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Abstract

Side channel attacks are typically used to break implemen-
tations of cryptography. Recently, side-channel attacks
are being discovered in more general settings that vio-
late user privacy. We build on this work by showing that
the FLUSH+RELOAD L3 cache side channel from Yuval
Yarom and Katrina Falkner [33] can be used to distin-
guish between inputs to non-cryptographic programs on
multi-user systems.

We describe how input-distinguishing attacks can be
discovered automatically (with human assistance) and we
present three concrete attacks. Our first attack is against
the Links command-line web browser. We show that an
attacker can determine which of the top 100 Wikipedia
pages the user visited (correct 94% of the time). Our sec-
ond attack is against the Poppler PDF rendering library.
We show that an attacker can determine which of a set
of 127 PDFs were rendered by Poppler (correct 98% of
the time). Finally, we show how an attacker can deter-
mine whether the TrueCrypt volume a user just mounted
contained a hidden volume or not (correct above 80% of
the time, but the attack only works on one of our two test
systems).

1 Introduction

Side channels are a well-known category of vulnerabili-
ties where an adversary is able to learn information about
their victim by observing implicit, rather than explicit,
channels of information. For example, information may
be unintentionally leaked out through radio signals, execu-
tion time, power usage, or through the state of a computer
processor’s memory cache.

Side channels are most commonly used to extract secret
keys from implementations of cryptography. For example,
Thomas Messerges et al. were able to extract the secret
RSA key from a smart card by looking at the amount of
power it uses [26]. More recently, Genkin et al. were able

to extract a secret RSA key just by listening to the sounds
a computer makes as it is decrypting data [14].

Side channel attacks are also being used to compromise
user privacy. For example, Liang Cai and Hao Chen have
shown that keystrokes (including typed PIN numbers)
can be reliably recovered from accelerometer data on
smartphones [9]. Shuo Chen et al. showed that observing
a web application’s behavior reveals information about
the user’s input. They gave real-world examples where
they could determine which medical conditions the user
was searching for, what their income range was, and how
they allocated their investment funds [11].

In this paper, we study additional ways of using side
channels to attack the user’s privacy. We show that the
generic L3 cache side channel called “FLUSH+RELOAD”
[33] can be applied in non-cryptography settings to mean-
ingfully violate confidentiality. We give three example
attacks, where each attack determines which of a set of
inputs the user passed to a program. Specifically, we
show how an attacker on a shared system can (1) deter-
mine which of the top 100 Wikipedia pages a user visited
in the Links web browser, (2) determine which of 127
PDF files a user passed to the pdftops command, and
(3) determine whether the TrueCrypt volume a user just
mounted was a hidden volume or not. We chose to attack
Links instead of a more popular web browser because
it was easier to automate and its codebase was smaller
and easier to become familiar with; we expect similar
attacks to work against the more-popular browsers. Our
attacks work across user accounts on a shared system; de-
termining whether they also work across virtual machine
boundaries is left for future work.

In addition to the three attacks, we also describe how
the process of discovering new attacks can be partially
automated.

The attacks were tested two different Intel processors:
a Core2 Duo P8700 (launched Q4 2008 [19]) and a Xeon
E3-1245 V2 (launched Q2 2012 [20]). Our attack tools
don’t work on AMD processors because their caches
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are non-inclusive [33], but Lipp et al. have shown that
FLUSH+RELOAD can be implemented on ARM proces-
sors with non-inclusive caches [24]. Making our attacks
work on AMD processors is left for future work.

The source code to our attack tools experimentation
framework is public, and we encourage you to try to
reproduce our experiments on your own computer. See
Appendix A for instructions to obtain the source code.

Our work is not the first to apply cache side channels
to compromise privacy. We are aware of at least four
other papers that use cache-based side-channel attacks to
compromise privacy [16, 34, 27, 24]. Section 7 describes
how our work fits in to the existing landscape of privacy-
compromising cache attacks.

In the next section, we summarize the
FLUSH+RELOAD side channel that all of our novel
attacks are based on. Section 3 describes how
FLUSH+RELOAD can be used to distinguish inputs and
how we partially automated the process of discovering
new attacks. Section 4 describes the software tools
the attacks and experiments are built from. Section 5
describes our experimental setup. The three attacks are
described and evaluated by experiment in Section 6.
Section 7 highlights other attacks that use side channels
to violate privacy and explains how our contributions fit
in with that work. Finally, we list some ideas for future
work in Section 8 and then conclude in Section 9.

2 The Flush+Reload Attack

The attacks we present use the FLUSH+RELOAD attack
by Yuval Yarom and Katrina Falkner [33]. The side chan-
nel was first described by Bangerter et al. [17] where
it was used on AES lookup tables to extract keys and
plaintext during encryption. Yarom and Falkner realized
the technique could be applied more generally to spy
on the code a process executes. It was given the name
“FLUSH+RELOAD” and has notably been used to break
GnuPG [33] and OpenSSL [5, 32].

In this section we give a brief explanation of the
FLUSH+RELOAD attack with enough detail to under-
stand our attacks. For full details, refer to Yarom and
Falkner [33].

FLUSH+RELOAD is a generic L3 (or last-level, in case
the system does not have an L3 cache) cache side-channel
attack. It takes advantage of executable code page sharing
between processes. If Alice is the first to run a program,
the operating system will load the program into physical
memory. When Bob runs the same program, instead of
loading a second copy into memory, the operating system
will set Bob’s page tables to use the copy that was loaded
into memory for Alice. The result is that both Alice and
Bob are using the same physical memory. This is fine,
because the code is stored in read-only memory, so neither

user should be able to affect the other. However, if Bob
can determine which cache lines of the shared memory
are present in the cache over time, he can tell which cache
lines Alice’s process accesses over time. This is what the
FLUSH+RELOAD attack does.

Suppose an attacker knows their victim is running a
certain program and would like to see which code the
victim’s process is running. FLUSH+RELOAD lets the
attacker select a handful of cache lines to watch, called
“probes,” which are specified as addresses in the program’s
executable code. The attacker flushes those lines out of
the cache, waits for a certain number of clock cycles, then
times how long it takes to read those lines. If the read is
fast (i.e. consistent with being in the L3 cache), it means
the victim accessed the line during the waiting period. If
the read is slow, the victim did not access the line. The
attacker can repeat the process (flushing, then reloading)
to see which code the victim process is executing over
time.

The attack relies on certain assumptions. First, it as-
sumes only one instance of the spied-on program is run-
ning at a time. If multiple instances are running, an access
to a probed cache line by any instance will trigger the
probe. Second, only one attacking process can run at a
time on a CPU core. If a pair of attacking processes have
to contend for CPU time, they will miss measurements.

In summary, the attacker specifies a few (approximately
1 to 5, where adding more probes makes the measure-
ments less reliable) probe locations within a binary and
the amount of clock cycles to wait between measurements.
For example, the attack against GnuPG puts probes on the
RSA modular exponentiation routines and uses a waiting
time of 2048 clock cycles [33]. As output, the attacker
learns the sequence of probes that were accessed during
the waiting periods.

3 Using FLUSH+RELOAD to Distinguish
Inputs

In the previous section we described how an attacker can
use FLUSH+RELOAD against a program. In this section,
we give a novel procedure for distinguishing between a
set of possible inputs through the FLUSH+RELOAD side
channel. Later, we present actual attacks against Links
and Poppler that use this technique.

In the scenario we are interested in, the attacker knows
the victim is going to run a program on some input. The
attacker also knows that the input is one of a set of inputs,
all of which are available to the attacker. By spying on
the program with FLUSH+RELOAD, the attacker hopes to
figure out which input in the set the program was run on.

For example, suppose Alice has just been diagnosed
with an illness and is using Wikipedia to research it. The
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attacker, Mallory, knows Alice was just diagnosed, and
wants to find out which illness she has. Mallory knows
that Alice will visit one of, say, 100 Wikipedia pages that
are about illnesses. Mallory’s goal is to find out, from the
FLUSH+RELOAD probe sequence he observes, which of
the 100 pages Alice visited.

The first step in the attack is to figure out where to
place the FLUSH+RELOAD probes to best distinguish the
input. This can be done by sifting through the program’s
code and finding functions whose frequency and order
of execution are likely to depend heavily on the input. It
is possible to do this by hand, but some automation can
make it easier, a topic we return to in Section 3.1. While
the side channel allows probes to be placed on any cache
line, we only consider cache lines containing function
entrypoints.

With the probes selected, the attack proceeds in three
stages. The first stage is a training stage. The attack is
most successful when the training stage is carried out
on the victim’s machine, but the attack still works at a
lower success rate when the attacker trains on a different
system. Next, the actual attack happens: the attacker
spies on the victim as they execute the program on one
of the inputs. Finally, the attacker uses the training data
and output from the attack stage to identify the input was
given to the program.

In the training stage, the attacker simply runs the
FLUSH+RELOAD attack tool against themselves as they
run the program on every input in the set multiple times.
We refer to the number of times each input is sampled
by T . As T increases, the training stage takes longer to
perform, but the success rate of the attack can increase.
If there are N different inputs, the attacker will be left
with NT training samples. The training stage can be done
either before or after the attack stage, and the attacker can
re-use a training set multiple times, so they only need to
train once to carry out many input identifications.

In the attack stage, the attacker runs the
FLUSH+RELOAD attack tool against the victim as
the victim passes one of the inputs to the program. The
attack tool records the observed probe sequence.

In the identification stage, the attacker finds the probe
sequence in the training set that is closest to the one ob-
tained from the victim. Closeness is measured using the
Levenshtein distance [23], which is defined as the smallest
number of basic edits (single-character insertions, dele-
tions, and replacements) needed to bring one string to the
other. The attacker computes the Levenshtein distance be-
tween the victim’s probe sequence and all of the training
probe sequences, and the one with the smallest Leven-
shtein distance is assumed to correspond to the input the
victim passed to the program.

Probe sequences are represented by strings of single-
character probe names. An example is given in Figure 1.

BDBABABABABABABABABABABABCABABCBABCBCABC

ABABABCBABCABCBCBDABABACACADBABDBCBABCBA

BABDBCBABDBCABDBCABDBCABCBCBCBABCBCBABAB

DBABABDABDBCABDABABCABDBCBCBABCBCBABCBCB

ABCABCABDABDCBCABCABCBABDABCABDBCABDBCBA

Figure 1: The first 200 bytes (of 24,984) of a
condensed observed probe sequence while visiting
the Facebook Wikipedia page in Links. From run
links/0015. A corresponds to kill html stack item(),
B to html stack dup(), C to html a(), and D to
parse html().

Before computing the Levenshtein distance, the probe
sequences are first condensed by collapsing sequentially
repeated hits of the same probe down into a single hit
of that probe, and then the whole string is truncated to
1000 characters. This is done to make the identification
stage faster, since the algorithm we use to compute the
Levenshtein distance has quadratic running time.

3.1 Using Automation to Find Probes
In our experience, the hardest part of creating a new input
distinguishing attack is finding the set of probes to spy
on. We want to find a set of functions whose order of
execution best exhibits the differences between the inputs.
Statically, one way to do this is to read the program’s code,
understand it, and then manually select some functions
that are heavily involved in processing the input. This
takes time and effort.

In this section, we present a method for partially au-
tomating probe discovery. We describe a tool which
takes as input the victim program and two distinct victim-
program inputs. It finds a small subset of the victim
program’s functions that are good at distinguishing the
victim-program inputs when spied on. The tool requires
symbols, but not source code: as long as the attacker has
access to a non-stripped binary, they can use the tool to
find a good probe set without having a deep understanding
of the program. Once a good set of probes is discovered,
symbols are no longer necessary, and the attack will work
without them. This tool works at the function level of
granularity instead of the cache-line level of granularity
to keep performance reasonable (each candidate probe
must be tested individually) and because functions have
human-readable names which assists with the manual
filtering (see below).

The tool first looks at the symbols in the binary to list all
of the functions. Next, some human intervention is needed
to narrow down the list of functions into a smaller set that
are more likely to depend on the input. This filtering
can be as simple as keeping all functions whose names
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contain “html” to get the list of html-parsing functions,
as we have done for Links, or by looking for functions
whose names begin with “Gfx::op” to get the list of
functions responsible for PDF commands, as we have
done for Poppler.

Once the list of functions has been reduced to a man-
ageable size (e.g. less than 100 functions), each potential
probe is tested individually and automatically. A candi-
date probe is tested by placing a GDB breakpoint on the
first instruction in the function and counting the number of
times it gets executed as the program is run. This is done
three times for each probe: twice on one input, giving
counts c1 and c2, and once on a second, different, input,
giving the count c3. A score is given to each probe, equal
to |c3− c1|− |c2− c1|. This rewards functions whose ex-
ecution counts are stable on the same input but vary on
different inputs, meaning they likely depend on the input.
The list of candidate probes are sorted by their scores, and
all but the top 10 are rejected.

The reduced and sorted list of functions is then used
to generate all possible sets of size 4. Sets that contain
functions that are within 3 cache lines of each other are
immediately removed. If two probes are too close to-
gether, the CPU’s instruction prefetch may trigger one
whenever another one is actually executed, in which case
there is no point having both probes. The remaining sets
are sorted by the sums of their rank in the input list (which
was sorted by score), and this sorted list is given to the
user. In our attacks, we always used the first probe set in
this output list.

4 Attack Implementation

The attacks are built on the following tools.

• A FLUSH+RELOAD attack tool, written in C, takes
a binary and probe addresses with single-character
names as arguments. When probes are hit, their
single-character names are printed to standard out-
put, with pipe characters separating the waiting peri-
ods. This tool is a re-implementation of the tool the
original paper’s ([33]) authors provided us.

• A Ruby class that makes it easy for Ruby scripts to
run the attack tool and monitor its output. It provides
a callback whenever there is a burst of probe hits.
This lets the attack script react to events (such as
the entire execution of a command). Our attacks are
implemented as Ruby scripts that use this class.

• A Ruby implementation of the semi-automated at-
tack discovery procedure described in Section 3.1.
The tool takes as input a list of executable code ad-
dresses in a program and two different inputs. It uses
the two inputs to test the quality of each candidate

probe, and outputs a set of probes that are likely able
to distinguish the inputs.

• A Ruby implementation of the attack procedure de-
scribed in Section 3. There is one program for each
stage in the attack.

The source code for all of these programs is available
online; see Appendix A. Next, we describe how we exper-
imentally evaluated our attacks using these tools.

5 Experiment Setup

We ran experiments on two systems. The first system is
a laptop; the second system is a dedicated server hosting
a low-traffic website and operating as a relay for the Tor
network. The specifications of these systems are given in
Table 1. We will refer to these systems as System 1 and
System 2, respectively.

To test the input distinguishing attacks, we first per-
form the training stage, taking T samples of each input.
Then, for every input in the set of size N, the vulnerable
program is run on the input S times. The probe sequences
from each of the SN runs are put through the identifica-
tion stage independently, and we check how many of the
identifications are correct.

All of the experiments have been automated so that
they are easy to repeat. The source code and data from
all experiment runs have been published so that other
researchers can verify and reproduce our work (see Ap-
pendix A).

All experiments were run with low system load. The
experiments are all run within the same user account
for simplicity, but we confirmed independently that the
attacks work when the attacker is on one account and the
spy is on another.

6 Attacks

We present three attacks. The first attack lets an attacker
tell which of the top 100 Wikipedia pages the victim vis-
ited using the Links web browser. The second attack does
the same for the Poppler PDF rendering library, distin-
guishing between 127 PDF transcripts of 2014 Canadian
parliamentary debates. The Links and Poppler attacks
both use the input distinguishing procedure exactly as
described in Section 3. The third attack, which is imple-
mented differently for reasons explained later, determines
whether a mounted TrueCrypt volume contained a hidden
volume or not.

6.1 Links
Links is a command-line web browser. We are interested
in learning which web page a user is visiting, out of
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System 1 System 2
Use Laptop Web server
OS Arch Linux (February 2015) Debian Wheezy

CPU Intel Core2 Duo P8700 2.53GHz (2 cores) Intel Xeon E3-1245 V2 3.40GHz (4 cores, 8 threads)
RAM 4GiB DDR2 800MHz 32GiB DDR3 1333MHz

L1 Cache 2x32KiB Instructions + 2x32KiB Data 4x32KiB Instructions + 4x32KiB Data
L2 Cache 3MiB Shared Unified 4x256KiB Unified
L3 Cache None 8MiB Shared Unified

Table 1: System specifications. Cache specifications were obtained from cpu-world.com. System 1 does not have a
L3 cache, but FLUSH+RELOAD works with its L2 cache as it is shared between cores.

a set of known pages. We found that it is possible to
reliably distinguish between the top 100 Wikipedia pages
of 2013 [2].

To find the Links probes, we ran the automatic probe
finding tool on the HTML parsing functions inside Links.
The names of these functions all contain the string “html”,
so we filtered the list of all functions for “html” and gave
the resulting list of 77 functions to the probe finding tool.
The “Bird” and “Feather” Wikipedia pages were chosen
arbitrarily as inputs to the probe-finding tool. The tool
gave us the following probe set:

• html stack item()

• html stack dup()

• html a()

• parse html()

On System 1 with T = 10 training samples and S = 10
trial runs,1 the correct page was identified 940 times out
of 1000 (94%). In this experiment, the average time it
took to identify the page from the training sequences and
the victim sequence was 4.1 seconds. All pages in the
set were correctly identified at least twice out of the ten
runs, and most were correctly identified all 10 times. The
distribution is plotted in Figure 2.

A second run2 on System 1 with T = 10 training sam-
ples and S = 1 trial run saw the correct page being identi-
fied 95 times out of 100 (95%). Again it took 4.1 seconds
to perform an identification, on average.

On System 2 with T = 10 training samples and S = 1
trial run,3 the correct page was identified 98 times out of
100. Recovery took 136 seconds on average. The identi-
fication took much longer on System 2 despite having a
faster processor because System 2 was configured to use
a pure Ruby implementation of a Levenshtein distance
algorithm instead of the fast native implementation that

1links/0014; interpretation of these labels is explained in Ap-
pendix A.

2links/0013
3links/0015
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Figure 2: The distribution of success rates for individual
pages. The x axis is the number of times the page was cor-
rectly identified out of ten trials; the y axis is the number
of pages that were correctly identified that many times.
Most pages were correctly identified in all ten trials.

System 1 was was configured to use. With T = 10 train-
ing samples and S = 10 trial runs,4 the correct page was
identified 977 times out of 1000 (98%). As on System 1,
most of the pages were correctly identified 9 or 10 times
out of 10.

A plot of the Levenshtein distances involved in a suc-
cessful identification are shown in Figure 3, and those
from an unsuccessful identification are shown in Figure 4.

All of the Wikipedia pages in the set have distinct
lengths; it is reasonable to ask if this attack is only dis-
tinguishing the pages by their lengths. We know this is
not the case, however, because the probe sequences are
truncated to 1000 characters before the Levenshtein dis-
tance is computed, and in all of the experiment runs men-
tioned above, most of the training samples have lengths

4links/0016
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above 1000 and thus most of the comparisons are between
constant-length 1000-character strings. It is therefore the
order of the probe hits that matters, and we are really
learning information about the content of the page, not
just its length.

We were curious whether the attack would work if the
training were done on a different system. To simulate this,
we used the training set from an experiment5 on System
1 to identify victim samples from another experiment6

on System 2. The result was that 76% of the pages were
identified correctly. Using the training set from System 2
and the victim samples from System 1, the identification
was successful 82% of the time. So it is better to train on
the victim’s machine, but the attack can still work when
the training is done on a different system.

Before we built the probe finding tool, we ran experi-
ments with a different set of probes that we found man-
ually. We chose these probes by trial and error, looking
through the Links source code to find functions whose
frequency and order of execution should depend on the
contents of Wikipedia pages. These are:

• parse html()

• html stack dup()

• html h()

• html span()

Note that two of the manually-selected probes were
re-discovered by the automation tool.

With these probes, we saw 76% correct classification
on System 1 with T = 5 training samples and S = 1 trial
run.7 On System 2 with T = 5 training samples and
S = 10 trial runs8 we saw 88% correctness. With T =
10 training samples and S = 1 trial run we saw 91%.9

This suggests that using more training samples increases
the success rate of the attack, and that the automatically
discovered probes are just as good or slightly better than
the ones we found manually.

6.2 Poppler
Poppler is a PDF rendering library that gets used in soft-
ware such as Evince and LibreOffice. For ease of automa-
tion, we attacked the pdftops program, which converts
PDF files into PostScript files using Poppler. As our in-
put set, we used 127 transcripts of 2014 parliamentary
debates made available by the Canadian government [1].

5links/0014
6links/0016
7links/0002. This experiment was run before we started truncating

to 1000 characters, so the full strings were compared.
8links/0010
9links/0005. This experiment was also run before we started truncat-

ing to 1000 characters.

Unlike Links, we did not have a working attack against
Poppler before we used the probe finding tool. The only
human input in the creation of this attack was the idea to
look at the set of functions that execute PDF commands,
an intuitively obvious thing to try.

We used the automatic probe finding tool to find the
best probes amongst the functions responsible for exe-
cuting PDF commands. These functions, of which there
are 77, are easily identified because their names begin
with “Gfx::op.” The probe finding tool returned the fol-
lowing set of probes when we ran it with the input files
HAN040-E.PDF and HAN050-E.PDF (which we chose ar-
bitrarily).

• Gfx::opShowSpaceText(Object*, int)

• Gfx::opTextMoveSet(Object*, int)

• Gfx::opSetFont(Object*, int)

• Gfx::opTextNextLine(Object*, int)

On System 1 with T = 5 training samples and S = 10
trial runs,10 the correct PDF was identified 1258 times out
of 1270 (99%). All of the PDFs were reliably identifiable:
all but one were correctly identified 9 or 10 times out of
10; the other one was identified correctly 8 times. In a
repeat run on same system with T = 5 training samples
and S = 1 trial runs,11 the correct PDF was identified 124
times out of 127 (98%).

On System 2 with T = 5 training samples and S = 1
trial run,12 the correct PDF was identified 126 times out
of 127 (99%). With T = 5 training samples and S = 10
trial runs,13 the PDF was correctly identified 1260 times
out of 1270 (99%). Again, all but one were identified 9
or 10 times out of 10, except for one that was identified
correctly only 8 times.

Using a training set14 created on System 1 we cor-
rectly identified the input from 70% of probe sequences
recorded on System 2.15 Using the training set from Sys-
tem 2, we correctly identified the input from 69% of the
probe sequences recorded on System 1.

To test how well the probe finding tool works in the
absence of any human guidance, we tried running it on
the list of all 5,397 functions in the Poppler library. The
result is the following set of probes:

• gmallocn()

• PSOutputDev::writePSString(GooString*)

• PSOutputDev::drawString(GfxState*,

GooString*)

10poppler/0003
11poppler/0006
12poppler/0001
13poppler/0007
14poppler/0003
15poppler/0007
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Figure 3: A successful identification. The Levenshtein distance between the training samples and a recording of
the victim visiting the YouTube Wikipedia page. The shortest distance is visible at mark 68 on the page axis which
corresponds to a YouTube training sample. The outlier at mark 29 corresponds to a disambiguation page that has a
different format from the usual Wikipedia page. The different shapes in a column represent the five training samples of
that page. The order on the page axis is not meaningful.
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Figure 4: A failed identification. The Levenshtein distance between the training samples and a recording of the victim
visiting the Nicki Minaj Wikipedia page. The shortest distance (97 on the page axis) corresponds to a training sample
of the Eminem Wikipedia page. The Nicki Minaj training samples still stand out (55 on the page axis). The different
shapes in a column represent the five training samples of that page. The order on the page axis is not meaningful.
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• PSOutputDev::updateTextShift(GfxState*,

double)

We ran an experiment16 with these probes and T = 5
training samples and S = 1 trial run on System 1, and
the result was that the correct PDF was only identified
21 times out of 127, only 17%. This is much worse than
with the other set of probes, but is still better than ran-
dom guessing. With these probes, the FLUSH+RELOAD
tool ran into an error condition, where the CPU’s RDTSC
counter changes non-monotonically, much more fre-
quently than it did with the other probes, and that is
probably the reason for the poorer result.

6.3 TrueCrypt
TrueCrypt is a popular disk encryption utility that supports
storing encrypted filesystems in files called TrueCrypt vol-
umes. TrueCrypt gives users the option to place a hidden
volume inside a normal volume. Given the passphrase to
the outer normal volume, it is not supposed to be possible
to determine whether an inner hidden volume exists. This
is to protect the user in case they are coerced into reveal-
ing their passphrase – they can reveal the passphrase to
the outer volume and the contents of the hidden volume
will be safe.

Our attack watches the victim mount a TrueCrypt vol-
ume and determines whether they mounted a hidden vol-
ume or a normal one. This attack is not implemented the
same way as the Links and Poppler attacks. Our automatic
probe discovery tool does not work against TrueCrypt,
since our tool only supports debugging newly launched
processes, and TrueCrypt’s volume mounting code runs in
a background process. Even if the required functionality
were added to the tool, we would not expect it to work
with TrueCrypt since the difference in code execution be-
tween mounting a normal volume and mounting a hidden
volume is minimal.

6.3.1 Attack Implementation

TrueCrypt is written in C++ and has two classes
defining the layout of normal and hidden volumes.
They are VolumeLayoutV2Normal and VolumeLayout-

V2Hidden, respectively. There are three other classes
for the operating system encryption layout and volume
layouts from older versions, making five volume layout
classes in total.

When TrueCrypt mounts a volume, it instantiates all
five layout classes and tries to decrypt the volume using
each one. It has to do this because, by design, TrueCrypt
volumes are supposed to be indistinguishable from ran-
dom data, so there is no way to tell which volume layout is

16poppler/0004

the right one in advance; the only way is to try to decrypt
the volume and see if it works.

Each class implements a GetDataSize() method.
This method is only called on a layout object after the
volume has been successfully decrypted using that layout,
making it a good candidate for a FLUSH+RELOAD probe.

At first we tried to place probes on both
VolumeLayoutV2Normal’s GetDataSize() and
VolumeLayoutV2Hidden’s GetDataSize(). This did
not work because in the binary, the hidden method
immediately follows the normal method, and instruction
prefetching triggers the hidden probe when the normal
method gets executed.

To work around that problem, we placed two
FLUSH+RELOAD probes. The first is placed on the entry
point to the TrueCrypt binary, so that we can tell when the
user runs a TrueCrypt command. The second is placed
in VolumeLayoutV2Normal’s GetDataSize(), which
will get hit once when the TrueCrypt binary is loaded, and
then once again only if the volume is normal.

To find out whether the volume is normal or hidden, the
attacker records the probe sequence as the victim mounts
the volume. They check if the probe sequence ends in the
VolumeLayoutV2Normal probe. If it does, the volume
was normal. If not, the volume was hidden (or what the
attacker captured was not the result of a mount command;
we assume the attacker knows that the user is mounting a
volume).

6.3.2 Experiment

Our experiment creates two 1MB TrueCrypt volumes.
One is a normal volume, the other contains a hidden
volume; both are protected by the same passphrase.

The experiment assumes the attacker knows the True-
Crypt command was run to mount a volume, and not
some other task (like unmounting a volume). This could
be done in practice by looking at the process list to see
which command-line options were passed to TrueCrypt.

The experiment starts the attack tool on the TrueCrypt
binary. After waiting for the tool to start, it randomly
mounts either the normal or hidden volume with True-
Crypt’s command-line tool. It stops the attack tool and
checks if the last probe hit was the GetDataSize()

probe. If it was, it guesses that the volume is normal.
If not, it guesses that the volume is hidden.

In one run17 of the experiment on System 1 with
S = 500 trial runs, the guess was right 416 times, or 83%.
(Recall that we call the number of trials in a run of the
experiment S.) Of the 255 trials with normal volumes, the
guess was right 184 times. Of the 245 trials with hidden
volumes, the guess was right 232 times. So the error is
skewed towards mistakenly believing that the volume is

17truecrypt/0001
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hidden. By spying as the volume is mounted multiple
times, the confidence can be increased. In one experi-
ment18 where the attacker is allowed to watch the volume
get mounted 3 times and then take the majority of their
decisions, they decide correctly 93 times out of 100. In a
longer run19 with majority-of-three, the attacker decides
correctly 476 out of 500 times (95%). 237/256 (93%) of
the normal samples were correct, 239/244 (93%) of the
hidden samples were correct.

We could not reproduce the attack on System 2. We
believe this is due to differences in the way the two CPUs
do instruction prefetching. The code for normal vol-
umes and hidden volumes is very close together, so the
attack is easily foiled by prefetching. System 2’s pro-
cessor seems to prefetch backwards and read the normal
volume GetDataSize() code when the hidden volume
GetDataSize() is executing. This makes it impossible
to distinguish the two cases on System 2 with our choice
of probes. We were unable to find another choice of
probes that would allow it to work.

We only tried the attack with TrueCrypt’s command-
line interface. The attack should extend to the graphical
interface, since both interfaces are front ends to the same
volume mounting code.

7 Related Work

Our attacks are based on the FLUSH+RELOAD attack [33],
which in turn is based on work by Bangerter et al. where
it was used to break an implementation of AES [17]. It
has since been applied to GnuPG [33], OpenSSL [5, 32],
and other cryptography libraries ([8] for example).

There is a vast body of literature on attacking cryp-
tographic software and hardware with side channels.
There are far too many examples to list here; we refer
to the interesting cases of extracting RSA keys via power
analysis [26] and sound recording [14] as well as other
FLUSH+RELOAD attacks [33, 5, 32].

Continuing the trend of using cache side channels to
violate users’ privacy, our work further confirms that
cache side-channel attacks can do worse than just break-
ing cryptography software. Other privacy-compromising
side-channel attacks attacks are those in [34] which de-
termines the number of distinct items in an e-commerce
user’s shopping cart, [16] which infers keystroke informa-
tion on PCs, [27] which infers network and mouse activity
from inside a sandboxed web page, and [24] which in-
fers information about user input on Android phones (e.g.
when the user swipes vs. taps on their phone). Cache
side channels have also been used to break kernel address
space layout randomization [18].

18truecrypt/0005
19truecrypt/0006

Readers interested in defending against last-level cache
attacks like FLUSH+RELOAD should see the survey of
defense options in the Countermeasures section of [16]
as well as other works like CATalyst [25].

There is a growing body of work showing that other
kinds of side channels are successfully breaking privacy,
too. Here we highlight some of that work.

– Some web applications leak information about the
user’s input through their requests’ size and timing,
even when they are sent over an encrypted connec-
tion [6, 11].

– Malicious web pages can read text inside an iframe

by exploiting differences in the time it takes to run
SVG filters [29, 3].

– Memory deduplication features in new versions of
Microsoft Windows make it possible for a malicious
web page to check “whether the user has specific
websites currently opened” [15] and, when com-
bined with Rowhammer [22], to execute arbitrary
code [7].

– Timing variations in databases make it possible to
extract indexed records [13].

– Variable bit rate encoding can leak words spoken
over encrypted VoIP links [30].

– In an Android app, the UI state can be inferred
through side channels in the GUI framework [10]
and through interrupt side channels [12].

– An attacker can learn a victim’s Internet traffic vol-
ume, as well as individual packet times by exploiting
a side channel in router scheduling algorithms [21].

– A smartphone app can infer what the user is typing
from accelerometer and gyroscope measurements
[28, 9].

– Text can be recovered from the sounds dot-matrix
printers make [4].

– In an attack model where the operating system is
malicious but a hypervisor and an application are
untrusted, documents and images can be recovered
through a page fault side channel [31].

We believe our attacks represent additional steps to-
wards understanding the capabilities and limitations of
using the FLUSH+RELOAD attack to compromise privacy,
and we hope they will motivate more research on the
topic.
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8 Future Work

There are many more input distinguishing attacks waiting
to be discovered. It should be easy to use the tools we
developed to find new attacks, for example against a more
popular web browser.

Quantitatively, our attacks only need to extract a small
amount of information through the side channel in order to
work. For TrueCrypt, we are only extracting one bit of in-
formation. The Links and Poppler attacks only need to ex-
tract a number of bits logarithmic in the number of inputs
we want to distinguish between (6.6 bits for 100 pages,
7.0 for 127). We should find out how much information
FLUSH+RELOAD can extract from non-cryptographic
programs. In particular, can FLUSH+RELOAD extract
previously-unknown user input from a program in any
plausible scenario?

Some virtual machine hypervisors deduplicate pages
between virtual machines. When this is accomplished
by finding pairs of memory pages with the same con-
tent, and an attacker can predict the content of a target
memory page, the attacker can gain the ability to run a
FLUSH+RELOAD attack on the target page by creating a
duplicate of it in memory that they control. It’s an open
question if this leads to better privacy-compromising at-
tacks than spying on the program code alone.

Aside from the possibility of developing better attacks,
we’ve left two questions unexplored. The first is whether
or not these attacks can be made to work across virtual
machine boundaries, and the second is whether or not
they can be made to work on processors with exclusive
cache architectures, like AMD. Lipp et al.’s work on ARM
processors suggests that it is possible [24].

9 Conclusion

Classically, side-channel attacks are used to extract en-
cryption keys from software and hardware implementa-
tions of cryptography. More recently, side-channel attacks
are being used to compromise privacy in more general
settings. We presented three attacks that extend this work,
along with accompanying tools and an automation frame-
work.

Our attacks let an attacker (1) determine which of the
top 100 Wikipedia pages a victim visited with the Links
web browser, (2) determine which of the 127 debates
in the 2014 Canadian parliament a victim transcoded
with the pdftops command, and (3) determine whether
a TrueCrypt volume contains a hidden volume when it is
mounted.

Because we attacked relatively obscure programs, we
expect the set of vulnerable users to be small. However,
our attacks are part of a growing body of work that applies

side-channel analysis to more than just breaking cryptog-
raphy; we hope others will build better attacks on top of
our work.
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A Reproducing this Work

The attack tools, experiment implementations, and exper-
iment data are all available for download on the author’s
website: https://defuse.ca/BH2016.

Throughout this paper we have referred to experi-
ment runs by the name of the experiment followed by
a four-digit run number. The experiment name corre-
sponds to a directory name in the archive, and the run
number corresponds to a subdirectory of that directory.
For example, the truecrypt/0003 data can be found in
experiments/truecrypt/runs/0003.
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