
 Timing Attacks Have Never Been So Practical:

Advanced Cross-Site Search
Attacks

Nethanel Gelernter

Vic Tim
About me: Nethanel Gelernter

• Security Researcher / Hacker

– Web application security

– Ph.D., hacks, research papers, talks, etc.

• Cyberpion

– Exploring new attack vectors &
developing defenses against them

• Leading the cyber-security
studies & research in the College
of Management, Israel

Vic Tim
Agenda – practical timing attacks

• Cross-site search (XS-search) attacks &
Response inflation

• Challenges

– When response inflation is impossible

• Browser-based XS-search attacks

• Second-order XS-search attacks

Nethanel Gelernter

• Gelernter & Herzberg, CCS’ 2015

• Exploit ‘search’ timing side-channel

• ‘Search’ in private-data kept by web-service

• Practical:

– Tested on hundreds of Gmail users

• Real world conditions

• Example: find user name

– From lists of 2000 common (first and last) names

– Takes about a minute

Cross-Site Search Attacks

Nethanel Gelernter

• Main model for web attacks

• The victim’s browser is authenticated to services
that hold private records (e.g., Gmail)

• The victim visits the attacker’s website

...<script>…

Cross-site attacker model

Nethanel Gelernter

Cross-site request

• Cross-site search over user’s data in service
– Attacker cannot access the content of the response

• Same Origin Policy

– The attacker can measure the response time (T)

GET SEARCH request

Response

...<script>…

𝑻

Cross-site attacker model

Nethanel Gelernter

GET q=in:sent&from:Alice

result 1, result 2, ….

...<Script….>

Vic Tim

• Find out whether the user is Alice or Bob…

• Compare:
– T(Bob): response time for ‘messages sent by Bob’

– T(Alice): response time for ‘messages sent by Alice’

GET q=in:sent&from:Bob

Not found 𝑻(𝑩𝒐𝒃)

𝑻(𝑨𝒍𝒊𝒄𝒆)

XS-Search example: user name

Nethanel Gelernter

What else can XS-Search expose?

Relationships
(follows, …)

Contacts

Search
History

Email content

Search History

Structured
information

Name

Nethanel Gelernter

Vic Tim

• Find the answer for a Boolean question

• Three steps:

– Transform the question into a search request

– Send search requests and collect samples

– Analyze response times  answer the question!

XS-Search: Basic Flow

Nethanel Gelernter

Vic Tim

• Is the name of the user Alice?

– in:sent from:Alice

• Is she related to bob@gmail.com?

– bob@gmail.com&st=100

• Does Alice have an affair with Charlie

– “I love you” to:Charlie from:Alice

XS-Search: Basic Flow – 1st Step

Nethanel Gelernter

Vic Tim

• Send a Challenge request

– Is the user name Alice?

• True: a Full response is returned (has some content)

• False: an empty response is returned

XS-Search: Basic Flow – 2nd Step

...<Script….>
 GET q=in:sent&from:Alice

𝑻(𝑪𝒉𝒂𝒍𝒍𝒆𝒏𝒈𝒆) ? Unknown response

Nethanel Gelernter

Vic Tim

• Send a Dummy request

– Is the user name fdjakdhasd?

• The response is expected to be empty

GET q=in:sent&from:fdjakdhasd

...<Script….>
 GET q=in:sent&from:Alice

𝑻(𝑪𝒉𝒂𝒍𝒍𝒆𝒏𝒈𝒆)

𝑻(𝑫𝒖𝒎𝒎𝒚)

? Unknown response

Empty response

XS-Search: Basic Flow – 2nd Step

Nethanel Gelernter

Vic Tim

GET q=in:sent&from:fdjakdhasd

...<Script….>
 GET q=in:sent&from:Alice

𝑻(𝑫𝒖𝒎𝒎𝒚)

? Unknown response

Empty response

𝑻(𝑪𝒉𝒂𝒍𝒍𝒆𝒏𝒈𝒆)

Repeat
several
times

𝑻 𝑪𝒉𝒂𝒍𝒍𝒆𝒏𝒈𝒆

Sample

𝑻 𝒅𝒖𝒎𝒎𝒚

Sample

XS-Search: Basic Flow – 2nd Step

Nethanel Gelernter

• Dist(Challenge) ≠ Dist(Dummy)

•  Response for challenge is full

Statistical Test
𝑻 𝑪𝒉𝒂𝒍𝒍𝒆𝒏𝒈𝒆

Sample

𝑻 𝒅𝒖𝒎𝒎𝒚

Sample

Significant difference between the
distributions?

YES

User name is Alice

• Dist(Challenge) = Dist(Dummy)

•  Response for challenge is empty

NO

User name is NOT Alice

XS-Search: Basic Flow – 3rd Step

Nethanel Gelernter

• Timing attacks

– Delays depend on dynamically-changing factors, e.g.:
Congestion and concurrent processes in client and server

• Practical attacks

– Minimal time
• Exploit also short visits of users

– Minimal number of requests
• Avoid detection and blocking

– E.g., by server’s anti-DoS defenses

Practical timing attacks: challenges

Nethanel Gelernter

Response Inflation

• Increase the size difference between full and
empty responses

• Larger difference in size  Larger difference in
time

Larger  Slower
Nethanel Gelernter

Response Inflation

• Search requests have many parameters

• Some of them are reflected in the responses as
a function of the number of results

Nethanel Gelernter

https://example.com/search?reflected_parameter=value

value value value value

value value value

value value value

Empty response Full response

Response Inflation

• Sometimes, the attacker send very long strings
as the value of the reflected parameter

Nethanel Gelernter

Long string.........................
Long string.........................

Long string.........................

Long string.........................

Full response

https://example.com/search?reflected_parameter=Long string

Long string.........................

Long string.........................

Long string.........................

Long string.........................

Long string.........................

Long string.........................

Empty response

Response inflation example

• Exploiting Gmail search in the HTML view

• The query itself!

– Appears once for each entry (50 max by default)

– Can be inflated to 8KB

• Up to 400KB response size inflation!

Nethanel Gelernter

But…

Nethanel Gelernter

What if there is no response inflation?

Nethanel Gelernter

What if there is no response inflation?

• Browser-based XS-search

– When there is some difference in the response size

• Second-order XS-search

– When there is no difference in the response size!

Nethanel Gelernter

Browser-based (BB) XS-Search

• Statistical tests and divide and conquer
algorithms

– Gelernter & Herzberg, CCS’ 2015

• Browser-based timing
side channel

– Van Goethem et al.,

 CCS’ 2015

• Algorithmic

 improvements

Nethanel Gelernter

Classical vs. BB timing attacks

• Classical timing attacks:

– Load the resources from the server several
times to collect time measurements

• Browser-based timing attacks:

– Load all the resources from the server once
and cache them

– Then load them from the cache many times
to collect time measurements

Nethanel Gelernter

Classical vs. BB timing attacks

• Exploiting / measurements affected by

– Classical: network delay, server processing time,
browser processing time

– Browser-based: browser processing time

• Can be used to differentiate between

– Classical: large/small resources, high/low server
processing time

– Browser-based: large/small resources

Nethanel Gelernter

Vic Tim

• Find the answer for a Boolean question

• Changing only the second step of the original
XS-Search attack

BB XS-Search: Basic Flow

Nethanel Gelernter

Vic Tim

• Send a Challenge request

– Is the user name Alice?

• True: a Full response is returned (has some content)

• False: an empty response is returned

BB XS-Search: Basic Flow – 2nd Step

...<Script….>
 GET q=in:sent&from:Alice

? Unknown response Cache
response

Nethanel Gelernter

Vic Tim

• Send a Dummy request

– Is the user name fdjakdhasd?

• The response is expected to be empty

GET q=in:sent&from:fdjakdhasd

...<Script….>
 GET q=in:sent&from:Alice

? Unknown response

Empty response

BB XS-Search: Basic Flow – 2nd Step

Cache
response

Cache
response

Nethanel Gelernter

Vic Tim

GET q=in:sent&from:fdjakdhasd

...<Script….>
 GET q=in:sent&from:Alice

? Unknown response

Empty response

BB XS-Search: Basic Flow – 2nd Step

Unknown and
empty

responses are
cached

𝑻(𝑫𝒖𝒎𝒎𝒚)

𝑻(𝑪𝒉𝒂𝒍𝒍𝒆𝒏𝒈𝒆)

Repeat
many
times

? Unknown response

Empty response

Nethanel Gelernter

Browser-based (BB) XS-Search

• Algorithmic improvements

• Not for Boolean questions

– Basic flow – only Boolean questions

• Is the victim’s name Alice?

• Answering multiple choice questions

– E.g., which names out of many options are matching
the victim?

• Optimally use the browser-based timing side-
channel

Nethanel Gelernter

Browser-based (BB) XS-Search

• Evaluation compared to both the previous works

• Repeating attacks/experiments done in each of
them

– Original XS-Search: extract victim’s names from Gmail

– BB timing attacks: extract victim’s age from Facebook

• Significant improvement!

• In this talk: only one example

Nethanel Gelernter

BB XS-Search vs. original XS-Search

• Gmail example

– The goal of the attacker: extract the first and last
names of the victim out of a list of 2000 names

– XS-Search results:

• 90% success rate (both first and last name
found)

• 1 minute on average

• 2.6% false positive

Nethanel Gelernter

BB XS-Search vs. original XS-Search

• How to answer multiple-answer questions
efficiently?

• The optimized multiple term identification
(OMTI) algorithm

– Divide and conquer algorithm

• Relying on the OR operator

– Different dummy search request is sent every
round

Nethanel Gelernter

BB XS-Search vs. original XS-Search

• Rely on browser-based timing side-channel to
optimize the OMTI algorithm

• Observation: empty responses are (almost)
identical

– No need to send dummy requests in every round

– No need to reload the empty response in every
round

• Rely on previous measurements!

Nethanel Gelernter

BB XS-Search vs. original XS-Search

• Evaluation of the attack on 5 different Gmail
accounts

– 15-16 times on each of them

• Significant improvement!

– 41.6 seconds on average (compared to 1 minute)

– 92.3% success (compared to 89.7%)

– 1.3% false positive (compared to 2.6%)

Nethanel Gelernter

BB XS-Search vs. original XS-Search

• DEMO

Nethanel Gelernter

Second-order (SO) XS-Search attacks

• The problem: sometimes the size difference is
negligible

• For example: a sentence that appears in a
single email

Nethanel Gelernter

value

Empty response Full response

Second-order (SO) XS-Search attacks

• Second-order attacks

– First, manipulate the attacked web application

• Make it (more) vulnerable

– Exploit the vulnerability

• Second-order XS-search attacks

– First manipulate the attacked storage

• Create significant response inflation

– Launch browser-based XS-search attack

Nethanel Gelernter

Second-order (SO) XS-Search attacks

• Two SO XS-search attacks

– Simple

– Inflating

Nethanel Gelernter

Second-order (SO) XS-Search attacks

• Model

– Storage

– Many records

– A secret appears in one of the records

• Attacker can manipulate the storage remotely

– E.g., email accounts

– Another example later…

Nethanel Gelernter

Simple SO XS-Search attack

• The problem: the secret appears only once in
the storage

• Simple solution: the attacker will add
additional records that contain the secret!

Nethanel Gelernter

Simple SO XS-Search attack

Nethanel Gelernter

Simple SO XS-Search attack

• Example: extracting Facebook password-reset
code from Yahoo! email

HTTP GET

malicious Javascript

6-digit reset code

Repeat
several
times

XS-search
attack

6-digit reset code

Send reset
password code

Victim

Nethanel Gelernter

Inflating SO XS-Search attack

• Creates significant response inflation effect

– Increase the size difference between empty and
full response

• Unlike all the previous attacks: the empty
response will be (significantly) larger than the
full response

Nethanel Gelernter

Inflating SO XS-Search attack

• The challenge of the attacker:

– Find a secret out of a large dictionary of possible
values

• Notations

– M - maximal number of results

– Match-all record – a record that contains all the
possible values for the secret

– Inflating record – a record that significantly
inflates the size of every response containing it

Nethanel Gelernter

Inflating SO XS-Search attack

• Attack process

First part:

– Plant one match-all inflating record in the
storage

– Plant additional M-1 match-all records

– Additional record(s) may be added as a result of
the victim's operations, or via operations
triggered by the attacker

Second part:

– Launch BB XS-search attack!

Nethanel Gelernter

Response for searching the right secret

Inflating SO XS-Search attack

Match-all record

Match-all record

Inflating match-all record

Match-all record

New record (contains secret)

M-1

Response for searching the wrong secret

Nethanel Gelernter

Inflating SO XS-Search attack

• Inflating record in email service providers

– Email headers

• From

• To

Nethanel Gelernter

Inflating SO XS-Search attack

• Example: extracting Visa/Mastercard credit
card number

– Structured information

• VVVV-XXXX-YYYY-ZZZZ

• First and last names: extract 2 out of 2000

– Done successfully!

• Credit card number: extract 4 out of 10000

– Should not be much harder

Nethanel Gelernter

Inflating SO XS-Search attack

• Example: extracting Visa/Mastercard credit
card number

• Match-all record – a record that contains all
the possible 4-digit sequences

– Possibly as an attachment

• Inflating match-all record – a match-all
record with very long From field

Nethanel Gelernter

Inflating SO XS-Search attack

• Gmail example

• How?

– Cross-site search requests are now blocked in
both the HTML and standard views

• Cross-site search attack without sending
cross-site search requests?

Nethanel Gelernter

Inflating SO XS-Search attack

• Gmail example

• Exploiting the autocomplete feature!

M = 4
(M = maximal
number of
results)

Nethanel Gelernter

Inflating SO XS-Search attack

• Gmail example: the manipulated storage

Match-all record

Match-all record

Inflating match-all record

Match-all record

New record (contains secret)

M-1

Nethanel Gelernter

Inflating SO XS-Search attack

• Gmail example: full response (size is small)

Match-all record

Match-all record

Match-all record

M-1

New record (contains secret)

Nethanel Gelernter

Inflating SO XS-Search attack

• Gmail example: empty response (size is very large)

Match-all record

Match-all record

Match-all record

M-1

Inflating match-all record

Nethanel Gelernter

Inflating SO XS-Search attack

• DEMO

Nethanel Gelernter

Inflating SO XS-Search attack

• Evaluation results

– 96% success rate within less than 50 seconds

• Yet, in the other 4% percent, 3 out of 4 sequences
were found, and it was possible to detect the error and
to fix it

Nethanel Gelernter

Stealthy SO XS-Search attacks

• The challenge: manipulations on the storage
can be detected!

• Solution: manipulate the storage in a way that
will not be detected by the user

• HOW?

Nethanel Gelernter

Stealthy SO XS-Search attacks

• Emails solution: abuse anti-spam mechanisms

• The planted emails will be marked as spam

– Users do not get notifications for spam emails

– Users (usually) do not visit their spam folder

• Only when it is possible to search in the spam
and in the other folders using the same request

– E.g., Gmail

• in:inbox OR in:spam

Nethanel Gelernter

Stealthy SO XS-Search attacks

• Search history

• Two requirement for inflating SO XS-
Search attack:

– Inject records to the search history log

• DONE: Gelernter & Grinstein & Herzberg, ACSAC
2015

– Inject an inflating record

Nethanel Gelernter

Stealthy SO XS-Search attacks

• Bing
example:
inflating SO
XS-Search
attack to
extract
search
history

Nethanel Gelernter

Defenses (briefly)

• If possible - blocking cross-site search requests

• In other cases – make it harder to exploit

– Block inflation techniques

– Rate limit

• Like (almost) every other web-application attack
the challenge is to find all the vulnerable spots

Nethanel Gelernter

Conclusions

• Advanced cross-site search attacks

– Browser-based

– Second order

• Practical!

• Many vulnerable websites

– Including popular ones

Nethanel Gelernter

Thank you!

Nethanel Gelernter

 Questions?

Nethanel Gelernter

