
Using Undocumented CPU Behaviour to See into Kernel
Mode and Break KASLR in the Process

Anders Fogh and Daniel Gruss

August 4, 2016

1 / 64



About this presentation

This talk is about a class of microarchitectorial attacks
I Not about software bugs
I It is about CPU design as an attack vector
I But not about Instruction Set Architecture
I Focus on Intel x86-64 - applies to other architectures too

2 / 64



Take aways

Take aways
I CPU design is security relevant
I Prefetch instructions leak information

Exploit this to:
I Locate a driver in kernel = defeat KASLR
I Translate Virtual to physical addresses for other attacks

3 / 64



Take aways

Take aways
I CPU design is security relevant
I Prefetch instructions leak information

Exploit this to:
I Locate a driver in kernel = defeat KASLR
I Translate Virtual to physical addresses for other attacks

3 / 64



Introduction

Memory subsystem

Kernel Address-space Layout Randomization (KASLR)

Prefetch Side Channel

Prefetching the Kernel

Case study: Defeating Windows 7 KASLR

Case study: Exploiting direct-physical maps

Bonus material
4 / 64



Introduction

5 / 64



The chamber of secrets

NOTE

Using the PREFETCH instruction is recommended only if data does not fit in
cache. Use of software prefetch should be limited to memory addresses that are
managed or owned within the application context. Prefetching to addresses that
are not mapped to physical pages can experience non-deterministic performance
penalty. For example specifying a NULL pointer (0L) as address for a prefetch
can cause long delays.

6 / 64



The chamber of secrets

NOTE

Using the PREFETCH instruction is recommended only if data does not fit in
cache.

Use of software prefetch should be limited to memory addresses that are
managed or owned within the application context. Prefetching to addresses that
are not mapped to physical pages can experience non-deterministic performance
penalty. For example specifying a NULL pointer (0L) as address for a prefetch
can cause long delays.

6 / 64



The chamber of secrets

NOTE

Using the PREFETCH instruction is recommended only if data does not fit in
cache. Use of software prefetch should be limited to memory addresses that are
managed or owned within the application context.

Prefetching to addresses that
are not mapped to physical pages can experience non-deterministic performance
penalty. For example specifying a NULL pointer (0L) as address for a prefetch
can cause long delays.

6 / 64



The chamber of secrets

NOTE

Using the PREFETCH instruction is recommended only if data does not fit in
cache. Use of software prefetch should be limited to memory addresses that are
managed or owned within the application context. Prefetching to addresses that
are not mapped to physical pages can experience non-deterministic performance
penalty.

For example specifying a NULL pointer (0L) as address for a prefetch
can cause long delays.

6 / 64



The chamber of secrets

NOTE

Using the PREFETCH instruction is recommended only if data does not fit in
cache. Use of software prefetch should be limited to memory addresses that are
managed or owned within the application context. Prefetching to addresses that
are not mapped to physical pages can experience non-deterministic performance
penalty. For example specifying a NULL pointer (0L) as address for a prefetch
can cause long delays.

6 / 64



The chamber of secrets (translation)

PLEASE

,

only use prefetch as Intel intends,
or else Intel will be angry,
and there is no reason why anyone would measure the execution time.

7 / 64



The chamber of secrets (translation)

PLEASE,

only use prefetch as Intel intends

,
or else Intel will be angry,
and there is no reason why anyone would measure the execution time.

7 / 64



The chamber of secrets (translation)

PLEASE,

only use prefetch as Intel intends,
or else Intel will be angry

,
and there is no reason why anyone would measure the execution time.

7 / 64



The chamber of secrets (translation)

PLEASE,

only use prefetch as Intel intends,
or else Intel will be angry,
and there is no reason why anyone would measure the execution time.

7 / 64



The chamber of secrets (translation)

7 / 64



Whoami

I Anders Fogh
I Principal Security Researcher, GDATA Advanced Analytics
I Playing with malware since 1992
I Twitter: @anders_fogh
I Email: anders.fogh@gdata-adan.de

8 / 64

@anders_fogh
anders.fogh@gdata-adan.de


Whoami

I Daniel Gruss
I PhD Student, Graz University of Technology
I Currently intern at Microsoft Research Cambridge
I Twitter: @lavados
I Email: daniel.gruss@iaik.tugraz.at

9 / 64

@lavados
daniel.gruss@iaik.tugraz.at


And the team

The research team
I Clémentine Maurice
I Moritz Lipp
I Stefan Mangard

from Graz University of Technology

10 / 64



Memory subsystem

11 / 64



CPU Caches

Memory (DRAM) is slow compared to the CPU
I bu�er frequently used memory for the CPU
I every memory reference goes through the cache
I transparent to OS and programs

12 / 64



Memory Access Latency

50 100 150 200 250 300 350 400
100

101

102

103

104

105

106

107

Access time in cycles

Nu
m

be
ro

fa
cc

es
se

s
cache hits cache misses

13 / 64



Data Caches

core 0

L1

L2

core 1

L1

L2

core 2

L1

L2

core 3

L1

L2
ring bus

LLC
slice 0

LLC
slice 1

LLC
slice 2

LLC
slice 3

Last-level cache:
I shared memory shared is in

cache, across cores!
→ physically indexed
I need physical address to

manipulate
I only one cache entry per

physical address

14 / 64



Unprivileged cache maintainance

User programs can optimize cache usage:
I prefetch: suggest CPU to load data into cache
I clflush: throw out data from all caches

... based on virtual addresses

15 / 64



Caches: Software control

There are 5 prefetch instructions:
I prefetcht0: suggest CPU to load data into L1
I prefetcht1: suggest CPU to load data into L2
I prefetcht2: suggest CPU to load data into L3
I prefetchnta: suggest CPU to load data for non-temporal access
I prefetchw: suggest CPU to load data with intention to write

actual behaviour varies between CPU models

16 / 64



Caches: Software control

The prefetch instructions are somewhat unusual
I Hints – can be ignored by the CPU
I Do not check privileges or cause exceptions

17 / 64



Virtual and physical addressing

Why address translation: Run multiple processes securely on a single CPU
I Let applications run in their own virtual address space
I Create exchangeable map from “virtual memory” to “physical memory”
I Privileges are checked on memory accesses
I Managed by the operating system kernel

18 / 64



Address translation on x86-64

PML4I (9 b) PDPTI (9 b) PDI (9 b) PTI (9 b) O�set (12 b)
48-bit virtual address

CR3 PML4
PML4E 0
PML4E 1

···
#PML4I
···

PML4E 511

PDPT
PDPTE 0
PDPTE 1

···
#PDPTI
···

PDPTE 511

Page Directory
PDE 0
PDE 1

···
PDE #PDI

···
PDE 511

Page Table
PTE 0
PTE 1

···
PTE #PTI

···
PTE 511

4 KiB Page
Byte 0
Byte 1

···
O�set

···
Byte 4095

19 / 64



Address Translation Caches

Problem: translation tables are stored in physical memory

20 / 64



Solution: Address Translation Caches

Core 0

ITLB DTLB

PDE cache

PDPTE cache

PML4E cache

Core 1

ITLB DTLB

PDE cache

PDPTE cache

PML4E cache

Page table structures in
system memory (DRAM)

Lookup
direction

21 / 64



Kernel Address-space Layout Randomization (KASLR)

22 / 64



Kernel is mapped in every process

Today’s operating systems:
Shared address space

User memory Kernel memory
0 −1

context switch

23 / 64



Address-Space Layout Randomization (ASLR)

I Kernel and drivers at randomized o�sets in virtual memory
I Mitigates code reuse attacks e.g. return-oriented-programming
I Attacks based on read primitives or write primitives

I But: leaking kernel/driver addresses defeats ASLR

24 / 64



Address-Space Layout Randomization (ASLR)

I Kernel and drivers at randomized o�sets in virtual memory
I Mitigates code reuse attacks e.g. return-oriented-programming
I Attacks based on read primitives or write primitives
I But: leaking kernel/driver addresses defeats ASLR

24 / 64



Kernel direct-physical map

Virtual address space
User Kernel

Physical memory

0

0 max. phys.

247 −247 −1

dire
ct

map

Available on many operating systems / hypervisors
I OS X
I Linux
I BSD
I Xen PVM (Amazon EC2)

But not on Windows!

25 / 64



Kernel direct-physical map

Virtual address space
User Kernel

Physical memory

0

0 max. phys.

247 −247 −1

dire
ct

map

Available on many operating systems / hypervisors
I OS X
I Linux
I BSD
I Xen PVM (Amazon EC2)

But not on Windows!
25 / 64



Prefetch Side Channel

26 / 64



Summary

1.
I The kernel is mapped in every process

2.
I The prefetch instruction takes a virtual address as input
I To manipulate L3 a physical address is needed
= The prefetch instruction must translate

3.
I The prefetch instruction does not check privileges
= Any address can be prefetched

4.
I Translation is cached
I Lookup searches caches in a fixed order

Can we measure a time di�erence?

27 / 64



Summary

1.
I The kernel is mapped in every process

2.
I The prefetch instruction takes a virtual address as input
I To manipulate L3 a physical address is needed
= The prefetch instruction must translate

3.
I The prefetch instruction does not check privileges
= Any address can be prefetched

4.
I Translation is cached
I Lookup searches caches in a fixed order

Can we measure a time di�erence?

27 / 64



Summary

1.
I The kernel is mapped in every process

2.
I The prefetch instruction takes a virtual address as input
I To manipulate L3 a physical address is needed
= The prefetch instruction must translate

3.
I The prefetch instruction does not check privileges
= Any address can be prefetched

4.
I Translation is cached
I Lookup searches caches in a fixed order

Can we measure a time di�erence?

27 / 64



Summary

1.
I The kernel is mapped in every process

2.
I The prefetch instruction takes a virtual address as input
I To manipulate L3 a physical address is needed
= The prefetch instruction must translate

3.
I The prefetch instruction does not check privileges
= Any address can be prefetched

4.
I Translation is cached
I Lookup searches caches in a fixed order

Can we measure a time di�erence?

27 / 64



Summary

1.
I The kernel is mapped in every process

2.
I The prefetch instruction takes a virtual address as input
I To manipulate L3 a physical address is needed
= The prefetch instruction must translate

3.
I The prefetch instruction does not check privileges
= Any address can be prefetched

4.
I Translation is cached
I Lookup searches caches in a fixed order

Can we measure a time di�erence?
27 / 64



There is a timing di�erence!

PDPT PD PT cached P. uncached P.

200

300

400

230
246

222

181

383

Mapping level

Ex
ec

ut
io

n
tim

e
in

cy
cl

es

Idea: Would this also work on inaccessible kernel memory?

28 / 64



Prefetching the Kernel

29 / 64



A translation oracle

Definition of our translation oracle
I Timing the prefetch instruction on an arbitrary address will recover the

translation level

30 / 64



Recovering a map of the kernel

Recovering /proc/pid/pagemap in 4 steps:

1. Recover mappings in PML4 by using the translation oracle on kernel
addresses

2. Recover mappings in PDPT by using the translation oracle on kernel
addresses

3. Recover mappings in PD by using the translation oracle on kernel addresses
4. Recover mappings in PT by using the translation oracle on kernel addresses

Complete process takes from seconds to hours depending on how pages are
actually mapped by the operating system.

31 / 64



Recovering a map of the kernel

Recovering /proc/pid/pagemap in 4 steps:

1. Recover mappings in PML4 by using the translation oracle on kernel
addresses

2. Recover mappings in PDPT by using the translation oracle on kernel
addresses

3. Recover mappings in PD by using the translation oracle on kernel addresses
4. Recover mappings in PT by using the translation oracle on kernel addresses

Complete process takes from seconds to hours depending on how pages are
actually mapped by the operating system.

31 / 64



Recovering a map of the kernel

Recovering /proc/pid/pagemap in 4 steps:

1. Recover mappings in PML4 by using the translation oracle on kernel
addresses

2. Recover mappings in PDPT by using the translation oracle on kernel
addresses

3. Recover mappings in PD by using the translation oracle on kernel addresses

4. Recover mappings in PT by using the translation oracle on kernel addresses

Complete process takes from seconds to hours depending on how pages are
actually mapped by the operating system.

31 / 64



Recovering a map of the kernel

Recovering /proc/pid/pagemap in 4 steps:

1. Recover mappings in PML4 by using the translation oracle on kernel
addresses

2. Recover mappings in PDPT by using the translation oracle on kernel
addresses

3. Recover mappings in PD by using the translation oracle on kernel addresses
4. Recover mappings in PT by using the translation oracle on kernel addresses

Complete process takes from seconds to hours depending on how pages are
actually mapped by the operating system.

31 / 64



Recovering a map of the kernel

Recovering /proc/pid/pagemap in 4 steps:

1. Recover mappings in PML4 by using the translation oracle on kernel
addresses

2. Recover mappings in PDPT by using the translation oracle on kernel
addresses

3. Recover mappings in PD by using the translation oracle on kernel addresses
4. Recover mappings in PT by using the translation oracle on kernel addresses

Complete process takes from seconds to hours depending on how pages are
actually mapped by the operating system.

31 / 64



The address-translation oracle

The address-translation oracle tell us whether virtual address p and p̄ map to the
same physical address

1. Use clflush to remove p from cache

2. Use prefetch to load p̄ into cache
3. time access of p. If fast it was cached: p: maps to the same physical memory

as p̄

Beware! prefetch is a hint!

32 / 64



The address-translation oracle

The address-translation oracle tell us whether virtual address p and p̄ map to the
same physical address

1. Use clflush to remove p from cache
2. Use prefetch to load p̄ into cache

3. time access of p. If fast it was cached: p: maps to the same physical memory
as p̄

Beware! prefetch is a hint!

32 / 64



The address-translation oracle

The address-translation oracle tell us whether virtual address p and p̄ map to the
same physical address

1. Use clflush to remove p from cache
2. Use prefetch to load p̄ into cache
3. time access of p. If fast it was cached: p: maps to the same physical memory

as p̄

Beware! prefetch is a hint!

32 / 64



Timing instructions

The CPU may reorder instructions – a look at rdtscp

instruction 1

rdtscp

instruction 2

rdtscp

instruction 3

33 / 64



Timing instructions

The CPU may reorder instructions – a look at rdtscp

instruction 1

rdtscp

instruction 2

rdtscp

instruction 3

3

3

3

33 / 64



Timing instructions

The CPU may reorder instructions – a look at rdtscp

instruction 1

rdtscp

instruction 2

rdtscp

instruction 3

7

7

33 / 64



Timing instructions

The CPU may reorder instructions – a look at mfence

instruction 1

mfence

instruction 2

mfence

instruction 3

34 / 64



Timing instructions

The CPU may reorder instructions – a look at mfence

instruction 1

mfence

instruction 2

mfence

instruction 3

3

3

3

34 / 64



Timing instructions

The CPU may reorder instructions – a look at mfence

instruction 1

mfence

instruction 2

mfence

instruction 3

7

7

34 / 64



Timing instructions
The CPU may reorder instructions

instruction 1

cpuid

instruction 2

cpuid

instruction 3

but not over cpuid!

35 / 64



Timing the prefetch instruction

The CPU may reorder prefetch instruction – a look at rdtscp

prefetch

rdtscp

prefetch

rdtscp

prefetch

36 / 64



Timing the prefetch instruction

The CPU may reorder prefetch instruction – a look at rdtscp

prefetch

rdtscp

prefetch

rdtscp

prefetch

3

3

3

36 / 64



Timing the prefetch instruction

The CPU may reorder prefetch instruction – a look at rdtscp

prefetch

rdtscp

prefetch

rdtscp

prefetch

3

3

36 / 64



Timing the prefetch instruction

The CPU may reorder instructions – a look at mfence

prefetch

mfence

prefetch

mfence

prefetch

37 / 64



Timing the prefetch instruction

The CPU may reorder instructions – a look at mfence

prefetch

mfence

prefetch

mfence

prefetch

3

3

3

37 / 64



Timing the prefetch instruction

The CPU may reorder instructions – a look at mfence

prefetch

mfence

prefetch

mfence

prefetch

3

3

37 / 64



Timing instructions

Combine instructions in clever procedures to
I prevent reordering of prefetch if necessary

= mfence rdtscp cpuid target instruction cpuid rdtscp mfence

I avoid noise from cpuid if possible

= mfence cpuid rdtscp target instruction rdtscp cpuid mfence

38 / 64



Timing instructions

Combine instructions in clever procedures to
I prevent reordering of prefetch if necessary

= mfence rdtscp cpuid target instruction cpuid rdtscp mfence

I avoid noise from cpuid if possible

= mfence cpuid rdtscp target instruction rdtscp cpuid mfence

38 / 64



Timing instructions

Combine instructions in clever procedures to
I prevent reordering of prefetch if necessary

= mfence rdtscp cpuid target instruction cpuid rdtscp mfence

I avoid noise from cpuid if possible
= mfence cpuid rdtscp target instruction rdtscp cpuid mfence

38 / 64



Timing instructions

Combine instructions in clever procedures to
I prevent reordering of prefetch if necessary

= mfence rdtscp cpuid target instruction cpuid rdtscp mfence

I avoid noise from cpuid if possible
= mfence cpuid rdtscp target instruction rdtscp cpuid mfence

We use either the prefetchnta or prefetcht2 instructions and a mov instruction
for memory access

38 / 64



Case study: Defeating Windows 7 KASLR

39 / 64



Windows 7 Memory layout

I HAL and kernel located bewetween
I start: 0xffff f800 0000 0000
I end : 0xffff f87f ffff ffff

I Kernel drivers
I start: 0xffff f880 0000 0000
I end : 0xffff f8ff ffff ffff

40 / 64



Windows 7 Breaking KASLR

1. Map the drivers address space using translation recovery attack

2. Evict the page translation caches: Sleep() and/or access large memory
bu�er

3. Perform a syscall to targeted driver
4. Time prefetch(PageAddress)

5. Repeat 2,3,4 for all pages found in 1
Fastest average access time is right address.

41 / 64



Windows 7 Breaking KASLR

1. Map the drivers address space using translation recovery attack
2. Evict the page translation caches: Sleep() and/or access large memory

bu�er

3. Perform a syscall to targeted driver
4. Time prefetch(PageAddress)

5. Repeat 2,3,4 for all pages found in 1
Fastest average access time is right address.

41 / 64



Windows 7 Breaking KASLR

1. Map the drivers address space using translation recovery attack
2. Evict the page translation caches: Sleep() and/or access large memory

bu�er
3. Perform a syscall to targeted driver

4. Time prefetch(PageAddress)

5. Repeat 2,3,4 for all pages found in 1
Fastest average access time is right address.

41 / 64



Windows 7 Breaking KASLR

1. Map the drivers address space using translation recovery attack
2. Evict the page translation caches: Sleep() and/or access large memory

bu�er
3. Perform a syscall to targeted driver
4. Time prefetch(PageAddress)

5. Repeat 2,3,4 for all pages found in 1
Fastest average access time is right address.

41 / 64



Windows 7 Breaking KASLR

1. Map the drivers address space using translation recovery attack
2. Evict the page translation caches: Sleep() and/or access large memory

bu�er
3. Perform a syscall to targeted driver
4. Time prefetch(PageAddress)

5. Repeat 2,3,4 for all pages found in 1
Fastest average access time is right address.

41 / 64



Locate Kernel Driver (defeat KASLR)

0 4,000 8,000 12,000

90

100

110

120

Page o�set in kernel driver region

Av
g.

ex
ec

ut
io

n
tim

e
in

cy
cl

es

42 / 64



Case study: Exploiting direct-physical maps

43 / 64



Kernel exploits

I Overwrite return address
→ jump to userspace code
I Overwrite stack pointer
→ switch to userspace stack

44 / 64



Mitigating kernel exploits

I Jump to userspace code? Nope! Hardware prevents that.
= Supervisor-mode execution prevention (SMEP)
I Switch to userspace stack? Nope! Hardware prevents that.
= Supervisor-mode access prevention (SMAP)

45 / 64



Kernel direct-physical map

Virtual address space
User Kernel

Physical memory

0

0 max. phys.

247 −247 −1

dire
ct

map

46 / 64



Evading the mitigation

I Get direct-physical-map address of userspace address
→ jump/switch there

Known as “ret2dir” attacks Kemerlis et al. 2014

47 / 64



Mitigating the evasion

I Getting rid of direct-physical map?

Apparently not.
→ Do not leak physical addresses to user

48 / 64



Mitigating the evasion

I Getting rid of direct-physical map? Apparently not.
→ Do not leak physical addresses to user

48 / 64



Circumventing the mitigation

Prefetching via direct-physical map
I use known address or translation recovery attack to find the

direct-physical-map
I find user mode address in with direct-physical map using

address-translation oracle

49 / 64



Circumventing the mitigation

Prefetching via direct-physical map

0 20 40 60 80 100 120 140 160 180 200 220 240
100

150

200

250

Page o�set in direct-physical mapM
in

.a
cc

es
s

la
te

nc
y

in
cy

cl
es

50 / 64



Prefetching via direct-physical map

I immediately leaks a direct-physical map address
→ no information leak necessary (compared to ret2dir)
I if direct-physical map o�set is known
→ leaks physical address

51 / 64



Prefetching via direct-physical map

I works on Linux
I works on OSX
I works on Xen PVM (on Amazon EC2)
I does not work on Windows

I no direct-physical map ;)

52 / 64



Cache side-channel attacks

Powerful side channel in the cloud
I infer user input
I crypto key recovery
I cross-VM, cross-core, even cross-CPU
I any architecture

53 / 64



Cache mapping

slice 0 slice 1 slice 2 slice 3

H

2

offsetsettagphysical address

30

061735

11

line

I slice function H unknown
I reverse-engineered by Hund et al.

2013; Maurice et al. 2015; Inci et al.
2015; Yarom et al. 2015

→ we need the physical address

54 / 64



Rowhammer

Rowhammer: yet another attack requiring physical address information
I Rowhammer: bit flip at a random location in DRAM
I exploitable → gain root privileges Seaborn and Dullien 2015

55 / 64



Rowhammer
“It’s like breaking into an apartment by repeatedly slamming a neighbor’s door until the vibrations
open the door you were after” – Motherboard Vice

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1
. . .

1 1 1 1 1 1 1 1 1 1 1 1 1 1

row bu�er

56 / 64



Rowhammer
“It’s like breaking into an apartment by repeatedly slamming a neighbor’s door until the vibrations
open the door you were after” – Motherboard Vice

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1
. . .

1 1 1 1 1 1 1 1 1 1 1 1 1 1

row bu�er

activate

row bu�er

copy

56 / 64



Rowhammer
“It’s like breaking into an apartment by repeatedly slamming a neighbor’s door until the vibrations
open the door you were after” – Motherboard Vice

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1
. . .

1 1 1 1 1 1 1 1 1 1 1 1 1 1

row bu�er

activate

row bu�er

copy

56 / 64



Rowhammer
“It’s like breaking into an apartment by repeatedly slamming a neighbor’s door until the vibrations
open the door you were after” – Motherboard Vice

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1
. . .

1 1 1 1 1 1 1 1 1 1 1 1 1 1

row bu�er

activate

row bu�er

copy

56 / 64



Rowhammer
“It’s like breaking into an apartment by repeatedly slamming a neighbor’s door until the vibrations
open the door you were after” – Motherboard Vice

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1
. . .

1 1 1 1 1 1 1 1 1 1 1 1 1 1

row bu�er

activate

row bu�er

copy

56 / 64



Rowhammer
“It’s like breaking into an apartment by repeatedly slamming a neighbor’s door until the vibrations
open the door you were after” – Motherboard Vice

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1
. . .

1 1 1 1 1 1 1 1 1 1 1 1 1 1

row bu�errow bu�er

1 0 1 1 1 1 1 0 1 0 1 1 1 1

bit flips in row 2!

56 / 64



How is DRAM organized?

channel 0

channel 1

back of DIMM: rank 1

front of DIMM:
rank 0

chip

57 / 64



How is DRAM organized?

channel 0

channel 1

back of DIMM: rank 1

front of DIMM:
rank 0

chip

57 / 64



How is DRAM organized?

channel 0

channel 1

back of DIMM: rank 1

front of DIMM:
rank 0

chip

57 / 64



How is DRAM organized?

channel 0

channel 1

back of DIMM: rank 1

front of DIMM:
rank 0

chip

57 / 64



DRAM organization example

chip
bank 0

row 0
row 1
row 2

. . .
row 32767

row bu�er

I bits in cells in rows
I access: activate row,

copy to row bu�er
I cells leak → refresh

necessary
I cells leak faster upon

proximate accesses

58 / 64



DRAM mapping functions on a DDR4 system

...678911 1012131416171819202122...

BG0
BG1

Rank
BA0

Ch.

15

BA1

Again: based on physical addresses

59 / 64



Summary

I Defeat SMAP/SMEP through direct-physical map
I Leak physical addresses

I Perform cache attacks
I Perform Rowhammer attacks

60 / 64



Black Hat Sound Bytes.

I CPU Design is security relevant (prefetch leaks significant information)
I We can locate a driver in the kernel and thus break KASLR
I We can break SMAP/SMEP and get physical addresses to assist other attacks

61 / 64



Using Undocumented CPU Behaviour to See into Kernel
Mode and Break KASLR in the Process

Anders Fogh and Daniel Gruss

August 4, 2016

62 / 64



Bonus material

63 / 64



Stronger Kernel Isolation

Today’s operating systems:
Shared address space

User memory Kernel memory
0 −1

context switch

Stronger kernel isolation:
User address space

User memory Not mapped
0 −1

Kernel address space

Not mapped Kernel memory
0 −1

context switch

sw
itch

addr.
space

Interrupt
dispatcher

64 / 64



Bibliography I

Hund, Ralf et al. (2013). “Practical Timing Side Channel Attacks against Kernel Space ASLR”. In:
S&P’13.

Inci, Mehmet Sinan et al. (2015). “Seriously, get o� my cloud! Cross-VM RSA Key Recovery in a
Public Cloud”. In: Cryptology ePrint Archive, Report 2015/898, pp. 1–15.

Kemerlis, Vasileios P et al. (2014). “ret2dir: Rethinking kernel isolation”. In: USENIX Security
Symposium, pp. 957–972.

Maurice, Clémentine et al. (2015). “Reverse Engineering Intel Complex Addressing Using
Performance Counters”. In: RAID.

Seaborn, Mark and Thomas Dullien (2015). “Exploiting the DRAM rowhammer bug to gain kernel
privileges”. In: Black Hat 2015 Briefings.

Yarom, Yuval et al. (2015). “Mapping the Intel Last-Level Cache”. In: Cryptology ePrint Archive,
Report 2015/905, pp. 1–12.

65 / 64


	Introduction
	Memory subsystem
	Kernel Address-space Layout Randomization (KASLR)
	Prefetch Side Channel
	Prefetching the Kernel
	Case study: Defeating Windows 7 KASLR
	Case study: Exploiting direct-physical maps
	Bonus material

