AVLeakK:

Fingerprinting Antivirus Emulators
For Advanced Malware Evasion

Alexei Bulazel
@av_leak

blgc’:k hat

USA 2016

August 3, 2016 Black Hat 2016 1

Outline

2. Background
3. AVLeak

4. Results & Demo
5. Conclusions

August 3, 2016 Black Hat 2016 2

Problem

Automated dynamic analysis (aka “sandbox analysis”) is
essential against 1,000,000+ new pieces of malware per day

Malware can behave benignly to avoid detection if it can
determine that it’s being analyzed

— Over 80% of malware exhibited evasive behavior in 2nd
half of 2015

Extensive prior work on detecting traditional emulators and
virtual machines: VMWare, QEMU, Xen, VirtualBox, Bochs, etc

Little prior work on consumer AV emulators

August 3, 2016 Black Hat 2016 3

Motivation

Consumer AV emulators are intuitively easy to evade
But... no one has demonstrated a good approach

Existing methods to extract fingerprints from emulators
are inefficient:

— Reverse engineering
e Too hard

— Black-box dynamic analysis
* Too slow

Our goal: Automate and accelerate fingerprint discovery

August 3, 2016 Black Hat 2016 4

AVLeak

* Novel tool for researchers to easily and
quickly extract fingerprints from
consumer antivirus emulators in order to
evade malware detection

August 3, 2016 Black Hat 2016 5

Outline

1. Introduction

3. AVLeak
4. Results & Demo
5. Conclusions

August 3, 2016 Black Hat 2016)

Environmental artifacts

— Hardcoded strings for username/computer name/environment
variables, file system, registry entries, processes

OS API inconsistency

— Functions that fail, return hardcoded values, generally don’t
behave correctly

Network emulation

— Inconsistencies with real network behavior, hardcoded
responses to network traffic

Timing
— Timing skews, dilation, inconsistencies across observations
Process Introspection

— Internal process traits - uninitialized memory, data left on stack
or in registers after function calls, PEB/TEB, DLLs in memory

CPU “Red Pills”
— Instructions which behave differently on an emulated CPU

August 3, 2016 Black Hat 2016 7

Traditional Malware Sandbox

Many attack points, can look at open source implementations

Analysis m Malware User
Process ‘;u: Process

Analysis
Driver

Virtualized OS =
User User

. _ <> Process Process
Q Virtualized i Qﬂ
EMU toravere 7 00 W5
; Malware)
CUCW Sandbox @«B P \
Operating System :
A or Hypervisor Xe" M

e

Hardware

August 3, 2016 Black Hat 2016

Consumer AV Emulator

Malware

x86 Emulator Environment Usermode WinAPI

7‘ Co A\ Emulator
' L WWW o8y,
L X | User User

-~

O [l .
(l n tel > O Process Process

Antivirus Emulator

Operating System

Hardware

August 3, 2016 Black Hat 2016

Consumer AV Emulator

. Analysis report:
Totally opaque, only output is Dropped: Trojan.Infector.BAT.ABC123

analysis report Dropped: APT1337.Backdoor.?2
Dropped: Cryptolocker.Downloader.K

x86 Emulator Environment Usermode WinA%:

Emulatox
(intel)

Process Process

Op @
! L @ WYW | i User User

Antivirus Emulator

Operating System

Hardware

August 3, 2016 Black Hat 2016 9

Prior Approaches: Mutation

* Mutate a binary with packers
and obfuscators to avoid ’
syl

detection

* Requires no knowledge of AV ([Q\

M

internals

* Pentester-focused, often pack
Metasploit payloads: Veil-
Evasion, SideStep, peCloak,
etc...

August 3, 2016 Black Hat 2016 10

Reversing AV Emulator

s Y

* Time consuming
» Expensive tools

» Expert knowledge
— RE, AV, x86,

Windows internals,

malware behavior,
anti-analysis
» Limited Lifespan -
frequent updates

Joxean Koret
Elias Bachaalany

Uy
s

Bruce Dang Alexandre Gazet. and Elias Bachaalany

Line 20 of 13208

The

(inteD Hacker’s Ha

Intel® 64 and IA-32 Architectures
Software Developer’s Manual

with contributions from Sébastion Josse

Practical

Windows
Malware

Kialysi Internals

Part 1
The Hands-0n Guide to B i ; X86. X64, ARM. WINDOWS® KERNEL
Dissecting Malicious 488 y g OOLS. AND 0BFL
Software

REVERSE
ENGINEERING

SIXTH
(ITIoN

I've done this same exercise with anti-virus engines on a number of occasions. Generally the
steps | use are:

also grep the disassembly for large switch statements. Find the switches that have 200 or
£ more cases and examine them individually. At least one of them will be related to decoding
l the single-byte X86 opcodes.

¢ 5 11 1. Ildentify the CPU/Windows emulator. This is generally the hardest part. Look at filenames, and

. Find the dispatcher for the CALL instruction. Usually it has special processing to determine
whether a fixed address is being called. If this approach yields no fruit, look at the strings in
the surrounding modules to see anything that is obviously related to some Windows API.

. Game over. AV engines differ from the real processor and a genuine copy of Windows in
many easily-discernible ways. Things to inspect: pass bogus arguments to the APIs and see if
they handle erroneous conditions correctly (they never do). See if your emulator models the
AF flag. Look up the exception behavior of a complex instruction and see if your emulator
implements it properly. Look at the implementations of GetTickCount and GetLastError
specifically as these are usually miserably broken.

answered Sep 18 '13 at 8:00

August 3, 2016

Rolf Rolles

Black Hat 2016 11

Prior Approaches: Black Box Testing

* Find emulator fingerprints for targeted evasion
* Prior approaches - single true/false query per run

— Arne Swinnen & Alaeddine Mesbahi - One Packer
To Rule Them All (Black Hat ’14)

— Kyle Adams - Evading Code Emulation (BSidesLV
’14)

— Daniel Sauder - Why Antivirus Software Fails
(DeepSec ’14)

— Emeric Nasi - Bypass Antivirus Dynamic Analysis
(white paper ‘14)

August 3, 2016 Black Hat 2016 12

Prior Approaches: Black Box Testing

Question: Does the emulator AV Emulator
emulate function_x() correctly?

August 3, 2016 Black Hat 2016 (K]

Prior Approaches: Black Box Testing

Question: Does the emulator AV Emulator
emulate function_x() correctly?

if function x() != EXPECTED:
DropMalware ()

else:
Exit()

Malware TRUE

No Malware FALSE

August 3, 2016 Black Hat 2016 (K]

Prior Approaches: Black Box Testing

Question: Does the emulator AV Emulator
emulate function_x() correctly?

if function x() != EXPECTED:
DropMalware ()

else:
Exit()

if function x() != EXPECTED:
DropMalware ()

else:
Exit()

Malware TRUE

No Malware FALSE

August 3, 2016 Black Hat 2016 (K]

Prior Approaches: Black Box Testing

Question: Does the emulator
emulate function_x() correctly?

if function x() != EXPECTED:
DropMalware ()

else:
Exit()

Malware TRUE

No Malware FALSE

AV Emulator

if function x() != EXPECTED:
DropMalware ()

else:
Exit()

Malware
Detected

(function x() not
emulated correctly)

m | No Malware. Detected
(function x
emulated correctly)

August 3, 2016

Black Hat 2016 13

Outline

1. Introduction
2. Background

4. Results & Demo
5. Conclusions

August 3, 2016 Black Hat 2016 14

AVLeak

* Tool and API for extracting
fingerprints from AV emulators with Vi
advanced automated black box batabase
testing A Morris

. Use malware detections to exfiltrate Code Red
specific byte values per run

» C and Python Conficker
— Python API

 Find fingerprints in seconds not hours

C Zeus

Brain

August 3, 2016 Black Hat 2016 15

AVLeak’s Innovation

Map malware
samples to
byte values

AV Emulator
username="emu’”’

August 3, 2016 Black Hat 2016 16

AVLeak’s Innovation

Map malware
samples to

byte values AV Emulator
username="emu’”’

GetUserName ()

A Morris
B Code Red

C Zeus

Conficker

Brain

August 3, 2016 Black Hat 2016 16

AVLeak’s Innovation

Map malware Question: What is the username in the emulator?

samples to

byte values AV Emulator
username="emu’”’

GetUserName ()

A Morris
B Code Red

C Zeus

Conficker

Brain

August 3, 2016 Black Hat 2016 16

AVLeak’s Innovation

Map malware Question: What is the username in the emulator?
samples to
byte values AV Emulator

username="emu’”’

GetUserName ()

for ¢ i1n GetUserName () :

: Drop (MalwareArray[C])
A Morris

B Code Red

C Zeus

Conficker

Brain

August 3, 2016 Black Hat 2016 16

AVLeak’s Innovation

Map malware Question: What is the username in the emulator?

samples to

byte values AV Emulator

username="emu’”’

GetUserName ()

for ¢ in GetUserName () :
Drop (MalwareArray[C])

A Morris
Code Red

Conficker

Brain

August 3, 2016 Black Hat 2016

16

AVLeak’s Innovation

Map malware
samples to
byte values

GetUserName ()

A Morris
Code Red

Conficker

Brain

Question: What is the username in the emulator?

AV Emulator
username="emu’”’

for ¢ in GetUserName () :
Drop (MalwareArray[C])

August 3, 2016

Black Hat 2016

16

AVLeak’s Innovation

Map malware Question: What is the username in the emulator?

samples to

byte values AV Emulator

username="emu’”’

GetUserName ()

for ¢ in GetUserName () :
Drop (MalwareArray[C])

A Morris
Code Red

Conficker

Brain

August 3, 2016 Black Hat 2016

16

AVLeak’s Innovation

Map malware Question: What is the username in the emulator?
samples to

byte values AV Emulator Malware Detected:
username="emu’”’ Sasser // e’

Bagle //‘m’
r Blaster //‘u’

GetUserName
O for ¢ in GetUserNama () :

Drop (Malwarearrayl[cy)

A Morris
Code Red

Zeus

Conficker

Brain

August 3, 2016 Black Hat 2016 16

AVLeak’s Innovation

Map malware
samples to
byte values

GetUserName ()

A Morris
B Code Red

a Conficker

Z Brain

Question: What is the username in the emulator?

AV Emulator Malware Detected:

username=“emu”’ Sasser // Ve’
Bagle //‘m’

rBlaster //Ma’

for ¢ in GetUserNamz ().
Drop (Malwarearray[C])

username="emu”’

August 3, 2016

Black Hat 2016 16

AVs Tested

 Tested four
commercial AVs
found on VirusTotal

— Varying levels of
quality

— Bitdefender -

licensed to 20+
other AVs!

— Installed locally
in isolated VM

bft dEEndEI" VirusBlokAda

ya total

August 3, 2016 Black Hat 2016 17

Outline

1. Introduction
2. Background
3. AVLeak

5. Conclusions

August 3, 2016 Black Hat 2016 18

DEMO

August 3, 2016

Black Hat 2016

19

Environmental Artifacts

» Hardcoded * argv[0]:
program names, - K:C:\{random letters}.exe
COmputer - AVG: C:\..\mwsmpl.exe

BD: C:\TESTAPP.EXE

names, product
- VBA: C:\SELF.EXE

IDs, MACs, etc
ol * GetComputerName():
* FaKe Processes - K: NfZtFbPfH

“running” and . AVG: ELICZ

open windows - BD: tz
- VBA: MAIN

August 3, 2016 Black Hat 2016 20

File System & Registry

* Used API to recursively dump FS and registry

*BD: A E O FANTOMA DE FISIER CARE VA SA ZICA NU EXISTA (Romanian:
“this is a ghost file which will tell you [that] it doesn’t exist.bat”),
TZEAPA A LA BATMAN.EXE (“Batman’s Spike.exe” [with Romanian keyboard

specific misspelling]), C:\\BATMAN, NOTHING.COM

 Kaspersky FS (random flailing on a QWERTY keyboard): C:\\Documents and
Settings\Administrator\My Documents\{koio.mpg, muuo.mp3,
gcse.xls, dvzrv.rar, rpplL.jpg, siso.xlsx, iykk.doc ..}
- STD OUTxe, Dummy.exebat, welcome.exe, Arquivos de programas
» Kaspersky file headers: <KL, Autogenerated>
» Fake installs of other AV products, file sharing clients, games
* AVG Product ID: “76588-371-4839594-51979" A o

0o Up
change log ichange log 44542 |30.01.08 |03:07
contributors contributors 1122113.01.08 |23:52
¥ ar exe |1011 K|30.01.08 (03:10
ar 0_h41?7 zip|614512|03.02.08 |11:22
arEng

hlf (165024 |30.01.08 |03:07
lng| 28604 |30.01.08 |03:07
hlf (173901 |30.01.08 [03:07

rRus ar) 1ng| 31634|30.01.08 |03:07
license icense 1750|11.01.08 |04:42

« Far Manager installs in Kaspersky and VBA

- “Far Manager ... for former USSR countries
... as freeware...”

= Up 03.02.08 11:24||||..
——— 2 096 865 hytes in 9 files 2 096 865 hytes in 9 files
G:\FAR>_

h AL R

PiRight ENie: EIEd 5 N [MkLinkid ¢ SIEE ylR'Nideo BLiTre

August 3, 2016 Black Hat 2016 21

Other AV Products

« Kaspersky has installs for 20+ other AVs

— Agnitum, AntiVir PersonalEdition Classic, eMule, Eset,
FSecure Internet Security, Kaspersky Lab (3 different
versions), KAV6, McAfee, mcafee.com, Messenger, Network
Associates, Norton AntiVirus, Norton Internet Security, QIP,
Rising, Sygate, Symantec, Symantec AntiVirus, Tencent,

Trillian

* Bitdefender AV installs

— Anti Virus, Bitdefender (4 different versions), Complus
Applications, F-PROT95, Grisoft, Inoculate, Kaspersky Lab,
McAfee, Network Associates, Norton Antivirus, Panda
Software, Softwin, Symantec, TBAV, Trend Micro, and Zone

Lab

August 3, 2016 Black Hat 2016 22

Network Emulation

» Kaspersky, AVG, and Bitdefender emulate
network connectivity

» Respond with success to invalid internet
queries

 Downloaded executables from all three
after HTTP connections
— Reverse engineered to find more artifacts
— Probably a way of “baiting” malware

August 3, 2016 Black Hat 2016 23

Hardcoded Start Times

« Kaspersky: 11:01:19, July 13, 2012
* AVG: 1:40:41.16, May 23, 2011
e VBA: 1:31:12.123, November 3, 2014

— GetSystemTimeAsFileTime: 0:0:0.00,
0/0/2000

 Bitdefender:

— GetSystemTimeAsFileTime: 0:0:0.00
January 1, 2008

— GetSystemTime doesn’t work!
— NtQuerySystemTime doesn’t work!

August 3, 2016 Black Hat 2016 24

Process Introspection

Heap metadata, addresses, periodicity of allocations
Contents of uninitialized memory

* Process data structures - PEB, TEB, etc

* Process size

Data left on stack after function calls

— Second Part To Hell’s - “Dynamic Anti-Emulation
using Blackbox Analysis”

* DLLs in memory after LoadLibrary()

et Gh E1Z1 21 This pro?ram
§ <KL Autogenerated>KERNEL32 d1IX\&

August 3, 2016 Black Hat 2016 25

Fake Library Code

» Fake library code in all four AVs

* GetProcAddress () - dump bytes at
returned pointer

* Obscure or excepting instructions are used
to trigger library function emulation when

picked up by CPU emulator

August 3, 2016 Black Hat 2016 26

AVG Code

mov edi, edi ; WinAPI hot patch point
push ebp ; function prologue

mov ebp, esp ; function prologue

nop

lock mov ebx, 0xff(lb lib #)(2b function #)
pop ebp ; function epilogque

ret (size of args) ; stack cleanup

nop...

August 3, 2016 Black Hat 2016 27

CPU Red Pills

dword_427DCAH,
dword_427DCY

» Save CPU state before, run

dword 427DCC,

° ° word_427DDA,
instruction, save CPU state
u) V word 427DD4,
word 427DD6,
word 427DD8,
afte r word_427DDA,
dword_427DDC,
dword_427DEG,
dword 427DEL,

» Denial of service with
unimplemented instructions

edx

. ° dword_427D88,

* [nteresting area for continued
dword 427D88,

dword_427D8C,

h word_427D98,

resea rC word 427D92,
word 427094,

word 427D96,

word_427D98,

word_427D9A,

dword_427D9C,

dword_427DAG,

dword_427DAY4,
dword_ 427DAR,

August 3, 2016 Black Hat 2016 28

Outline

1. Introduction

2. Background

3. AVLeak

4, Results & Demo

August 3, 2016 Black Hat 2016 29
e

Common Themes

* Extremely simple detection methods are
sufficient for evasion

* Hardcoded environmental artifacts clearly
from programmers

* Attempts to “bait” malware

 Lack of heuristic malware classification for
emulation-detection behavior

— Kaspersky does a little bit with its
detection of in-memory DLL scanning

August 3, 2016 Black Hat 2016 30

Low Budget Malware Discovery

» Advanced malware
authors are already | |
using these artifacts [T,

Autogenerated>. MS]MG32.dII. AIphaBIend. Dllinitialize. GradientFill.

Did you mean: "<kl auto generated>"

0b621aa5c4e63b3579eeab52f0422bb9f - Malwr - Malware .
https://malwr.com/.. /ODCZZDZIZJIkYWU2NGYzZJKOZDc4OTczNWE3

7 go - Error: Analysis failed: The package "modules.packages.exe" start function
raised an error: Unable to execute the initial process, analysis ..

58ab5faf7f2928a7eb24d73b3059d2221e2acd83a - Analysis ...
https://totalhash.cymru.com/analysis/?... ¥

Je 1, 2014 - BAT CCCIMceg CCf14Ch4 CCFFf9 CCIMceg "cd#*Z ceeddbbaa™"Y ...\
A_E_O_FANTOMA_DE_FISIER_CARE_VA_SA_ZICA_NU_EXISTA.BAT ..

39fef96e2ef1a9cd27d96d16d4b55dda7d21112f - Analysis ...

https //totalhash cymru.com/analysis/?... ¥
Jan 22, 2015 - ... IsWow64Process KERNEL32.dll <KL Autogenerated> _Iclose

LoadLibrary. LockResource Istrcmpi IstrcpyA IstrcpynW LZStart MoveFileEXA ...

Analysis | #totalhash - Team Cymru

https: //totalhash cymru.com/analysis/?... ¥

Jan 2, 2014 - File type, PE32 executable for MS Windows (GUI) Intel 80386 32-bit.
Language, 040904b0. Section .text md5: ...

Malware Analysis Database - totalhash
https://totalhash.com/analysis/?...

Aug 14, 2014 - DLL kfkS_)Y(W <KL Autogenerated> #k~nel %I0ra#j I1Aj78=V
LCMapStringA _Icreat | g*Y'Y:S+R LoadLibraryA LoadLibraryExA LoadResource ...

4166¢77a7f7891ce8756fb9784c46a2da2d511dd - Analysis ...
http /[totalhash.cymru.com/analysis/?...

g , 2014 - File type, PE32 executable for MS Windows (GUI) Intel 80386 32-bit.
Language 040904B0. Section .text md5: .

Analysis | #totalhash
com/analysis/f361693130dcaab81c08abeb2550f147b796745d
4 - Creates File, C:\Documents and Settings\Administrator\Local
Settings\Temp\2445_appcompat.ixt. Creates File, PIPE\Isarpc. Creates Process ...

€094d944954303f06d769b89a46e650cc347dc4f - Analysis ...
https://totalhash.cymru.com/analysis/?...

Jan 1, 2014 - ... BMSx:TR B-"Q+= "bTs p~ bY/KB+G -,C8nQA c,ae) C:\
A_E_O_FANTOMA_DE_FISIER_CARE_VA_SA_ZICA_NU_EXISTA.BAT
California1#0!

August 3, 2016 Black Hat 2016 31

Malware Insights - EvilBunny

» EvilBunny (Animal Farm S oo
APT) was evading :
Bitdefender in 2011

« “TESTAPP” = process
name in Bitdefender

- Kaspersky? W o
» Discovered by\‘ :

eax, eax
loc_4855AF

Marion Marschalek

August 3, 2016 Black Hat 2016 32

Evasion

» AVLeak-derived fingerprints make it
extremely easy to evade detection

* 100% evasion rate in testing

#1 "avleak.hﬂ

int main(int argc, char * argv[]){
char target[30] = {6};
int len=38;
GetComputerName(target, (LPDWORD)&len);
(strcmp(target, "tz") == 08){

exit(1);

¥
L seq
printf("Real System, dropping EICAR\n");
EICAR();

¥

¥
August 3, 2016 Black Hat 2016 33

Future Work

rJoxean Koret
Elias Bachaalany

'“xj

* More emulators,
more tests

» Use AVLeak for Project zero
vulnerabili ty News and updates from the Project Zero team at Google
research against
emulators (breakout

Do we understand the risk vs. benefit trade-offs of security software?

exploits)

Introduction

Many antivirus products include emulation capabilities that are intended to allow unpackers to run for a few cycles before signatures

S T °
O are applied. ESET NOD32 uses a minifilter or kext to intercept all disk 1/0, which is analyzed and then emulated if executable code is
rmandy and

Attackers can cause I/O via Web Browsers, Email, IM, file sharing, network storage, USB, or hundreds of other vectors. Whenever a
J Oxea n KO ret , S message, file, image or other data is received, it's likely some untrusted data passes through the disk. Because it's so easy for

attackers to trigger emulation of untrusted code, it's critically important that the emulator is robust and isolated.

Unfortunately, analysis of ESET emulation reveals that is not the case and it can be trivially compromised. This report discusses the

WO r k development of a remote root exploit for an ESET vulnerability and demonstrates how attackers could compromise ESET users. This
is not a theoretical risk, recent evidence suggests a growing interest in anti-virus products from advanced attackers.

August 3, 2016 Black Hat 2016 34

Conclusion

» Pushed the state of the art in emulator
fingerprinting

* Presented a survey of emulator
fingerprints across six categories

 Demonstrated real world examples of
malware exploiting these fingerprints

 Discussed directions in future research

August 3, 2016 Black Hat 2016 35

Thank You

* RP| Research Team: < Help & Inspiration:

— Jeremy Blackthorne — Marion Marshalek
— Andrew Fasano — Rolf Rolles

— Patrick Biernat — Alex lonescu

— Dr. Bulent Yener — Bruce Dang

— Dr. Greg Hughes — Dr. Sergey Bratus

RPISEC

August 3, 2016 Black Hat 2016 36

Questions’

blgc’zk hat

Kaspersky Lab - Packin’ The K

Co-located with the 25th USENIX Security Symposium
! 10th USENIX Workshop on
Offensive Technologies
usenix
AUGUST 8-9, 2016 ¢ AUSTIN, TX T N

Blackthorne, Bulazel, Fasano, Biernat,
and Yener - “AVLeak: Fingerprinting
Antivirus Emulators Through Black Box
Testing” published next week at 10th
USENIX Workshop on Offensive
Technologies (WOOT ’16)

@av_leak

August 3, 2016

Black Hat 2016 37

BACKUP SLIDES
& ADDITIONAL CONTENT

Additional Slides

» Bibliography & Further Reading
» Additional Attacks

* Function Emulation

* Malware Discovery

» Software Engineering

August 3, 2016 Black Hat 2016 39

Co-located with the 25th USENIX Security Symposium

- 10th USENIX Workshop on
Offensive Technologies

NNNNNNNNNNN

AUGUST 8—9, 2016 o AUSTIN, TX S onreunc sgE

AVLeak:
Fingerprinting Antivirus Emulators Through Black-Box Testing

Jeremy Blackthorne Alexei Bulazel Andrew Fasano Patrick Biernat Biilent Yener
Rensselaer Polytechnic Institute

For a more thorough exposition of AVLeak, check out our WOOT ’16
paper: Blackthorne, Bulazel, Fasano, Biernat, and Yener - “AVLeak:
Fingerprinting Antivirus Emulators Through Black Box Testing”

https://www.usenix.org/conference/woot16/workshop-program

August 3, 2016 Black Hat 2016 40

Joxean Koret & Elias Bachaalany
The Antivirus Hacker’s Handbook

 This book is awesome, @ co ..

everything you could “Antlvu“ugf

ever want to know
ackersHa e

about AV

* Wish | had a copy while
doing this research,
would have answered a
lot of questions

August 3, 2016 Black Hat 2016 41

Prior Black-Box Testing Presentations

« Arne Swinnen & Alaeddine Mesbahi, One Packer To Rule Them All,
Black Hat 2014

— https://www.blackhat.com/docs/us-14/materials/us-14-
Mesbahi-One-Packer-To-Rule-Them-All-WP.pdf

— https://www.youtube.com/watch?v=gtLMXxZErWE

» Kyle Adams, Evading Code Emulation: Writing Ridiculously Obvious
Malware That Bypasses AV, BSides Las Vegas 2014

— https://www.youtube.com/watch?v=tkOtBkvS9xY
« Daniel Sauder, Why Antivirus Software Fails, DeepSec 2014
— https://www.youtube.com/watch?v=o0e-KPageZrl

« Emeric Nasi, Bypass Antivirus Dynamic Analysis, self-published white
paper
— http://www.sevagas.com/IMG/pdf/BypassAVDynamics. pdf

August 3, 2016 Black Hat 2016 42

Additional Presentations

* Christopher Kruegel - Full System Emulation:
Achieving Successful Automated Dynamic Analysis of
Evasive Malware (Black Hat 2014) [malware evasion]

* Georg Wicherski - Dirtbox, an x86/Window Emulator
(REcon 2010 / Black Hat 2010) [emulating evasive
malware]

* Ke Sun, Xiaoning Li, Ya Ou - Break Out of The Truman
Show: Active Detection and Escape of Dynamic
Binary Instrumentation (Black Hat Asia 2016)
[interesting ideas for process introspection style
attacks]

August 3, 2016 Black Hat 2016 43

Blog Posts

* Rolf Rolles - Memory Lane: Hacking Renovo [exploiting packed
code detection to leak data from an academic system]

* Marion Marschalek - EvilBunny: Malware Instrumented By Lua
[EvilBunny writeup]

* Eugene Kaspersky - Emulation: A Headache To Develop and
Emulate To Exterminate [rare public statements about
emulation from Kaspersky Lab CEO and founder]

« Tavis Ormandy -Analysis and Exploitation of an ESET
Vulnerability [emulator breakout exploits]

» Second Part To Hell - Dynamic Anti-Emulation using Blackbox
Analysis [emulator detection through undocumented register
states, no prior access to the emulator necessary]

August 3, 2016 Black Hat 2016 44

Papers

« Jeremy Blackthorne & Dr. Bulent Yener - Reverse Engineering Anti-Virus
Emulators through Black-box Analysis [technical report on an AVLeak prototype]

« Katsunari Yoshioka, et al - Your Sandbox is Blinded [novel attack on network-
connected sandboxes]

« Peter Ferrie - Attacks on Virtual Machine Emulators / More Attacks on Virtual
Machine Emulators [catalog of attacks on popular virtualization systems]

« Garfinkel et al - Compatibility is Not Transparency: VMM Detection Myths and
Realities [why it’s “fundamentally infeasible” to build an undetectable
virtualization system]

« Kevin Hamlen et al - Exploiting An Antivirus Interface; Filiol et al - Evaluation
methodology and theoretical model for antiviral behavioural detection
strategies; Filiol - Malware pattern scanning schemes secure against black-box
analysis; Borello et al - From the design of a generic metamorphic engine to a
black-box classification of antivirus detection techniques [black box testing to
discover static signatures]

August 3, 2016 Black Hat 2016 45

Reversing Emulators

Rolf Rolles answered a reverse engineering Stack Exchange question one my collaborators on this research made early on
in our efforts. Following through with Rolf’s advice, we tried REing some emulators, it was extremely challenging as they
are immensely complex, and so large that IDA lags significantly and sometimes even crashes during analysis.

http://reverseengineering.stackexchange.com/questions/2805/detecting-an-emulator-using-the-windows-api

I've done this same exercise with anti-virus engines on a number of occasions. Generally the
steps | use are:

11 1. ldentify the CPU/Windows emulator. This is generally the hardest part. Look at filenames, and
also grep the disassembly for large switch statements. Find the switches that have 200 or
more cases and examine them individually. At least one of them will be related to decoding
the single-byte X86 opcodes.

. Find the dispatcher for the CALL instruction. Usually it has special processing to determine
whether a fixed address is being called. If this approach yields no fruit, look at the strings in
the surrounding modules to see anything that is obviously related to some Windows API.

. Game over. AV engines differ from the real processor and a genuine copy of Windows in
many easily-discernible ways. Things to inspect: pass bogus arguments to the APIs and see if
they handle erroneous conditions correctly (they never do). See if your emulator models the
AF flag. Look up the exception behavior of a complex instruction and see if your emulator
implements it properly. Look at the implementations of GetTickCount and GetLastError
specifically as these are usually miserably broken.

answered Sep 18 '13 at 8:00

¥ Rolf Rolles

e

August 3, 2016 Black Hat 2016 46

Advanced Attacks on High End System

« Traditional malware sandboxes (ie: Anubis, Cuckoo, and various high-end
enterprise network protection systems) generally run a full Windows OS install
on top of virtualized hardware (such as CPU-level hypervisors, VMware /
VirtualBox, or QEMU). Malware analysis may be carried out through in-box
instrumentation in user or kernel mode, or through out-of-box system
introspection.

« These systems generally return rich analysis reports detailing specific malware
actions (ie: files created, mutexes opened, registry entries opened). Attackers
may exploit these reports to exfiltrate system fingerprints by using observed
artifacts in their actions (ie: creating a file named after an observed artifact,
thereby leaking the artifact through the analysis report).

« Further, as Yoshioka et al demonstrate in “Your Sandbox is Blinded: Impact of
Decoy Injection to Public Malware Analysis Systems” (https://
www.jstage.jst.go.jp/article/ipsjjip/19/0/19_0_153/_pdf), emulator artifacts
may also be leaked through web traffic in network connected analysis systems.
Despite this vulnerability, these systems are often network connected, as
malware may not show its full behavior if run in an isolated system.

August 3, 2016 Black Hat 2016 47

Advanced Attacks on High End System

Sandbox fingerprints:
Username: SndbxUsr

Usermode process: debug process.exe
Driver: analysis driver.sys

Analysis Malware User
Process \ ” Process
ASIE:?:;S Virtualized OS u
User User
Process Process

Virtualized
EMU taraware 7 00 \/
cuckooi=” Malware
K"%u \ Sandbox
’ Operating System \
A or Hypervisor xe" M

e

Hardware

August 3, 2016 Black Hat 2016 48

Advanced Attacks on High End System

Sandbox fingerprints:
http://c2.com/mal.php?username= Username: SndbxUsr

Usermode process: debug process.exe

Driver: analysis driver.sys

Analysis Malware User
Process \ ” Process
ASIE:?:;S Virtualized OS u
User User .
Process Process Analys 1S repor t:

Created file: SndbxUsr.txt
Opened mutex: debug process exe
Edited registry: analysis driver sys

@EmuU o @ 9w
CUC%{ \ Malware

Sandbox

’ Operating System \
A or Hypervisor xe" M

e

Hardware

August 3, 2016 Black Hat 2016 48

Specific Version Info

« Kaspersky Antivirus
15.0.2.480

* Emsisoft Commandline
Scanner 10.0.0.5366
(specific Bitdefender engine
version unclear - See http://
www.av-comparatives.org/
av-vendors/)

e AVG 2015.0.6173 bitdefenderl viruseiokAda
 VBA Windows/CL 3.12.26.4

August 3, 2016 Black Hat 2016 49

AV Emulator Limitations

* Run on home computers - quickly and without a lot of
memory

» Respect copyright and software licensing
— No QEMU/Xen/VMWare
— Can’t use real Windows OS code
» Generally poor software engineering in the AV industry

— Trying to keep up with 1M+ malware samples per
day means its hard to maintain old code

— Look at Tavis Ormandy’s Project Zero work for
examples...

August 3, 2016 Black Hat 2016 50

OS API Inconsistency

* Functions fail, return failure, cause analysis to stop,
etc...

— Don’t often return unique multibyte fingerprints,
doesn’t vastly benefit from AVLeak over prior
testing schemes

* Lack of permissions enforcement for FS
* Clipboard manipulation
* Window / GUI interaction not emulated
* AVG FormatMessage()

— “MID[dwMessageld in hex]”

August 3, 2016 Black Hat 2016 51

Timing Fingerprinting

* GetTickCount, GetSystemTime,
GetSystemTimeAsFileTime,NtQuerySystemTime,
QueryPerformanceCounter, rdtsc, rdtscp

* No need for sophisticated timing attacks

 Time is another environmental artifact
— Static unchanging start values

« Kaspersky & AVG: attempt to be realistic
» Bitdefender & VBA: totally dysfunctional

August 3, 2016 Black Hat 2016 52

Bitdefender Code

push 0x0

push (three byte #)
call Oxffff(two byte #)
add esp, 0x8

jmp Oxffff(two byte #)

int3.. ; Int3 instructions between functions is unique
; 1n the Windows system DLLs I examined, nops
; were present between functions.

push 0x0060(two byte #)
push 0xBF80001

ret » ret to 0xBF80001

August 3, 2016 Black Hat 2016 53

VBA Code

mov edi, edi ; WinAPI hot patch point

nop

nop

jecxz S$+0 ; Jmp ecx==0 to next instr
<:jn¢>$+0 ; Jjmp to next instr
<:nmN'DWORD PTR OXFFF1l[2 byte export #], 0x406

ret (size of args) ; stack cleanup

hlt.. ; H1lt instructions between functions

August 3, 2016 Black Hat 2016 54

Kaspersky Code

» Kaspersky would generate random bytes
per run after first few bytes of each
function. Looking at code would frequently
result in heuristic malware classifications.

mov edi, edi
push (address of function)
(random bytes generated per run)

nop...

August 3, 2016 Black Hat 2016 55

Thai Malware

» Googled Windows product
DRI RIIWN\ICENCIINSIGAAUG stuff proc near
- 76588-371-4839594-51979 lock mov ebx, OFF810598h
« Found AVG-evasive retn
malware hosted on AVG_stuft endp

website for Thai school -
likely hacked
 Contained hundreds of
AVG fingerprints AVG function emulation

« Two uploads to VT before
us since 2012

August 3, 2016 Black Hat 2016 56

AVLeak Architecture

e Test cases written in C

* Write once, run anywhere against any AV

* Python API to build scriptable test cases
- Dynamic testing scripts
- Integrate with other applications

* Easy to integrate new AVs
- Automated with scripts

August 3, 2016 Black Hat 2016 57

Design

* AVLeak is designed to be easy to use and portable
— Anyone who can write C code can write tests
— Tests work against any AV
* AVLeak Python code automates the process of
compiling binaries, scanning them, and
reconstructing results
— AVs can detect varying numbers of dropped

malware samples per run, so it is almost

always necessary to compile multiple test
binaries

August 3, 2016 Black Hat 2016 58

Example Command Line Invocation

$ python run test.py k test/environment/argv0.c --printmax 100 -n 7 --nobase
KASPERSKY OUTPUT: A A A T
:\nixav.exe

:\ifitgx.exe :
:\hyzglgz.exe don’t run
: \pgxmt . exe test on host
:\adkxkz.exe

:tgi;igiif:}e{e AV to test path to code number of times to run test

number of bytes to print

OO0 00 0N

$ python run test.py kaev test/environment/GetComputerName.c --printmax 20
BASE OUTPUT:
WIN-PN9R6J7FCOD
KASPERSKY OUTPUT:
NfZtFbPfH

AVG OUTPUT:

ELICZ

EMSISOFT OUTPUT:
tz

VBA OUTPUT:

MAIN

August 3, 2016 Black Hat 2016 59

AVLeak Flow

Probe code in C

#include “avleak.h"

int main(
int argc,
char * argv[])
{
leak(argv([0]);
}

August 3, 2016 Black Hat 2016 60

AVLeak Flow

Probe code in C

#include “avleak.h"

int main(
int argc,
char * argv[])
{
leak(argv([0]);
}

August 3, 2016 Black Hat 2016 60

AVLeak Flow

Probe code in C

#include “avleak.h"

int main(
int argc,
char * argv[])
{
leak(argv([0]);
}

August 3, 2016 Black Hat 2016 60

AVLeak Flow

Probe code in C

#include “avleak.h"

int main(
int argc,
char * argv[])

{

leak(argv[0]);
}

August 3, 2016 Black Hat 2016 60

AVLeak Flow

Probe code in C

#include “avleak.h"

int main(
int argc,
char * argv[])

{

leak(argv[0]);
}

August 3, 2016 Black Hat 2016 60

AVLeak Flow

Compiler

Probe code in C

#include “avleak.h" Malware Found!
int main(
int argc,
char * argv[])
{
leak(argv[0]);
}

August 3, 2016 Black Hat 2016 60

Example Test Case

#include *“avleak.h"

int main(int argc, char * argv[]){
char target[30] = {0};
DWORD 1len=30;
GetUserName(target, &len);

leak(target); // easy to use API 1like
// printing to stdout

}

August 3, 2016 Black Hat 2016 61

API

* An easy to use Python API provides
programmatic access to AVLeak

* This can be used to create dynamic testing
routines, for example: recursive
exploration of file systems and registries,
programatic dumping of in memory code,
red pill testing

» Can also be integrated with other libraries,
such as Capstone for in-line disassembly

August 3, 2016 Black Hat 2016 62

Example Testing Script

from AVLeak import *

http flags = ["HTTP QUERY ACCEPT",
"HTTP_ QUERY ACCEPT CHARSET",
"HTTP_QUERY ACCEPT ENCODING",

]

def test http(av):
for flag in http flags:
result = av.leak(
testfile = "HttpQueryInfo flags.c",
string = flag,
printmax = 20)

print flag, "-", result

August 3, 2016 Black Hat 2016 63

int main() {
HANDLE hSnapshot = CreateToolhelp32Snapshot(TH32CS SNAPPROCESS,0);
char out[30] = {0};
int count = 0;
if (hSnapshot != INVALID HANDLE VALUE) {
PROCESSENTRY32 pe32;
pe32.dwSize = sizeof (PROCESSENTRY32);
if (Process32First (hSnapshot, &pe32)) {
do {
sprintf (out, "%d %s",pe32.th32ProcessID,pe32.szExeFile);
#ifdef AV //inside AV, N AV incremented for each process

#else //real system
leak (out);
#endif
count++;
} while(Process32Next (hSnapshot, &pe32));

}
CloseHandle (hSnapshot);
}
}
August 3, 2016 Black Hat 2016 64

