Apache ActiveMQ Artemis Yes

10 Apache QPID JMS Client Yes
11 Apache QPID Client Yes
12 Amazon SQS Java Messaging No

Table 4.1: By JMET supported JMS client libraries

Pwning Your Java Messaging With Deserialization Vulnerabilities – Matthias Kaiser of Code White
Blackhat USA 2016
08/03/2016

Page 16

4.2 Basic usage

Using JMET is straight-forward. Three exploitation modes are implemented: ”ysoserial”, ”XXE” and ”Custom”

(see 1). The target JMS implementation can be selected with ”impl”. With ”-Q” (”Queue”) or ”-T” (”Topic”) you

can select the target destination. If required you can specify a username (”-u”) and a password (”-pw”). JMS

implementation dependent options can also be configured using ”-Z” switches.

Figure 4.1: Command line parameters of JMET

4.3 Gadget exploitation

The deserialization gadget mode is the most interesting one as it allows to achieve reliable remote code execu-

tion. The command to be executed is specified after the ”ysoserial” switch. With the switch ”payload” you can

also select a payload to be used.
1Details about the modes ”XXE” and ”Custom” can be found on JMET’s github project page”

Pwning Your Java Messaging With Deserialization Vulnerabilities – Matthias Kaiser of Code White
Blackhat USA 2016
08/03/2016

Page 17

Figure 4.2: Sending gadgets to queue ”event” using JMET

Since JMS is asynchronous, it might happen that more than one gadgets might be executed on the target sys-

tem. In order to find out which gadget works, you can use an Out-Of-Band channel like DNS and the substitution

mode. This mode substitutes the string ”§§” with the payload name to be executed (see Figure 4.3).

Figure 4.3: Using substitution to pass the payload name to the command to be executed

4.4 Tamper scripts

Tamper scripts allow to tamper the message before sending. Scripting was implemented using Java’s native

scripting support (JSR 223: Scripting for the Java Platform). Currently only ECMAScript is supported in JMET.

A good introduction can be found here (see 2).

The following script modifies the javax.jms.Message instance by setting the JMSPriority.

function filter(message){

message.setJMSPriority(3);
print("Changed Priority")
return message;

}

Listing 4.1: Setting the JMSPriority header value using a tamper script

2https://docs.oracle.com/javase/8/docs/technotes/guides/scripting/nashorn/intro.html

Pwning Your Java Messaging With Deserialization Vulnerabilities – Matthias Kaiser of Code White
Blackhat USA 2016
08/03/2016

Page 18

5 Conclusion

All JMS client libraries analysed by Code White were found vulnerable to deserialization of untrusted input if

message of type ObjectMessage are used. Although Java messaging is used in enterprise systems heavily, no

general attack vector has been shown to get reliable code execution.

Because of the asynchronous communication of JMS, no feedback is given during exploitation using gadgets.

With JMET, blackbox assessments of JMS destinations are now made easy.

	Introduction to Java's Serialization problem
	Overview
	The core problem
	Code reuse attacks with gadgets
	Ysoserial - Making exploitation easy

	The Java Message Service
	Products supporting JMS
	Wire Protocols
	JMS Basics
	The JMS API
	JMS messages

	Attacking JMS
	Vulnerability Discovery and Patch Status
	Vulnerability Exploitation
	Exploitation Success Factors

	The Java Message Exploitation Tool
	Supported JMS client libraries
	Basic usage
	Gadget exploitation
	Tamper scripts

	Conclusion

