
GATTacking Bluetooth Smart devices

 1

GATTACKING
BLUETOOTH SMART DEVICES

Sławomir Jasek, SecuRing (slawomir.jasek@securing.pl)

GATTacking Bluetooth Smart devices

 2

 TABLE OF CONTENTS

Abstract 2
1. Bluetooth Low Energy 2

1.1. BLE devices 2
2. BLE COMMUNICATION 2

2.1. Broadcast advertisement 2
2.2. Listening for advertisements 3
2.3. Connection to device 3
2.4. GATT data structure: services, characteristics, descriptors 3
2.5. Browsing device’s services 4
2.6. Reading, writing and notifications 4

3. BLE SECURITY 5
3.1. BLE security - specification 5

3.1.1. Encryption 5
3.1.2. Random MAC address 5
3.1.3. Whitelisting 5

3.2. BLE security - practice 5
4. POSSIBLE ATTACKS 6

4.1. Attacks on advertisements 6
4.1.1. Example vulnerabilities 6
4.1.2. Attack countermeasures 7

4.2. Passive Interception 7
4.2.1. Example vulnerabilities 7

4.3. Active interception 8
4.3.1. Example vulnerabilities 9
4.3.2. Attack countermeasures 10

4.4. Attacks on exposed services 10
4.4.1. Example vulnerabilities 10
4.4.2. Attack countermeasures 11

4.5. Attacks on pairing 11
4.5.1. “Just Works” 11
4.5.2. PIN-protected pairing 11
4.5.3. Attack countermeasures 11

4.6. Whitelisting bypass 12
4.7. Privacy considerations 12

5. ATTACK CONDITIONS, RISK CONSIDERATION 12
5.1. Physical range 12
5.2. Risk 12

6.THE NEW TOOL 12
6.1. Architecture 12
6.2. Implementation 12
6.3. Necessary hardware 13
6.4. Device communication analysis 13

6.4.1. Mobile application analysis 13
6.4.2. HCI dump 13

7. REFERENCES 13

GATTacking Bluetooth Smart devices

 2

ABSTRACT

This document outlines possible forms of
a Bluetooth Low Energy attack. Special attention
has been paid to the higher, GATT (Generic
Attribute Profile) layer of the Bluetooth stack. The
introduction consists of the fundamental attributes
of BLE. This section is followed by a breakdown of
possible risks, attack scenarios and suggested
countermeasures. The attack scenarios are
complemented by several real-life vulnerabilities,
which were identified during the research phase in
tested devices and accompanied mobile
applications.

Ultimately, a new open source tool is introduced,
which assists in the security assessment of BLE
devices.

1. BLUETOOTH LOW

ENERGY

As its name implies, Bluetooth Low Energy (also
known as Bluetooth Smart or Bluetooth 4)
technology, was designed from its inception to be
power-efficient. According to some manufacturers’
claims, the BT4 chip can operate on a single coin
battery for “months to years” (depending on usage
and power configuration levels), although our
testing could not replicate these results. Besides
having “Bluetooth” in the name, the BLE protocol
does not share much more with previous Bluetooth
versions (also called BR, EDR, 1.2, 2, 3...). This
version has a new RF stack (although it still
operates on 2.4 GHz ISM band), and utilizes other
usage scenarios. Focus has been put on simplicity
rather than throughput, thus making the chip not
only less energy hungry, but also significantly
smaller and cheaper. And this key characteristic
turned out to be the catalyst for the explosion of
a wide assortment of new “IoT” devices and
applications on the market.

1.1. BLE devices

The availability, low cost and ease of
implementation has rendered the technology
extremely popular among startups, which develop
hundreds of varying “smart” BLE-enabled products.
Of course, crowdfunding projects are just a slice of
actual implementation, as BLE is also making its

way into medical, industrial and government
equipment. It is forecasted that more and more BLE
devices will surround our lives in the form of
wearables, sensors, lightbulbs, socks, cups, medical
devices, and other smart-products. Many of these
connected devices are not associated with any
significant risk, but some may possess serious
security implications (i.e. door locks, alarms,
security sensors, biometric authentication, banking
tokens, keypasses etc.). Also many devices expose
users to potential privacy vulnerabilities.

2. BLE COMMUNICATION

Bluetooth Low Energy communication between
device and mobile application follows usually
a scheme:

1. Device (peripheral) broadcasts an
advertisement.

2. Central device (mobile phone) scans for
advertisements.

3. Once the specific advertisement packet is
received, the central device stops scanning, and
initiates a connection to the broadcasting
peripheral.

4. Central device browses the peripheral device
for available services.

5. Central device exchanges information with
 peripheral device using characteristic

read/write/notify requests and responses.
Depending on the usage scenario, the mobile

application may handle only advertisements (2),
without initiating direct connection to the
peripheral device.

A detailed description of each step follows.

2.1. Broadcast advertisement

The broadcasting device advertises packets with
a specified interval and TX power level. On the RF
layer, the advertisements are broadcasted using
3 dedicated channels (out of 40 2 MHz-wide
channels the 2.4 GHz ISM band is split into by BLE),
with frequencies optimized to avoid Wi-Fi
interference. The device may choose which
channels to use for advertising: selected either 1,
2 or most commonly all 3 of them.

The packets are very limited in size (31 bytes),
and formatted according to specification defined by
Bluetooth SIG [1].

In consecutive fields, the device may broadcast,
i.a. its “services”, “name”, or “manufacturer data”
(field type 0xFF). The manufacturer data can be
formatted according to other widely recognized
formats (not defined by Bluetooth SIG), e.g. Apple
iBeacon or Google Eddystone. Vendors can also
implement their own, proprietary data format.

GATTacking Bluetooth Smart devices

 3

On a lower layer, advertisement data can be split
into 2 packets - one broadcasted by the device
independently, and the second a “scan response” -
sent back to a specific scanning device in response
to a scan inquiry request.

The broadcast packet is by design visible to all
listening devices in range (with exception of not
widely adopted “directed advertising” mode). The
broadcast is used mostly to “advertise” device
presence to mobile applications, as well as transmit
non-private data, device status or sensor
indication.

2.2. Listening for advertisements

The “central” device (usually a smartphone),
switches into scanning advertisement mode. In this
mode, it receives all the advertisements of nearby
devices. Next, the mobile application matches the
received advertisements against a specific one,
related to given device.

As the scanning requires a significant amount of
power, in order to conserve the battery, the scan
process is usually stopped immediately after
receiving the first matching advertisement.

Next, the mobile application interprets the
received data, and performs the suitable actions. In
several scenarios (e.g. beacons, some sensors,
getting a device’s status), the mobile application
does not need to initiate further connection to
device.

2.3. Connection to device

If the usage scenario requires exchanging more
data with the device, the directed connection is
initiated. The connection attempt is performed
usually to the MAC address of a device with
a matching advertisement. Depending on the
mobile application, the MAC address may however
be compared with the specific previously stored
MAC (e.g. matching a given lightbulb), or a defined
vendor class. As an example, follow the decompiled
Android source code filtering MAC addresses for
a specific vendor:

private static boolean
isBlueRadiosModuleAddress(String
paramString)
 {
 int i = paramString.substring(0,
8).compareTo("EC:FE:7E");
 boolean bool = false;
 if (i == 0) {
 bool = true;
 }
 return bool;
 }

Most devices allow for only one active connection
at a time.

2.4. GATT data structure: services,
characteristics, descriptors

Devices exchange data using General Attribute
Profile (GATT) [2] characteristics, descriptors and
services. The figure below depicts their
relationship:

GATT data structure: services, characteristics,
descriptors

SERVICE

SERVICE

(...)

Characteristic

Characteristic

(...)

Descriptor: string

(e.g. “Battery level”)

Descriptor:

subscription status

Properties: read, write,
notify

(authenticated or not)

Value

GATTacking Bluetooth Smart devices

 4

A characteristic contains a single value
(“attribute”), which can be read, written to or
subscribed for notifications (details in chapter 2.6).

Each service and characteristic is identified by an
associated UUID (Universally Unique Identifier).
Typical services (e.g. battery level, device
information) use short UUID values defined in the
Bluetooth specification [3].

To create their own proprietary services and
characteristics vendors have to define their own
long UUID values.

Example: the proprietary UUID service and
characteristic values of Apple Watch, as explored
by GATTacker tool:

 "uuid":
"d0611e78bbb44591a5f8487910ae4366",
 "name": null,
 "type": null,
 "startHandle": 10,
 "endHandle": 14,
 "characteristics": [
 {
 "uuid":
"8667556c9a374c9184ed54ee27d90049",
 "name": null,
 "properties": [
 "write",
 "notify",

"extendedProperties"
],
 "value": "",
 "descriptors": [
 {
 "handle": 13,
 "uuid": "2900",
 "value": ""
 },
 {
 "handle": 14,
 "uuid": "2902",
 "value": ""
 }
],
 "startHandle": 11,
 "valueHandle": 12
 }
]

A characteristic can have associated descriptors.

Possible descriptor types are defined in the
according specification [4].

The two most commonly used descriptors are:
0x2901 (human readable user description), and

0x2902 - “client characteristic configuration”,
which describes the current subscription status.

2.5. Browsing device’s services

After initiating a connection, the central device
scans the peripheral for all available services,
characteristics and descriptors.

As the services scanning process takes several
requests and responses, mobile operating systems
store cached values for specific devices, in order to
optimize the process. For example, Android
operating system stores GATT cache in
/data/misc/bluedroid: bt_config.xml and
gatt_cache_<MAC_ADDR> files.

2.6. Reading, writing and notifications

Reading and writing to characteristics is
performed according to the Generic Attribute
Profile (GATT), which defines a structured list of
the services, characteristics and attributes of
a given application.

As mentioned earlier, each characteristic has
associated properties defining its possible actions:
read, write, notify. The properties can be used
separately or in unison (e.g. read+write,
write+notify, read+write+notify).

Each action may also require “authentication”,
meaning encryption of the connection (and usually
those devices are paired). In such a case, the initial
read or write request is followed by “insufficient
authorization” response from the device. Once the
devices establish an encrypted connection the
consecutive read or write requests to such
characteristic proceed normally.

Read and write requests transmit a single value.
For getting more data or receiving periodic updates
from a device, notifications are used. The central
device subscribes for a specific characteristic, and
the peripheral device sends data asynchronously.

Technically, subscription is performed as a write
request to a dedicated descriptor (0x2902). Reading
this descriptor value returns the current
subscription status.

A write request can be with or without a response,
and a notification can be unconfirmed or confirmed
by the recipient (also called “indication”).

The low-level communication is actually
performed using integer handle numbers,
associated with specific characteristics.

GATTacking Bluetooth Smart devices

 5

3. BLE SECURITY

3.1. BLE security - specification

According to specification [5], Bluetooth Low
Energy “provides several features to cover the
encryption, trust, data integrity and privacy of the
user’s data”.

3.1.1. Encryption
In order to encrypt transmission, BLE devices

undergo a pairing procedure. During this process
they set up a Long Term Key, used then to secure
consecutive connections. The available options
include:

– “Just Works”

– Passkey Entry

– Out Of Band

Version 4.2 of the Bluetooth specification
introduces elliptic curves as an addition. At the
time of writing this whitepaper, devices supporting
this version of protocol are not yet widespread.

The pairing method should be selected depending
on the device input/output capabilities (display,
yes/no button, keyboard). For example, devices
without a display obviously cannot use Passkey
Entry. The first two options are most common, Out
Of Band is not widely adopted.

Citing the specification: “Just Works and Passkey
Entry do not provide any passive eavesdropping
protection”. Sniffing the pairing process allows for
deriving the Long Term Keys from the PIN values,
and consequently decrypting the transmission. In
the case of “Just Works” the static PIN value used
is: 000000. The Passkey Entry PIN entry value can
be brute-force cracked using the Crackle tool [6].

Although the most commonly used pairing options
are susceptible to passive interception, the idea is
that it is supposed to be performed only once and
in a secure environment. And after the initial bond
is created, there transmission is properly secured
using “Long Term Keys”.

3.1.2. Random MAC address
In order to prevent tracking, the specification

allows the change of the MAC address of the device
on a frequent basis. Only a paired device is able to
resolve the current MAC.

3.1.3. Whitelisting
It is possible to create a whitelist of accepted

devices' MAC addresses.

3.2. BLE security - practice

A significant amount of devices do not implement
the abovementioned security features. For many
device's usage scenarios (e.g. cash registers,
devices with remote sharing feature, managing
a “fleet” of beacons) it is not possible to carry out
the pairing procedure in a secure environment.
Some vendors do not associate any significant risk
with the possibility of intercepting the
transmission, and so they accept it. Others struggle
to comply with various requirements: usability,
multiple users or devices, cloud backup etc. The
Bluetooth security features are handled by an
operating system, and the mobile application does
not have full control over this process. It is not easy
to share access or to transfer it to another device.
This is why these developers have decided to create
their own security mechanisms on top of the
unencrypted Bluetooth LE link, using the GATT
read/write/notify requests. The most common
features include secure authentication (mostly
following challenge-response scheme), and data
encryption. Usually, only hardware supported
algorithm - AES - is used, in combination with their
own proprietary protocols.

Controller (firmware)

Link layer

Physical layer

Host (OS)

Host Card Interface

L2CAP

SMP ATT

GATT

U
N

E
N

C
R
Y

P
T

E
D

GATTacking Bluetooth Smart devices

 6

With the exception of smartphones and
smartwatches, MAC randomization is currently not
very widely adopted. And even if the device
declares “random” MAC type, it often does not
switch it on a regular basis. Randomization can also
cause problems with the whitelisting
implementation, which is also uncommon.

4. POSSIBLE ATTACKS

4.1. Attacks on advertisements

A mobile application that interprets
advertisements broadcasted by a device can be
attacked by advertisement spoofing.

Most battery-powered devices optimize

advertising intervals in order to minimize their
power consumption. In attack scenarios that
include “jamming” the original device, an attacker
may abuse quality by broadcasting advertisements
with the minimum possible intervals - much more
frequently than the original device. As described in
LINK 2.2, the mobile application will interpret the
first received advertisement - and in this case it
will most probably be the spoofed one.

Additionally, as most devices do not broadcast

advertisements during active connection, by
maintaining the connection with the original
device, it is possible to prevent it from
broadcasting.

Advertisement spoofing is made possible using the

newly introduced tool’s features to record all
broadcasted packets, and then to advertise them
with configurable (by default minimal) interval.
Whenever possible, it simultaneously maintains
a connection to original device.

The simplest possible attack is Denial of Service.

In order to successfully execute it, all that is
necessary is to advertise the “cloned” device,
without even setting up corresponding services. The
victim's mobile application will try to connect to it,
and not being able to access the needed device
functions, and will start scanning for
advertisements once again. The attack is even more
efficient with the cloned services set, but without
forwarding the requests to the original device. In
such a case, the victim's mobile application stays
connected longer to the cloned device before it
tries to re-connect.

4.1.1. Example vulnerabilities

Home automation Denial of Service
Example: home automation mobile application

had its status to associated connected devices
(lightbulbs, smart plugs etc.) interrupted via
advertisement packets. By spoofing the device
state in the advertisement packets - e.g.
advertising its status as “off” while in fact device
was “on” - it was possible to block the application’s
functionality. In effect, the attacked user was
unable to control the device using the mobile
application.

For this application, the advertisement signal had
to be broadcasted from a matching MAC address of
the attacked device, as the mobile application
stored specific devices by their MACs. Therefore,
the attack involved cloning the MAC address of the
attacked device.

Anti-theft proximity
Here is an example of the anti-theft functionality

of a mobile application serving a luggage locking
device, which depended on the availability of
specific advertisement packets broadcasted by the
device.

The attack scenario relied on simply spoofing
advertisement packets broadcasted by the device,
using its MAC address. The anti-theft mobile
application did not notice that the advertisements
were spoofed, and as a result it was possible to
“compromise” the luggage which was thought to be
protected.

Beacon abuse
Here is an example of a mobile application that

awarded users with loyalty points while visiting
specific places. After collecting a certain amount of
points, it was possible to exchange them for free
services. The visits were confirmed automatically
by the mobile application after receiving specific
iBeacon data, broadcasted by the beacon device
which was located onsite.

By simply spoofing the iBeacon data, it was
possible to obtain points without going to actual
location.

In this case, the attack could be simplified to
repeating the HTTP request sent to the server-side
API by mobile application during the process. The
iBeacon UUID, Major and Minor specific numbers
were sent among request parameters:

GATTacking Bluetooth Smart devices

 7

The GPS position sent among parameters of this
request could also be easily spoofed, and therefore
should not be used as a reliable form of protection.

The availability of beacon-mapping sites (for

example http://wikibeacon.org/map), which allow
for locating beacon signals in a specific location,
may make the attack even easier to invoke
remotely.

4.1.2. Attack countermeasures
In order to prevent advertisement abuse, beacon

vendors introduced “shuffling” (also called
“encrypting”) and signing options for the
broadcasted values. The advertised packets change
their values with predefined frequency, and the
value is possible to “decode” only using the
vendor's mobile application. However, such
mechanisms have to overcome several limitations -
on both the hardware and software side, as well as
compromise for offline usage requirements. As
vendors guard the “shuffling” algorithm’s technical
details in the way of top-secret intellectual
property, it may raise concerns whether the
mechanism was properly reviewed by a professional
cryptographer.

Depending on the level of risk, the ideal solution
would be to not rely on received advertisement
packets for critical functionality.

4.2. Passive Interception

Unencrypted transmission can be intercepted by
a passive eavesdropper. Bluetooth interception
does not require sophisticated nor expensive
hardware any more. There are several affordable
hardware options which help to accomplish this task,
including open-sourced Ubertooth by Great Scott
Gadgets [7].

For the purpose of this research, a simple USB
dongle based on the nRF51822 Nordic BLE module
was used. At the time of this writing, it was
available for $29.95 on the producer's website [8].

The device comes with software which feeds the
sniffed packets to the Wireshark network analyzer.

Interception of transmitted data is also possible by
active attack, using the newly introduced tool.

4.2.1. Example vulnerabilities

 Smart finder
An example “smart finder” device implemented

authentication in a form of a static 6-digit password
sent from the mobile application to the device in
cleartext form characteristic write. A screendump
below presents the password (‘123456’) intercepted
using the GATTacker tool:

GATTacking Bluetooth Smart devices

 8

 Beacon management
Beacon devices are usually managed via static

password. Each device has its own individual
password configured, which is delivered to mobile
application via the server-side API. Next, in most
cases the password is sent in a clear-text form to
device.
 OTP authentication token
A “One Time Password” demo token device was

examined, which offered mobile application
authentication functionality by automatic
transmission of the 6-digit indication from the
device via Bluetooth LE.

The transmission between the device and the
mobile application was not encrypted, and possible
to intercept passively. Below is a clear-text token
value as seen in passively intercepted packets
decoded in the Wireshark network analyzer:

4.3. Active interception

Active interception of unencrypted Bluetooth
connection is possible when an attacker invokes
connections with the device and the mobile
application, and relays the messages between them.
The devices are led to interpret that they are
talking directly to one another, while in fact the
transmission is controlled by the attacker. Such an
attack is commonly known as “Man in the middle”
(MiTM). In such scenarios the attacker can wiretap,
alter or inject data into the transmission.

A “proof of concept” of the active attack was
implemented in the presented tool. It “clones” the
original device for the victim's mobile application.
Using the before mentioned strategy (keeping the
connection with the original device, and advertising
more frequently), it ensures the victim connects to

GATTacking Bluetooth Smart devices

 9

it instead of the device. Next, it can forward and
tamper exchanged data, acting as an intercepting
“proxy”.

While cloning the MAC address of the original
device it is important to “clone” the device
services and characteristics along with the exact
matching handle numbers. Otherwise, it will not
match the mobile OS GATT cache, and the mobile
application will not be able to properly
communicate. See also chapter 2.5.

The ability to modify and inject the data
exchanged between devices can result in various
attack possibilities. The attacks depend on the form
of data and how it is being transferred, as well as
what reactions will be performed by the device or
mobile application upon receiving the specific data.

4.3.1. Example vulnerabilities

 Data manipulation
An exemplary Point of Sale device was connected

to a mobile application via unsecured Bluetooth
Smart link. The transaction data was properly
encrypted, but the device allowed for a few
unprotected commands (“display text” among
others). As a result, by switching the original text
sent by mobile application and calculating proper
CRC (based on algorithm from decompiled Android
application), it was possible to display any text on
the device during the payment process. The attack
did not allow to steal card data, however the
weakness could be abused in combination with
social-engineering the seller - e.g. by displaying
“transaction processed” message on the device
after providing invalid PIN.

GATTacking Bluetooth Smart devices

 10

Command injection
For example, a tested car unlocking device

implemented its own challenge-response
authentication, followed by unencrypted commands
and responses exchanged with the mobile
application in such authenticated session.

Without altering the authentication process,
a “Man-in-the-Midlle” attacker was able to
intercept the authenticated session. Next, they
actively discarded the original command sent by
the mobile application, and instead summoned
other ones. The available commands included i.a.
overwriting current authentication keys, which
could result in taking full control of the affected
device.

Additionally, the mobile application service in the
background automatically performed authentication
in the event of detecting a nearby in-car device,
regardless if the proximity auto-unlock feature was
on or off. Such behavior makes it easier to attack
an unsuspecting victim who is away from device, by
simulating the presence of the original device and
forwarding packets remotely to it.

Replay
On the contrary to the abovementioned car

unlocking device, one example of a smart lock
communication protocol did involve encrypting of
all the authenticated commands. However, the
mechanism did not include protection against
replay of encrypted packets. During the challenge-
response authentication process, every time the
mobile application calculated the same session
encryption key in response to a given challenge
value.

During the first step of the attack, the intruder
could wiretap the challenge-response
authentication process and thereafter encrypted
communication. Next, during the authentication
process, by posing as the original device, the
attacker could serve to the mobile application
a previously recorded challenge value. Thus the
application would calculate the session encryption
key matching the wiretapped one. After this point,
the attacker could replay the recorded encrypted
device responses, and the mobile application would
properly decrypt them using the same key.

It the case of the smart lock, the intruder was
able to mislead the user, who invoked the “latch”
command, into thinking that the lock was properly
latched, when in fact the commands invoked by the
user were not delivered to the actual device. The
unsuspecting user left the premises convinced the
door was locked, while the attacker could enter.

4.3.2. Attack countermeasures
The transmission should be properly encrypted -

using Bluetooth link-layer security features, or

a higher-layer proprietary protocol. For proper
implementation of the encryption see also chapter
4.5.3.

Vulnerabilities in proprietary protocols should be
prevented by way of proper design and independent
evaluation.

4.4. Attacks on exposed services

If the device offers services possible to access
without authentication, they may be abused in
various ways by an attacker able to approach the
affected device.

4.4.1. Example vulnerabilities

Module's AT interface
A Bluetooth module used in an exemplary device

implemented a vendor's service, which allowed
direct connection to a module's serial AT interface
using GATT write/notify requests to predefined
characteristics. The interface was not protected. As
a result, an unauthenticated attacker could freely
change the Bluetooth module’s configuration.
According to manufacturer's documentation, it
could disrupt the device’s functionality, and
probably also damage it physically.

A dedicated module was implemented in the
GATTacker tool, and allowed identification of such
service in affected devices, detect whether the
service is locked, and invoke AT commands to it.

Brute-force

One exemplary device did not implement its soft-
lock feature in response to brute-force password
guessing. As a result, an attacker could guess the 6-
digit password that was protecting access to device
for a finite amount of time.

 Improper random number generator
Some modules embedded in devices do not

provide built-in random number generators. In
order to generate random data, developers may use
available inputs, which are not sufficiently random.
An example solution was to use the current
temperature input multiplied by the device's serial
number [9].

In many cases the level of randomness has
a critical impact on security. For example, in
a challenge-response authentication process, where
the device generates a random challenge and the
mobile application responds with a password-
encrypted response. If the challenge value was
predictable, an active MITM attacker could emulate
the device and trick the mobile application to
calculate the proper response for the given
challenge. Next, the attacker could use the
response to authenticate the actual device.

GATTacking Bluetooth Smart devices

 11

Excessive services available without
authentication

The device may implement excessive services,
which are not properly protected. As a result, the
unauthenticated attacker may access data or
configuration options not intended to be publicly
available.

Fuzzing

Sending improper values to characteristics may
cause abnormal device behavior.

Logic flaws

Depending on the device, it may be possible to
abuse various scenarios, e.g. authentication or
access control bypass. An example device stored
several authentication keys in the internal module’s
register. During authentication, the mobile
application indicated which key is used. An attacker
could use out of scope key indicator values, which -
depending on device’s logic - could be initialized
with predictable values. In this way, the attacker
was able to bypass authentication.

4.4.2. Attack countermeasures
Definitely inspect all the exposed services before

shipping the device to production. Not only restrict
access according to the principle of least privilege,
but also carefully validate all inputs and prevent
logic flaws.

For some devices, a time-limited provisioning may
be an acceptable way to prevent misuse of exposed
services. For example, devices may expose the
configuration services only for a limited time after
powering-up or pressing dedicated hardware button.

4.5. Attacks on pairing

The device may implement protected
characteristics, which require the connection to be
encrypted. Before reading or writing to such
a characteristic, devices need to undergo a pairing
process and calculate the Long Term Keys which
will protect consecutive connections.

Depending on how the devices are paired, it may
still be possible to attack such a connection by
abusing weaknesses in the implementation and
social-engineering users.

4.5.1. “Just Works”
Probably most popular pairing method - “Just

Works” - often does not require invoking any action
on the device in order to perform a new pairing. In
such case, the attacker can create a new bond with
a device by simply approaching it and trying to
access the protected characteristic. While staying
connected to original device, the attacker can then
create its “clone”, and trick the victim's mobile

application to connect. If the mobile application
does not verify the MAC address of the device, the
attacker can use its own MAC address for this
purpose. The mobile OS checks the current pairing
status based on the MAC address of the other
device, and in this case the victim's smartphone will
not find any pairing information with the attacker's
MAC. In effect, it will connect to it without
encryption. The attacker can also expose the
cloned services without protection, as he does not
need to enforce bonding with the victim.

If the attacked mobile application verifies the
MAC address of the device, the attacker has to
clone it. As a result, the mobile OS will not
establish the encrypted connection with the
attacker, because the attacker does not know the
Long Term Key used for the encryption. In most
cases, the mobile application will not display any
warning regarding a possible MITM attack, and the
users will notice only that they cannot connect to
their device. In effect, the disoriented user will
probably discard pairing their smartphone, and
start the procedure again. Unfortunately, this time
they will pair with the attacker, who - from now on
- will be able to intercept the traffic.

4.5.2. PIN-protected pairing
With PIN-protected pairing in place, the attacker

will not be able to automatically pair with the
device. However, they can trick the user into re-
initiation of the pairing. As with the situation
described above, he can clone the device along
with its MAC address. The mobile OS will not be
able to establish a secure connection with such
a device as the keys will not match. And the user
will probably try to remove the pairing and enforce
it again. After the user invalidates the pairing, the
attacker can switch off their active “cloned” device,
and allow the user to continue pairing with the
original device. Instead of active interception, they
can passively sniff the pairing process. Next, they
can crack the PIN and recover the Long Term Key
using the Crackle tool [6].

Knowing the Long Term Key, they will be able to
proceed with active interception.

4.5.3. Attack countermeasures
The strongest available pairing method should be

used, and all the characteristics protected.
Allow pairing initiation only after performing the

required action on device - e.g. push a dedicated
‘factory reset’ button.

The mobile application should detect attempts of
active interception, and appropriately warn the
user. Such functionality may be partly served by
mobile OS.

GATTacking Bluetooth Smart devices

 12

4.6. Whitelisting bypass

Whitelist filtering is based on the MAC address of
the accepted device. An attacker may bypass the
filtering by changing their MAC address to the
whitelisted one.

4.7. Privacy considerations

The publicly available devices’s advertisements
can be collected and matched against specific
individual [11]. Using introduced tool, the collected
data can be expanded on services and
characteristic values possible to read from the
device.

5. ATTACK CONDITIONS,

RISK CONSIDERATION

5.1. Physical range

As the Bluetooth operating range is limited, in
order to perform a “Man-in-the-middle” attack, an
attacker has to be close to both of the attacked
devices. The devices do not need to be close to
each other, as the attacker can relay packets
remotely via an Internet connection. Modular
design of the GATTacker tool allows the exploit of
such an attack scenario.

Some mobile applications have proximity features
which, when improperly implemented, may be
abused by approaching the smartphone running the
affected application away from the device and its
original location.

Also, devices may have vulnerabilities which are
possible to exploit directly, without the need to
interact with mobile application or intercept the
transmission. In such a case, the attacker needs to
approach only the vulnerable device.

Mobile malware may attack the BLE devices in
range of the infected smartphone. Such malware is
operated remotely, and the attack is theoretically
possible on a mass-scale.

5.2. Risk

The risk depends on many factors, including the
device, its usage and targeted individual.

For example, the current pulse count from
a smart-wristband of a regular person is not of
much interest to other people. However, the
situation may change dramatically if the person is
a highly ranked official, and an adversary would
like to know their pulse during an important
negotiation. Or - the wristband pulse indication is

used as a biometric authentication in a banking
application.

6.THE NEW TOOL

6.1. Architecture

The tool consists of three main modules:

1. “Central” connecting to original device.

2. “Peripheral” - device emulator.

3. Data interception and manipulation.

The “central” listens for advertisements, scans

the device’s services for cloning in “peripheral”,
and forwards the read/write/notification messages
exchanged during active attack.

The “peripheral” module loads device
specification (advertisement, services,
characteristics, descriptors) collected by “central”
module, and acts as the device “emulator”. It
allows to “clone” MAC address of the original
device, what is necessary to successfully intercept
communication of many mobile applications, which
verify the MAC. In such case, the attribute’s handle
numbers, by which the devices exchange GATT data,
must match exactly the original device’s ones.
Otherwise the mobile OS’s GATT cache will not
match and prevent the communication.

Data interception and manipulation is possible
using hook functions configured via JSON-formatted
device . A few example hook functions sources are
included in the tool.

The modules can be run on the same system (with
at least two Bluetooth 4 interfaces), or on separate
ones. They connect to each other using websockets.
Thanks to this approach, it is possible to chain the
communication – for example to manipulate the BLE
requests as JSON text in a web intercepting proxy.
It is also possible to invoke remote attacks – where
the “central” module is placed near the attacked
device, and “peripheral” module close to the
victim’s smartphone – which can be away from the
original device’s location.

6.2. Implementation

The tool is written in JavaScript for Node.js
framework, using noble [12] and bleno [13] BLE
modules by Sandeep Mistry. A bundled version is
available as an npm package [14]. The open source
code is available on Github [15] under an MIT
license.

GATTacking Bluetooth Smart devices

 13

6.3. Necessary hardware

Each module (“central”, “peripheral”) requires
a Bluetooth Low Energy adapter. The most popular,
CSR 8510-based USB dongle is available for about
$10, and is confirmed with stable MAC address
changing using the Bluez bdaddr tool.

The software is available for Linux systems, and
was written in node.js. It was tested on Raspberry
Pi.

6.4. Device communication analysis

6.4.1. Mobile application analysis
Mobile application decompilation and code

analysis can be very helpful for understanding the
communication with device. Application debug log
may additionally speed-up the process.

6.4.2. HCI dump
A passive analysis of data exchanged between

mobile application and peripheral device can also
be performed using “Bluetooth HCI snoop log”
Developer Options feature in Android phone. It
stores the Host Card Interface dump file in
/sdcard/btsnoop_hci.log. The file can later be
inspected using Wireshark packet analyzer.

7. REFERENCES

[1] "Generic Access Profile assigned numbers,"

Bluetooth SIG, [Online]. Available:
https://www.bluetooth.org/en-
us/specification/assigned-numbers/generic-access-
profile.

[2] „Bluetooth GATT specification,” Bluetooth SIG,
[Online]. Available:
https://www.bluetooth.com/specifications/generic
-attributes-overview.

[3] „Bluetooth GATT Services specification,”
Bluetooth SIG, [Online]. Available:
https://developer.bluetooth.org/gatt/services/Pag
es/ServicesHome.aspx.

[4] „GATT descriptors specification,” Bluetooth
SIG, [Online]. Available:
https://developer.bluetooth.org/gatt/descriptors/
Pages/DescriptorsHomePage.aspx.

[5] „Bluetooth Smart Security,” Bluetooth SIG,
[Online]. Available:
https://developer.bluetooth.org/TechnologyOvervi
ew/Pages/LE-Security.aspx.

[6] M. Ryan, „Crackle - cracking Bluetooth Smart
encryption,” [Online]. Available:
http://lacklustre.net/projects/crackle/.

[7] „Ubertooth One,” Great Scott Gadgets,
[Online]. Available:
https://greatscottgadgets.com/ubertoothone/.

[8] „Bluefruit LE sniffer,” Adafruit, [Online].
Available:
https://www.adafruit.com/product/2269.

[9] „Bluetooth Smart community forums: random
function,” BlueGiga, [Online]. Available:
https://bluegiga.zendesk.com/entries/59399217-
Random-function.

[10] „Web Bluetooth,” [Online]. Available:
http://webbluetoothcg.github.io/web-bluetooth.

[11] Mohamed Imran Jameel, Jeffrey Dungen,
Low-Power Wireless Advertising Software Library
for Distributed M2M and Contextual IoT
http://reelyactive.com/science/reelyActive-
IoT2015.pdf

[12] Sandeep Mistry, A Node.js BLE (Bluetooth Low
Energy) central module
https://github.com/sandeepmistry/noble

[13] Sandeep Mistry, A Node.js module for
implementing BLE (Bluetooth Low Energy)
peripherals
https://github.com/sandeepmistry/bleno

[14] https://www.npmjs.com/package/gattacker,
[15] https://github.com/securing/gattacker

GATTacking Bluetooth Smart devices

 1

www.securing.pl

	GATTacking
	Bluetooth Smart devices
	Sławomir Jasek, SecuRing (slawomir.jasek@securing.pl)
	Table of Contents
	Abstract 2
	1. Bluetooth Low Energy 2
	1.1. BLE devices 2
	2. BLE COMMUNICATION 2
	2.1. Broadcast advertisement 2
	2.2. Listening for advertisements 3
	2.3. Connection to device 3
	2.4. GATT data structure: services, characteristics, descriptors 3
	2.5. Browsing device’s services 4
	2.6. Reading, writing and notifications 4
	3. BLE SECURITY 5
	3.1. BLE security - specification 5
	3.1.1. Encryption 5
	3.1.2. Random MAC address 5
	3.1.3. Whitelisting 5
	3.2. BLE security - practice 5
	4. POSSIBLE ATTACKS 6
	4.1. Attacks on advertisements 6
	4.1.1. Example vulnerabilities 6
	4.1.2. Attack countermeasures 7
	4.2. Passive Interception 7
	4.2.1. Example vulnerabilities 7
	4.3. Active interception 8
	4.3.1. Example vulnerabilities 9
	4.3.2. Attack countermeasures 10
	4.4. Attacks on exposed services 10
	4.4.1. Example vulnerabilities 10
	4.4.2. Attack countermeasures 11
	4.5. Attacks on pairing 11
	4.5.1. “Just Works” 11
	4.5.2. PIN-protected pairing 11
	4.5.3. Attack countermeasures 11
	4.6. Whitelisting bypass 12
	4.7. Privacy considerations 12
	5. ATTACK CONDITIONS, RISK CONSIDERATION 12
	5.1. Physical range 12
	5.2. Risk 12
	6.THE NEW TOOL 12
	6.1. Architecture 12
	6.2. Implementation 12
	6.3. Necessary hardware 13
	6.4. Device communication analysis 13
	6.4.1. Mobile application analysis 13
	6.4.2. HCI dump 13
	7. REFERENCES 13
	Abstract
	1. Bluetooth Low Energy
	1.1. BLE devices

	2. BLE COMMUNICATION
	2.1. Broadcast advertisement
	2.2. Listening for advertisements
	2.3. Connection to device
	2.4. GATT data structure: services, characteristics, descriptors
	2.5. Browsing device’s services
	2.6. Reading, writing and notifications

	3. BLE SECURITY
	3.1. BLE security - specification

	3.1.1. Encryption
	3.1.2. Random MAC address
	3.1.3. Whitelisting
	3.2. BLE security - practice
	4. POSSIBLE ATTACKS
	4.1. Attacks on advertisements

	4.1.1. Example vulnerabilities
	Anti-theft proximity
	Beacon abuse
	4.1.2. Attack countermeasures
	4.2. Passive Interception

	4.2.1. Example vulnerabilities
	Smart finder
	Beacon management
	OTP authentication token
	4.3. Active interception

	4.3.1. Example vulnerabilities
	Data manipulation
	Command injection
	Replay
	4.3.2. Attack countermeasures
	4.4. Attacks on exposed services

	4.4.1. Example vulnerabilities
	Module's AT interface
	Brute-force
	Improper random number generator
	Excessive services available without authentication
	Fuzzing
	Logic flaws
	4.4.2. Attack countermeasures
	4.5. Attacks on pairing

	4.5.1. “Just Works”
	4.5.2. PIN-protected pairing
	4.5.3. Attack countermeasures
	4.6. Whitelisting bypass
	4.7. Privacy considerations
	5. ATTACK CONDITIONS, RISK CONSIDERATION
	5.1. Physical range
	5.2. Risk

	6.THE NEW TOOL
	6.1. Architecture
	6.2. Implementation
	6.3. Necessary hardware
	6.4. Device communication analysis

	6.4.1. Mobile application analysis
	6.4.2. HCI dump
	7. REFERENCES

	www.securing.pl

