
The beast within –
Evading dynamic malware analysis using

Microsoft COM

Ralf Hund

Credits: Martin Goll, Emre Güler, Andreas Maaß

Black Hat USA 2016

Outline

• Introduction

 Dynamic Malware Analysis

 Microsoft COM & Malware

• Case Studies

 Self-crafted COM tests

 Analyzed with various sandboxes

• Dynamic Analysis of COM Malware

 How do sandboxes work and why is there a problem

• Alternative Approach

2

Dynamic Malware Analysis

Cyber Threat Trends

The Problem

0

50

100

150

200

250

300

350

400

450

500

2011 2012 2013 2014 2015

Malware Variants (Millions)

https://www.av-test.org/de/statistiken/malware

Exponential Volume Growth
 2015: >450K new variants / day

 2015: >150M total

Increasing Complexity
 More evasive malware

 Targeted attacks

 Advanced persistent threats (APT)

Signature based approaches have shortcomings given quantity and quality
of today’s malware.

Dynamic malware analysis is widely accepted solution to cope with this
problem.

4

Sandboxing / Behavior Based Threat Detection

analysis environment

detonate
for analysis

monitor
behavior

block
or allow
accessdetect if

malicious
?

Sandbox

Unknown files and URLs (e.g. Word, PDF, Installer)
from arbitrary sources (e.g. Webbrowsing, Email, Download, USB device)

Comprehensive Threat Detection with Sandboxing

5

Microsoft COM

Microsoft Component Object Model (COM)

• Binary interface standard for software
components

• Standard Win32 API provides procedural „C“ interface

 Maybe use C++?

 C++ poses many problems with binary interface

• COM is the solution

 Provides binary standard C++ lacks

 Language neutral: Can be used in C++, VB, C#, etc.

• COM objects provide interfaces and methods

 Example: IWebBrowser2::Navigate
7

COM Today

• Still used in many current technologies

 DirectX

 Windows Scripting Host (VBScript, JScript, VBA)

 Microsoft Office

 PowerShell

 .NET / WinRT

• Popular interfaces for malware are:

 Internet Explorer: Download files in background

 Shell Link: Create, delete, modify, etc. files

 WBEM (WMI): Query for installed AV products, etc.

 Firewall Manager: Create firewall exceptions

 Task Scheduler: Create new Windows tasks

8

COM Malware Statistics

• Some statistics from internal sharing programs:

 ~20 % of all samples use COM interface

 Mix of executables, MS Office files, etc.
• Executables ~10 %

• MS Office files ~90 %

• Tons of COM interfaces exist in Windows

 Create files

 Access the registry

 Download data from remote server

 …

9

Case Studies

Case Studies Motivation

• Let‘s see how well sandboxes perform with COM
samples…

• 5 different self-crafted test programs

• Inspired by typical malware behavior

 Persistence

 C&C communication

 Evasion

 …

11

COM Test Programs

12

1. Autostart
 Create autostart entry using CLSID_ShellLink interface

2. Browser
 Receives C&C commands using CLSID_InternetExplorer interface

3. Firewall
 Disables Windows Firewall using CLSID_NetFwPolicy2 interface

4. Filesystem
 Copy file to Windows folder using CLSID_FileOperation interface

5. New Process
 Create new process using CLSID_WbemLocator interface (WMI)

Case Study Results

13

• Submitted all of these tests to four different sandboxes

 Open source sandbox

 Public version of a commercial sandbox

 Two non-public commercial sandboxes

Detection results

#1 Autostart #2 Browser #3 Firewall #4 Filesystem #5 New Process

SB #1

SB #2 !

SB #3 ! !

SB #4 !

worst case

Observation: Noise

14

• Sandboxes that detect something also log a noise

• SB #2

 Wrong IOCs (host names, files, etc.)

• SB #3

 False alerts: Anti-reverse engineering, suspicious imports, …

• SB #4

 Report contains 136 events (files, process, hosts, etc.)

 32 are actually test behavior almost 80% is noise

 „Opens TCP port“, „code injection“, „tampers with explorer“, …

Dynamic Analysis of COM Malware

Excursion: Classic Sandbox Classification

• Approach #1: Hooking based

 Install hooks at various memory locations

 Quite fast, close to native performance

 Can be detected/evaded

• Approach #2: Emulation based

 Executes malware in full system emulator

 Can theoretically see every machine instruction executed

 Very slow (a lot of overhead only for CPU emulation)

• Approach #3: Transition based

 See later …

16

Design Goals

17

1. No evasion: All behavior must be reported

2. No noise: Reports must not be inflated with noise

3. Stealthiness: Do not leave (a big) footprint in the system

4. Stability: Do not crash due to buggy hooks

5. Performance: Do not slow down the system too much

Goals 3, 4 & 5 can only be achieved by limiting the amount
of hooks

Challenge #1: Where to Place Hooks?

shell32.dlladvapi32.dll

malware.exe

kernel32.dll

CreateProcessA CreateProcessW

CreateProcessInternalW

ntdll.dll

NtCreateProcess RtlCreateProcessParams

WinExec ShellExecuteExCreateProcessWithLogon CreateProcessAsUser

CreateProcessInternalW+0x5

ntoskrnl.exe

system service

… …

Hooks are implemented here
18

• Must filter out irrelevant hooked calls

• OS and apps generate unrelated calls as side-effect

• Is hooked call relevant or not?

• Image you hook inside Internet Explorer, MS Word, ...

• Not easy to solve …

Thread 1
(malware thread)

Challenge #2: Handling Noise

malware.exe

First layer API (kernel32.dll, …)

ntdll.dll

Thread 2
(OS internal thread)

malware.exe

First layer API (kernel32.dll, …)

ntdll.dll

19

Hook Engine Hook Engine

Challenge #3: Limited Visibility

malware.exe

First layer API (kernel32.dll, …)

ntdll.dll Hook EngineHook Engine

See too
little:

Calls do not
end in
NTDLL

See too much
(avalanche effect)

20

„Get current date“ „Download file“

COM Issue #1: Additional API Layer

COM provides yet another (inflated) API layer

1. Must filter out even more noise

2. Even more calls go unnoticed

3. Avalanche effect even worse

malware.exe

COM Interface 1

shell32.dlladvapi32.dll kernel32.dll

ntdll.dll

ntoskrnl.exe

COM Interface 2 COM Interface 3 COM Interface n…

21

COM Server ProcessMalware Process

COM Issue #2: RPC

• COM supports remote procedure calls (RPC)

• Method calls are executed in another process

malware.exe

COM Proxy Interface

Kernel

Win32 API

NTDLL

COM Implementation

Win32 API

NTDLL

Marshalling & RPC

Unmarshalling Marshalling

Unmarshalling

Creates new process (WMI)

22

COM Proxy Interface

This is
all we

see

0111

0101

RPC Madness

• Only marshalled data seen at NTDLL layer

 Which method is executed?

 What are the parameters?

• Interpretation needs internal knowledge of COM runtime

 Mostly non-documented information

 Lots of reversing necessary

 Microsoft is free to adjust and/or change runtime at any time

• Let‘s just monitor COM server processes then

 How to filter out COM server process noise?

 How to filter out COM calls from irrelevant processes?

23

Summary

• Don‘t want sandbox to be evaded with one COM call

• Don‘t want sandbox which cannot be evaded but
contains tons of noise

• Remember noise in SB #4?

 „Opens TCP port“ This is the Internet Explorer COM process

 „Code injection“ This is COM runtime doing RPC

 „Tampers explorer“ This is the CLSID_FileOperation interface

24

Alternative Approach

Malware

OS API

OS Kernel

Device Driver

Heap

Stack

Kernel Stack

1. Use VT MMU to partition memory

– Current module: executable

– Remaining memory: non-executable

2. Run malware in VM

– With bare metal performance

– Interrupts only on intermodular transition

3. Monitor is automatically invoked

– Read guest memory

– Readjust partitioning

– Continue execution

– Until return to calling malware

Intermodular Transition Monitoring (ITM)

Malware

OS API

OS Kernel

Device Driver

Heap

Stack

Kernel Stack

X

N

X

IWebBrowser2:Navigate (
url=„https://www.vmray.com“,
Flags=0x123,
TargetFrameName=„_blank“,
PostData=NULL,
Headers=„…“)

Guest Memory

Malware

OS API

OS Kernel

Device Driver

Heap

Stack

Kernel Stack

26

Challenges

• Need to parse a lot of information

 Interface and method names

 Parameters: Integers, strings, variants, byref, byvalue, …

• „Dynamic“ binding of COM interfaces

 Many different variations exist (QueryInterface, Invoke, …)

• Need to understand what each COM method does

• Lots of work but at least it‘s public and documented!

27

Summary

ITM fixes all disadvantages mentioned previously:

1. No noise filtering necessary

2. No missing first layer calls

3. No avalanche effect

4. No need for special handling of RPCs

28

Thank you for your attention!

Happy to answer any questions!

