

Web Application Firewalls:
Attacking detection logic

mechanisms

Vladimir Ivanov
@httpsonly

/whoam/i

MSc Information Security (merit) - RHUL (UK)

Web App penetration tester at Positive Technologies (ptsecurity.com)

http://ptsecurity.com

Agenda
1. Introduction

2. Detection logic in WAF

3. METHOD I: Syntax bypass

4. METHOD II: Logical bypass

5. METHOD III: Unexpected by primary logic bypass

6. Takeaways

Motivation
The Standoff:

1. Attackers. Mix of various techniques, rarely understand root cause.

2. Defenders. WAFs protect against automative testing, every vendor
implements additional functionality.

Result: No careful whitebox analysis

WAF workflow example
Stage 1: Parse HTTP(s) packet from client

Stage 2: Chose rule set depending on type of
incoming parameter

Stage 3: Normalise data

Stage 4: Apply detection logic

 Stage 5: Make detection decision

WAF workflow:
Detection logic

OWASP CRS 2

OWASP CRS 3dev OWASP CRS 3rc

PHPIDS
Comodo rules

QuickDefenceWaf

Vultureproject

Waf.red

ShadowD

etc…

Tokenizer

libinjection

Reputation

repsheet

Score
Builder

NAXSI

Anomaly
detection

HMM

Regular expression…
…is a sequence of characters that define a search pattern

(?i)(<script[^>]*>.*?)
1 2 3

Sources
500+ regular expressions:

• OWASP CRS2 (modsecurity)

• OWASP CRS3dev (modsecurity)

• OWASP CRS3rc1 (modsecurity)

• PHPIDS

• Comodo WAF

• QuickDefense

43.3%

43.8%

12.8%
XSS

SQL

Other: LFI/RFI,
PHP, OS exec, etc

Results

300+ potential bypasses

Most “vulnerable”: PHPIDS (E = 1,15)

Less “vulnerable”: Comodo WAF (E = 0,32)

Most “exploitable”: OWASP CRS3-rc (E = 0,89)

E = Potential bypasses / Total rules

METHOD I: Syntax bypass
Of regular expressions

Enumerate all possible and invent all impossible mistakes

What’s wrong with regexp?
Level: Easy

!

What’s wrong with regexp?
Level: Easy

(?i:) 1. atTacKpAyloAd

!

What’s wrong with regexp?
Level: Easy

(?i:)

^ $

1. atTacKpAyloAd

2. attackpayload

!

What’s wrong with regexp?
Level: Easy

(?i:)

^ $

{1,3}

1. atTacKpAyloAd

2. attackpayload

3. attackpayloadattackpayloadattackpayloadattackpa…

!

What’s wrong with regexp?
Level: Medium

ReDoS 1.

What’s wrong with regexp?
Level: Medium

ReDoS

Repetitions: + *

1.

2.

What’s wrong with regexp?
Level: Medium

ReDoS

Repetitions: + *

Blacklisting wildcards in a set

1.

2.

3.

What’s wrong with regexp?
Level: Advanced

Non-standard diapasons 1.

POSIX character classes 2.

Operators 3.

Backlinks, wildcards 4.

Regular expressions:
Security cheatsheet

2 parts: theoretical "whitepaper" and practical "code".

Hack regular expressions with regular expressions!

+ SAST: Assists with whitebox analysis of regular expressions in source
code of your projects

+ Low false positives: Focused on finding high severity security issues

+ Opensource on Github!

- Does not dynamically analyze lexis (yet).

https://github.com/attackercan/
REGEXP-SECURITY-CHEATSHEET

Target audience

Not only WAFs use Reg Exp Detection Logic:

• XSS Auditors

• Backend parsers

• Front-end analyzers

Developers, security auditors, bughunters

DEMO

Regex Security Cheatsheet DEMO

^(?:ht|f)tps?://(.*)$

Comodo WAF:
Att4ck is bl0cked!

(\bunion[\s*\/]{1,100}?\bselect\b)

QuickDefense WAF:
Attackers are lazy enough

JavaScript checker in real-life web app

JavaScript checker in real-life web app

We can make ReDoS on client-side by supplying specially crafted email as input.

JavaScript checker in real-life web app

We can make ReDoS on client-side by supplying specially crafted email as input.

But what if backend also has same regex for checking?

JavaScript checker in real-life web app

We can make ReDoS on client-side by supplying specially crafted email as input.

But what if backend also has same regex for checking?

EdgeHTML.dll

EdgeHTML.dll

IE+Edge XSS
Auditor

EdgeHTML.dll

IE+Edge XSS
Auditor
Result:
blocked

EdgeHTML.dll

Regexp
bypass.

Result: alert!

Thx @ahack_ru for payload

(?:div|like|between|and|not)\s+\w)

(?:div|like|between|and|not)\s+\w)

https://github.com/PHPIDS/PHPIDS/commit/667e63af93e8fd2ee4df99dd98cb41acdf480906

What’s next?
1. Identify WAF vendor and version using “signature” vulnerabilities.

What’s next?
1. Identify WAF vendor and version using “signature” vulnerabilities.

2. Reveal and apply bypasses depending on a situation

What’s next?
1. Identify WAF vendor and version using “signature” vulnerabilities.

2. Reveal and apply bypasses depending on a situation

3. Craft string which bypasses all regexp-based rules.

ModSecurity SQLi Bypass
Basic SQLi is given:

All SQLi Regexp bypass:

​-1'OR#foo

id=IF#foo

(ASCII#foo

((SELECT-version()/1.))<250,1,0) #

What’s next?
1. Identify WAF vendor and version using “signature” vulnerabilities.

2. Reveal and apply bypasses depending on a situation

3. Craft string which bypasses all regexp-based rules.

4. …

What’s next?
1. Identify WAF vendor and version using “signature” vulnerabilities.

2. Reveal and apply bypasses depending on a situation

3. Craft string which bypasses all regexp-based rules.

4. …

5. Dig deeper!

METHOD II: Logical bypass
Manual review analysis

+Non-standard findings
- Subjective

Blacklists fail #1

https://github.com/netty/netty/issues/5535

Blacklists fail #2, 3, 4, …

NAXSI 0x 0b10101

b’10101’

ModSecurity 2.2.9

XSS Rule 973300

<(a|abbr|acronym|... <non_existing_tag

onmouseover=alert(1)>hover this!

ModSecurity 3RC-1

OS-Commands.data

adduser useradd

ipconfig ifconfig

copy, move cp, mv

Researches success

@mazen160

Researches success

@mazen160

METHOD III: Unexpected
by primary logic bypass

XSS Fuzzer

XSS Fuzzer

libinjection

libinjection

https://github.com/attackercan/
CPP-SQL-FUZZER

• Receive SQL query as input
• Fuzz it (mysql.h, SQLAPI.h, ODBC?)
• Record every query except syntax errors
• Parse output!

• Current MySQL.h perfomance: 21M symbols in <1 hour;
 speed = 9k queries per second (QPS).
• Up to 1.6M QPS!

SQL fuzzer

SQL fuzzer: Examples

SQL Fuzzer: Results

Contribution

• Regexp security cheatsheet + SAST

• Blacklist improvement

• SQL Fuzzer: Classified tables

https://github.com/attackercan

TODO

1. Update Regular Expression Security Cheatsheet

2. Create regular expression Dynamic analysis tool

3. “Clever fuzzing” + scalable (MySQL allows 1.6M QPS)

Questions?

Thank you

Arseniy Sharoglazov <mohemiv@gmail.com>
(Contribution to Regex Security Cheatsheet)

Dmitry Serebryannikov @dsrbr
(Contribution to SQL fuzzer)

Andrey Evlanin @xpathmaster

All @ptsecurity team ;)

mailto:mohemiv@gmail.com

