
Sections are Types, Linking is Policy: Using the Loader Format for
Expressing Programmer Intent

Julian Bangert, Sergey Bratus, Rebecca Shapiro, Jason Reeves, Sean W. Smith, Anna Shubina
Dartmouth College

Maxwell Koo
Narf Industries

Michael E. Locasto
University of Calgary

July 25, 2016

Extends and updates
Dartmouth Computer Science Technical Report TR2013-727

(June 14, 2013)

Abstract
Attackers get software to perform unintended computation (exploits) by feeding code with data it was not intended
to consume. Since security policies contain explicit specifications of intended code operation, policy enforcement
mechanisms can curb exploits when exploit-induced computation runs afoul of a policy specification. However, current
policy approaches leave many exposures: for example, neither filesystem-level permissions and labels nor process-
level isolation protect userspace code from exposure to corrupted network inputs and from further corrupting userspace
data. All these unintended interactions take place in the single address space of a process where such policies don’t
reach.

In this paper, we present a new approach to policy specification and enforcement within an application’s address
space. Our approach, called ELFbac, leverages the ELF ABI metadata already produced by the standard GNU build
chain and is designed to work with existing ELF executables and to maintain full compatibility with the existing ABI.
It can also be extended to other modern compiler toolchains and ABIs that support passing linking information to the
OS loaders.

We show that linking data in binary components of a typical binary project contains an unmined wealth of infor-
mation about developer intent. This information can be captured and made into enforceable policy with just a little
help from the programmer, no changes to the C/C++ build chain or development process, and no cognitive overhead.
It can also be retrofitted to old code and existing libraries—and achieve significant isolation between components not
intended to interact. Moreover, the linking data structures in the ELF ABI format and similar formats turn out to be a
rich channel for expressing and communicating policy to the OS loader, which can use it to set up the process address
space to enforce it.

We implemented prototype ELFbac mechanisms for Linux on both x86 and ARM, and used them in several system-
hardening projects.

This paper extends and updates Dartmouth Computer Science Technical Report TR2013-727.1

1https://www.cs.dartmouth.edu/reports/abstracts/TR2013-727/

2

https://www.cs.dartmouth.edu/reports/abstracts/TR2013-727/

1 Introduction

In this paper, we describe the design and implementation
of ELFbac,2 a policy mechanism for specifying intent of
semantically distinct intra-process code units and com-
ponents at the Application Binary Interface (ABI) level.
ELFbac separates different code components of a pro-
gram (such as libraries or functional modules of the main
program) in its process’ address space and monitors their
accesses to their related data components, to enforce the
intended pattern of their interactions—at the granularity
compatible with the program’s ABI format units such as
ELF sections.

A typical binary Executable and Linkable Format
(ELF) file on Linux contains about 30 sections. These
sections are semantically distinct code and data units of
the program; many of then have exclusive relationships,
such as certain data sections being intended to be ac-
cessed or changed by certain code sections only, or to
receive control only at certain circumstances and only
from certain other sections. Many of these relationships
come from the standard Glibc runtime, such as initializa-
tion before main(), relocation, or dynamic linking; others
pertain more closely to the program’s own code and data.
Other ABI binary formats of the common COFF descent,
such as Windows PE and Mac OS X’s Mach-O, feature
similar structures and relationships.

All of this information, however, is discarded by the
OS loader—even though it clearly describes identities
and intents of code and data units, and could be directly
made into policy. The loader does not distinguish be-
tween ELF sections, but rather loads them in “segments”,
broad groups that pack sections with different semantics
into a single segment. This often discards the sections’
clearly expressed intent. For example, a non-executable
section containing read-only data is loaded together with
the executable sections—and therefore its contents also
become executable at runtime, though they were clearly
not meant to be so and were marked as such in the
executable. Such “optimizations” are a legacy of per-
ceived address space scarcity and smaller caches, and are
largely irrelevant for modern 64-bit systems. Yet loaders
persist in discarding valuable intent information and the
very identity of the program’s code and data units.

We present a way of “rescuing” this information for
policy and acting on it for enforcement of the program-
mer intents. Further, we show how to augment it to ex-
press richer program-specific intents, without creating a
cognitive overload for the developer, using only concepts
already familiar to C/C++ programmers and supported
by the GNU build chain from source code to the exe-
cutable.

2ELF-based access control so named because its access control
units are the native units of the Executable and Linkable Format (ELF).

We call our design ELFbac, as it uses objects of the
ELF ABI as its policy principles, expressing their in-
tended behavior in access control lists (as well as by
other means). We implemented ELFbac enforcement
prototypes for Linux on both x86 and ARM platforms,
and describe these later in the paper; yet we want to stress
that we consider the design—and, in particular, its rein-
terpretation of the linking ABI data for policy—more im-
portant.

1.1 Design Goals and Contributions

Our study of the linking data and its path down the binary
build chain from the source code’s compilation units and
libraries to the final executable in a C/C++ project re-
vealed these as a natural vehicle for describing intents,
i.e., a policy—at a minimal cost to the development tool
chain and process. It convinced us that sections of the
ELF binary format and comparable executable formats
are a natural unit or principals for policies expressing
semantic intent (we give examples of such policies be-
low).

Sections are natural intent-level policy principals.
Indeed, sections (a) already represent semantically dis-
tinct units of code and data; (b) can be further customized
at the cost of very little programmer-supplied annota-
tion, with no changes to the GNU C/C++ build chain,
which already includes an attribute extension for creating
custom sections; and (c) are intuitively clear to C/C++
programmers who understand compilation units and file-
scoping. Essentially, we get an entire set of data struc-
tures that express identities and intents for free—and also
communicate them to the kernel (where the enforcement
mechanism resides) in its native format for describing
and handling binary objects.

[Most] sections are types. Generally speaking, the
idea of types as data abstractions is that of a collection
of objects such that a particular set of operations can be
applied to each object [14]. It is, of course, a stretch to
extend it to all ABI sections, but many are indeed defined
by their exclusive relationships with some specific code;
thus we have their intent and identity defined through op-
erations on them, at least with regard to access. Indeed,
whenever a data section can be defined in terms of exclu-
sive access from some code operating on it, it should be,
as it may help prevent unintended computation (which
we discuss in the next section). This relationship can
be seen as biased towards data sections, but it is, in fact,
symmetric: data flowing from unintended units to code is
a security risk, because that data was likely not validated
for that code and may cause unintended behaviors (the
UDEREF feature of the Grsecurity/PaX Linux harden-
ing suite protects the kernel against just such poisoning
by user data).

3

GNU build chain already supports lightweight an-
notation. Our annotation typically requires no more than
an extra line per compilation unit; it is supported by GCC
“out of the box”. Custom sections can be created with
the GNU pragma (__section__(...)), and are han-
dled transparently by the linker. If needed, these can
be even be positioned at specific memory locations by
manipulating the linker map, a trick familiar to (at least)
embedded programmers and intuitive to others.

The loader is a key policy enabler. The only part
of the platform where substantial changes are required
is the OS loader. Their main purpose is to maintain
knowledge of where the executable’s and the shared ob-
jects’ sections are mapped within a process space, and
to arm the virtual memory system to trap accesses that
are contrary to the sections’ respective intents—turning
the loader from a “forgetful” one into an “unforgetful”
policy helper. Since the loader is the OS component ded-
icated to parsing and handling an executable’s structure,
it naturally becomes the centerpiece of the enforcement
mechanism for the executable’s parts. It already does
much of this work by design—and it’s only natural to
extend it to do more.

Linking is policy. Grouping of code and data with
similar semantics together in a binary enables com-
mon access protections for the group. Thus grouping—
performed by the linker, and not paid much attention
to—is actually not just a convenience but also a policy
enabler, and should be treated as such. The linker then
becomes an expressive policy tool.

Sections want to be connected with VMAs. From
the data structure-centric point of view, both ELF meta-
data and the kernel’s virtual memory area descriptors
(e.g., vm_area_struct structures) contain very simi-
lar information describing the identities and properties
of dedicated contiguous areas within a process’ virtual
address space. It’s just during loading that these identi-
ties are handled a lot more coarsely, for reasons no longer
relevant to modern systems. ELFbac’s unforgetful loader
bridges the current unfortunate gap between these two
kinds of closely related data structures.

How to read this paper. Section 2 discusses how the
policy phenomenon of programmer intent relates to ex-
ploitation and its mitigations. Section 3 makes the case
for intent-based policies to address composition. Sec-
tion 4 gives a motivating example, and Section 5 explains
our approach to intent-level policy.

Section 6 presents our design, and Section 7 discusses
how applications and OSes could best take advantage of
it. Section 8 discusses our prototype implementations.
Finally, Section 9 sketches out ways to evaluate its real-
world effectiveness.

security
relevance

engineering
tractability

file-level
permissions

ELF/ABI-level
sections

lines of code,
specific vars

"sweet
spot"

Figure 1: The ABI-level code/data granularity is the
“sweet spot”.

2 Intent vs Unintended Computation

The point of policy is to prevent unintended computa-
tion.3 By contrast, exploitation is inducing unintended
computation on the target; it has been described as dis-
covering, instantiating, and programming an unexpected
computation model (a so-called “weird machine” [18,
40]) inside the target.4 The specific “machines” un-
derlying unintended or unexpected computations reused
code from traditional C/C++ compiled implementations
of the control flow between functions via a call frame
stack (ROP, JOP, [38] etc.), heap management for DL-
malloc-derived and Jemalloc heaps [3, 4, 26], Unix sig-
nals (SROP [10]), implementation of virtual functions in
OOP (COOP [39]), RTLD metadata [34], GNU C++ ex-
ception handling [32], x86 MMU descriptor tables [8],
and so on.

Unintended computations widely differ in their tasks,
complexity, and in the kind of target code they reuse. For
example, a browser heap exploit may chain several in-
formation leaks and memory corruption bugs, whereas
Heartbleed relied on a single parser bug not involving
any corruption. But whether the vehicles of unintended
computation and the programming of the weird machine
depend on memory corruption, manipulation of meta-
data, or corruption-less misinterpretation of inputs5—

3 There is a notational difference between unintended vs unex-
pected computation: some kinds of unintended computation are ex-
pected though must still be prevented. Others are neither intended not
expected; they are the “unknown unknowns” of the policy. We’ll use
unintended to mean either.

4The exploit itself serves as a proof-by-construction of the unin-
tended computation model’s existence and programmability by attack-
ers.

5Prominent examples of these are SQLi, XSS, parser differentials
such as X.509 [24] or Android Master Key [22], and, lately, Heartbleed
and Shellshock, among others.

4

their common feature is that the programmer’s intent is
violated.

2.1 Infer or Specify?

Consequently, security policies seek to constrain com-
putation to its intended constraints. The key question is
whether to infer intent or to let the programmer specify
it explicitly—or use some combination of both, to avoid
overburdening the programmer.
Infer. Actual binary execution in common platform
could stray very far from the language-based abstractions
and related invariants that a programmer would take for
granted. Common C/C++6 compilation conventions and
userland runtime mechanisms such as heap management
and even input-output systems [30, 36] used to place no
restrictions at all on either memory accesses or on con-
trol transfers within x86 userspace.7 For example, re-
turns or jumps would land on instructions never meant
to be a target of one, or, in fact, inside a multi-byte in-
struction, causing instructions never emitted as such by
the compiler to be decoded and executed; heap manage-
ment code would splice “free lists” of chunks in memory
areas other than the heap; stack operations would occur
on “pivoted” memory areas other than the stack; a dy-
namic linker-loader would “relocate” bytes in memory
segments never meant to be relocated [34,41], and so on.
Even after the introduction of hardware primitives such
as the NX bit and SMEP/SMAP for trapping processor
accesses to certain memory areas contrary to the systems
programmer’s intentions for them,8 the gap between pro-
grammer abstractions and the actual runtime execution
environment remained huge (and encouraged mitigations
such as code first checking for signs of known integrity
violations in the data before operating on it).

Thus a variety of approaches arose to infer the natu-
ral constraints derived from these abstractions—assumed
to be unambiguously included among the programmer’s
intents—translate them to systems primitives such as
trapping or memory translation, and enforce them as a
part of the policy. Among these are Control Flow In-
tegrity, Data Flow Integrity, Software Fault Isolation and
its variants (since software modularization is another ab-
straction programmers are expected to understand and

6“C is a programming language for turning byte arrays into security
advisories”, Francois-Rene Rideau, https://twitter.com/fare/
status/657349102078984193

7Other platforms had some weak restrictions like address
alignment—which still made ROP for RISC and ARM non-trivially
harder than for x86, cf. [19].

8We note that enforcing these intentions was a part of advanced de-
fense strategy even before these primitives became available; the Grse-
curity/PaX pioneered their semantics in NOEXEC and UDEREF fea-
tures by cleverly emulating these primitives long before they became
available—and essentially made the industry case for their usefulness.

intend), XFI, and others [1,16,20,21,25,27,42,45]. Pow-
erful techniques like memory shadowing and dynamic
taint propagation were developed to support their im-
plementation. Considering the gap between the possible
in common platforms—especially x86—and the higher-
level abstractions in which the next generations of pro-
grammers are taught, these translational approaches will
continue to be productive.

However, these approaches have one thing in com-
mon: they leave the programmer—and thus the program-
mer’s knowledge of what is intended beyond the pro-
gramming language abstractions—out of the picture.

In a perfect world, the language’s own constructs
would go a long way. For example, translating the
functional languages maxim, Make illegal state unrepre-
sentable, down to hardware in a strict fashion would kill
most exploit techniques because their execution literally
depends on a sequence of illegal states [18]. However,
functional languages for which such translation would
be most effective are the furthest from production.

This cuts both ways. Whereas the programmers aren’t
burdened with formulating any additional expectations,
they may also know something about the semantics of
the data that goes beyond the language abstractions. For
example, the programmer might know that the crypto-
graphic keys are the crown jewels of a program and
should only be operated upon by certain code. Language
abstractions, even in a language with concepts of encap-
sulation and isolation, may not be flexible enough to ex-
press and prioritize this knowledge for an automatically
inferred policy.

In our design, we infer over a dozen of access rules
and relationships between the standard units of the Glibc
runtime, including the relationship between the dynamic
linker (ld.so, the Linux RTLD) and the Global Off-
set Table (GOT) sections of any loaded executable and
shared object (the GOT is the only section of the ex-
ecutable space that the RTLD is intended to write, al-
though it can be tricked into overwriting many other lo-
cations [7]). Similarly, we infer these relationships for
any loaded shared object where they exist.

It should be noted that most of the unintended com-
putation mechanisms mentioned above—notably, except
those that depend on the parser misinterpretation of
crafted inputs—involve referencing of data units in mem-
ory by code units not meant to do so. Whereas all such
relationships would be hard to describe, at least the most
critical ones for the security of a program can be ex-
pressed and prevented by grouping code and data into
named sections with exclusive relationships.
Specify. Letting the programmers enforceably specify
their additional knowledge about the semantics of a pro-
gram or its units, is, of course, a major area where pro-
gramming languages meet systems research, and is too

5

https://twitter.com/fare/status/657349102078984193
https://twitter.com/fare/status/657349102078984193

broad to review here. In practice, however, it poses hard
challenges for use in production.

What are the units in which the semantics and the in-
tents are specified? How do they translate down to the
system’s ABI elements? Most importantly, can the pro-
grammers be persuaded to annotate their programs, let
alone learn a new language? Can the annotated code co-
exist with non-annotated one in production?

A policy that requires too much additional specifica-
tion is likely to see slow adoption. For example, SELinux
policies required the programmer or the administrator to
specify all allowed accesses via file and process labels—
a burden in the traditional Unix model. As a result, few
Linux distributions adopted strict SELinux policies. It
took the introduction of Android with much more restric-
tive defaults of programming model for SELinux to be-
come a part of a widespread Linux platform.

Not surprisingly, the semantic annotations that did get
broadly deployed came in as seamless extensions of the
existing build chains rather than as new languages or sub-
systems. For example, the now-common annotation of
userland pointers in the Linux kernel depends on GCC’s
attribute extension.

In our design, we build on the existing GCC attribute
extension, by use of which the programmers annotate the
program’s code and data units, and relationships when
such annotations are warranted by the special role of the
units or their exclusive relationships.

3 Composition

Modern programs are overwhelmingly built by compos-
ing libraries, modules, classes, and objects into some
cohesive whole. Each component, composed of code
and/or data, has some explicit high-level purpose or in-
tent. The intended use of a component defines its ex-
pected behavior, not least w.r.t. its accesses to other
components. It’s hard to estimate where, in what part
of actual exploitation incidents, the unexpected compu-
tation caused by the exploits violates programmers’ in-
tended cross-component interactions, but many exploita-
tion methods indeed do so.

For example, the intended usage of the libpng library
is to convert compressed images to bitmaps; the intent of
a table of virtual function pointers is to be set up at the
beginning of a process’ execution and called throughout,
the intent of the Global Offset Table (GOT) is to be writ-
ten only by the dynamic linker-loader (RTLD). Note that
the function pointers or GOT entries should not be over-
written by libpng—but that’s what an attack exploiting
a vulnerability in libpng may do. Similarly, a library
tasked with parsing data from the Internet (such as a DNS
resolver, libresolv) is not intended to read user private

keys kept by an SSL/TLS library—but may in fact do so.
9

Modern ABI formats descended from COFF, such as
ELF, PE, and Mach-O10 already distinguish up to 30 se-
mantically distinct types of code and data sections in
a typical executable, and allow programmers to easily
define more custom types.11 Most of these types can
be characterized by their intended mutual relationships
(“code section X is only meant to read data section Y and
write Z”). However, at runtime all such information, al-
though available to the loader, is forgotten—once loaded,
all code can access all data within the process, and pass
control to any other code within the process, no matter
what the original intent. ELFbac changes this loader be-
havior.

ELFbac’s loader (we call it an unforgetful loader and
discuss it in Section 7.5) remembers the identities of the
ELF sections it loads,12 and, in our x86 64 prototype,
enforces the access control relationships between them
using the x86 MMU’s virtual memory support. Accesses
contrary to the policy are trapped and handled; the list
of intended (allowed) accesses is stored in a special ELF
.elfbac section.

ELFbac brings policy to the exact same basic level on
which modern software is composed—and allows pro-
grammers to express the intent of the components with
a process. We observe that data structures in modern
ABI formats provide a natural, flexible, and effective
way to express and label semantically distinct code and
data components that act as subjects and objects of intra-
process, inter-component access control policies. Thus
our prototype expresses intent-level semantics at the ABI
granularity.13 As Figure 1 illustrates, this is the “sweet
spot” for policy enforcement as it allows for detailed,
yet not burdening communication of a component’s in-
tent from its programmer to the enforcement mechanism

9A somewhat compressed list of libpng vulnerabilities: CVE-
2006-{0481,3334,5793}, CVE-2007-{2445,5266,5267,5268,5269},
CVE-2008-{1382,3964}, CVE-2009-0040, CVE-2010-1205, CVE-
2011-{0408,2690,2691,2692,3026,3048,3328,3464}, CVE-2012-
3386, CVE-2013-6954, CVE-2014-{0333,9495}

10Although in this paper we focus on ELF as the dominant format
of the Unix OS family, our ideas can be applied to other types of exe-
cutable formats and operating systems.

11The GCC toolchain already supports creation of custom sections
from C/C++ with the GCC extensions pragma section .

12Unix loaders traditionally operate on segments and disregard sec-
tions. This helped conserve address space fragmentation, arguably im-
portant for 32-bit address spaces (at the cost of mapping, say, .rodata
as executable; these days, 64-bit address spaces obviate the need for
such economy.

13In standard theory usage, program semantics are described in terms
of predicates, invariants, and various formal logic statements. Such
formal tools, however, are typically outside the reach of an industry
programmer, at either developer or architect levels. We do not intend to
use the term in this meaning and instead focus on high-level properties
and statements that match common programmer intuitions.

6

throughout the binary toolchain [12].

4 Motivating Example

Large numbers of software vulnerabilities are exploitable
because code and data that live within the same process
address space can interact with each other in ways not
intended by the developer. We consider a simple example
of unintended interactions to highlight the shortcomings
of current approaches to access control.

Figure 2 shows some C source code for a file server
that reads in requests for files, fetches the files from disk,
encrypts the files, and sends the encrypted files over the
network.

Unfortunately, process() has a buffer overflow bug.
Due to this bug, an attacker with control over the input
to the file server can write to arbitrary memory locations.
The attacker can use this ability to change the flow of
control in the server. If the server uses defense mech-
anisms such as the NX-bit preventing code injection,
the attacker can use techniques such as return-oriented-
programming [29, 38]; if the server uses the defense ad-
dress space layout randomization (ASLR), the attacker
can use techniques such as Müller’s [28], etc.

In a nutshell, not knowing a memory address is not
the same as being unable to access its contents, because
a symbol not “officially” exported may still be computed,
as it happens often enough via information leak bugs. We
note that verifying the absence of info leaks in software
is a daunting task; a defender able to trap unintended ac-
cesses appears to have a much stronger position that one
who depends on the attacker being unable to compute
what to access.

Once the attacker alters the control flow via this bug in
process(), the attacker can proceed to the “crown jew-
els” in encrypt(), such as disabling encryption or ex-
tracting the encryption key.

It is not unreasonable to assume that encrypt() was
provided by a well-vetted third-party library. Finding
a cryptographic vulnerability in such libraries is non-
trivial; however, simple bugs that leak the cryptographic
key material are not exactly rare (cf. Heartbleed, the
GNU TLS Hello bug, and others). Since all code and
data elements in a process live within the same address
space, the key material can be leaked through exploit-
ing the process() function, which probably would not
have been (and should not have needed to be) analyzed
by the more security-aware engineers who implemented
encrypt().

static char *encryption_key = "super secret";

void input(){
 int *data = read_data();
 process(data);
}

void process(int *data){
 data[data[0]]= data[1];
 /* We have a trivially exploitable
 * write-1-byte primitive here.
 * In the real world, this would be hidden
 * or constructed through smaller primitives
 */

 void *encrypted_data = encrypt(data);
 send(encrypted_data);
}

void *encrypt(int *data){ ... }
void send(void *data){
 printf("%s", data);
}

Figure 2: Simple program demonstrating the problem
of too-coarse protection granularity: the vulnerabil-
ity in process() compromises the secret key used by
encrypt(), even if encrypt() is a separate and well-
vetted library.

5 Our Approach

Deployed Unix policies, up to and including SELinux
and AppArmor, treat an application as having a “bag of
permissions”, which can be exercised by its process in
any order and any number of times. However, there is a
clear benefit for, within an application, not treating every
segment of code (including all the libraries) as equal. Just
because fork(), exec(), and memcpy() are mapped into a
process’s address space doesn’t mean, e.g., that security-
critical code that validates untrusted input should be able
to invoke these functions at any time.

The labeling of code and data units for program-
mer intent and expectations must exist and be enforced
on the same level where the primary act of software
engineering—composition—takes place. Security labels
must match the units in which software is written, im-
ported from libraries, and, ultimately, loaded and linked
at runtime. ELFbac flexibly supports labeling at differ-
ent granularities, from individual symbols (treated as a
section) to whole libraries, so a policy can be expressed
at the granularity that makes the most sense to the devel-
oper.

These days, it is practically impossible to write a
meaningful program without using code from scores of
different external libraries, likely written by third-party

7

developers. Even if the original libraries were vetted
in some way, they will likely be updated or replaced
as the underlying operating system and system config-
uration changes. Furthermore, even first-party code is
likely also structured into different modules, each with
its own intended use. For example, consider the mod-
ern Firefox browser. While it is running in Linux, over
100 libraries are mapped into its address space and can
be accessed from any code executing in the context of
the Firefox process. Examples of libraries mapped into
the Firefox address space include libFLAC.so (encod-
ing/decoding certain types of audio files), libdrm.so (di-
rect access to video hardware), libresolv.so (handles
DNS lookups), libssl3.so (SSL and other crypto), and
libc (standard C library functions). Each library has its
own purpose and is used by Firefox with a certain in-
tent in mind. However, a bug in one library (for exam-
ple libdrm.so) can be triggered by a second library (for
example, libresolv.so)—even if, from the developer’s
point of view, the second library has no business access-
ing the first library. Since Firefox uses each of these li-
braries with a certain intent in mind, it is natural to draw
trust boundaries around each library and within the main
executable itself, treating each segment of code and data
within a boundary differently from a security perspec-
tive.

There are also other potential natural boundaries at
various granularities we can consider—including func-
tions and object files, as each is created with a certain
intent in mind. However, all these things—functions, ob-
ject files, libraries—have two key things in common. (I)
each reflects some separate intended semantics (“what
this code is for”), and (II) the compiler-linker toolchain
has knowledge of each during the build process.

In ELFbac, we use (II) to capture (I), and extend the
chain to the OS loader, making it “unforgetful” of this
rough semantics of intent. Examples include “this library
function is only meant to work on this kind of data, type
of object, or region of memory”, “this library function is
only intended to be executed during initialization phase
of a program or during error-handling”, or “these data
are only meant to be accessed in the initialization phase
of a program or during error-handling”.

6 ELFbac Architectural Design

Figure 3 shows the overall architecture of our ELFbac
prototype. Section 6.1 presents our policy language.
Section 6.2 discusses an ELFbac policy for our exam-
ple from Section 4. Section 6.3 presents tools to assist a
programmer in creating a policy.

user

kernel

hardware

code
(legacy)

code
(legacy)

code
(annotated)

compiler
(legacy or

instrumented)

linker
(instrumented)

unforgetful
loader
(new)

kernel shim (new)

emulator
(now)

FlexTrap
(future)

Policy FSM
(new)

policy tool
(new)

Libraries for
instrumentation,

debug

linked code and policy

Figure 3: The ELFbac architecture

6.1 ELFbac Policy

ELFbac policies are expressed as finite state machines
(FSMs). Each state is a label representing a particular
abstract phase of program execution that a given section
of code in the program or library drives. The inputs to
the automaton are memory accesses of the program. The
policy defines a set of transitions between these states
(such that there is at most one transition for each pair
of state and memory address) and the allowed unit-level
memory accesses for each state.

Practically speaking, being in a particular state means
that (1) the Program Counter (RIP) is currently inside
a particular section, and (2) the program’s control flow
transitioned from an appropriate previous state (or the
initial state). Thus a code section can be visited in more
than one state, depending on the program’s execution his-
tory. We note that the program counter position as an
indicator of the intended program state has been used
in several projects, such as Sancus [31] and Salus [6],
where it is called PCBAC14; however, associating mul-
tiple states with the same PC has not, to the best of our
knowledge, been explored.

In particular, for each state in an ELFbac policy, there
is a set of rules that specify what data and code can be
used, and how these sections can be used in terms of
read, write, and execute permissions. In this manner
we are able to treat different sections of executing code
within a single process differently with respect to secu-

14https://distrinet.cs.kuleuven.be/software/pcbac/

8

https://distrinet.cs.kuleuven.be/software/pcbac/

rity. These rules also need to specify what state to tran-
sition to after a given memory access, which often is the
same state the process was in prior to the memory access.
In a graph representation of the FSM, the transitions that
do not change state correspond to loops, whereas those
that do correspond to non-loop edges, so all information
is encoded in the edges of the graph. In fact, the state-
ments of our policy language are isomorphic to directed
edges of the FSM.

policy_statement :=

data_rule | call_rule

An ELFbac policy distinguishes between two kinds of
rules: memory access rules and function call rules. Each
policy rule is a transition in the finite state machine, so
we call them “data transition” and “call transition” re-
spectively. Each transition specifies a source and destina-
tion state and the interval of virtual addresses that trigger
it. In any given state, there is exactly one rule that spec-
ifies how to handle a memory access to a given offset. If
no rule is explicitly specified, the memory access is de-
nied, which usually results in a segmentation violation
and the (logged) termination of the program. If a rule
does not specify a destination state, it is assumed that the
destination state equals the source state.

data_rule :=

from_state (-> to_state)

{read ,write ,exec}

from_symbol (to end_symbol)}

Data transitions allow the program to read, write, or exe-
cute the specified memory address. We expect most rules
regarding data accesses to not cause state transitions—
for example, “Code executed while in state cryptography
is allowed to read memory labeled key material”. How-
ever, rules that transition to a different state on a memory
access attempt are also valid. If only a single symbol or
address is specified, this corresponds to the implicit ’size’
of the referenced object, as determined by the ELF sym-
bol tables and headers. (“Code executing while state is
input may trigger a transition to state cryptography when
reading memory labeled key material.”)

call_rule :=

source_state -> dest_state

call symbol (return) (paraminfo)

A call transition does not allow memory accesses, yet
its semantics make expressing transitions between states
more convenient. It triggers on an instruction fetch from
a single virtual address, usually corresponding to the en-
try point of a function. In addition to syntactic con-
venience features for parameter passing, call rules can
also allow a one-time return transition back to the source
state. Return transitions allow access to the instruction
after the jump that went to the faulting instruction, cor-
responding to a function return.

If function returns were not treated differently, then
a widely-used function (for example, in the C library)
would have to be allowed to jump to the instruction fol-
lowing every call to it, which would give an attacker
threatening flexibility in changing the control flow.

However, both the call and return transitions are
merely convenience features and can be replaced by mul-
tiple states with data transitions when reasoning about
the policy. For example, suppose we have states X,Y,Z

with:

X exec x_func

Y -> X call x_func

Z -> X call x_func

We can then equivalently create two states X 1,X 2

with:

X_1 exec x_func

X_2 exec x_func

Y -> X_1 exec x_func -x_func

Y -> X_2 exec x_func -x_func

If this call rule had return transitions, those would cor-
respond to

X_1 -> Y exec y_ret

X_2 -> Z exec z_ret

where y ret and z ret are the instructions following
calls to x func.

By removing these convenience features, the ELFbac
policy can be reduced to a regular expression matching
the memory accesses of a program. Whereas it is very
hard at best to make any useful statements about the ma-
chine code itself (as it is Turing-complete), we can make
statements about the policy, as it’s a weaker finite state
machine. For example, it would be very convenient to be
able to prove a statement such as “data from the filesys-
tem must be encrypted before being sent over the net-
work”. In general, proving such a statement about a
program itself is undecidable by the Rice-Shapiro the-
orem [35]. However, assuming we can trust our cryp-
tography and authentication code, we can put all code
writing to the network in one state and then verify that
all transitions leading to that state occur from the cryp-
tography state. ELFbac then guarantees that all data will
have been passed through the cryptography module be-
fore it is sent, reducing the amount of code that has to be
formally verified.

6.2 Policy Example
Our example program in Figure 2 can be naturally di-
vided into four phases: input, processing, encryption,
and output. In a reasonably well-designed program,
these four phases would be in different modules, func-
tions, or classes, depending on the language in which

9

process
ing

crypto

input

output

Policy FSM Address space

encrypted_heap

unencrypted_heap

encryption_key

process()

encrypt()

input()

output()

Code: Exec

Data: Write

call

call

call

r,w

r,w

r,w

r,w

read

exec

exec

exec

exec

Figure 4: A sample ELFbac policy for our program ex-
ample from Figure 2.

the program was implemented. (We posit that, for pro-
grams in general, security-relevant progressing steps can
be similarly separated into such stages.)

Figure 5 is such an ELFbac policy as the programmer
creates it. Figure 4 shows this policy as a finite state
machine. Each arrow label corresponds to one transi-
tion, which is triggered by access to a particular region
in memory. Without ELFbac, only writable data and ex-
ecutable code are separated by the memory system, as
shown by the shaded boxes.

The four states are only allowed to execute one of
the code modules at once. Similarly, each has differ-
ent access permissions with regard to the three data ar-
eas. The input stage is allowed to access system calls15

and write to the unencrypted heap area. The processing
phase, which contains the critical security vulnerability,
can only read or write to the unencrypted heap and nei-
ther affect the key material nor cause sensitive data to be
sent unencrypted.

6.3 Automating Policy Creation

We automatically generate policies to isolate an exe-
cutable and the libraries with which it is dynamically
linked, by default creating two states, one for the libraries
and one for the main binary.16 Our tool analyzes ELF

15System call restrictions were not used in our results section, as we
are currently developing mechanisms that are portable between archi-
tectures and do not impact the existing kernel design.

16Every library should have its own state, and if the user specifies
this, such a policy can be created. However, some libraries (such as
pthreads, dl, and libc) interact in ways not obvious from their ELF
symbols.

HEAP unencrypted_heap, encrypted_heap
input_phase exec input
input_phase read,write unencrypted_heap
input_phase syscalls * //Allow all syscalls
input_phase -> processing_phase call process

processing_phase read,write unencrypted_heap
processing_phase exec process
processing_phase -> crypto_phase call encrypt

crypto_phase exec encrypt
crypto_phase read .encryption_key
crypto_phase read unencrypted_heap
crypto_phase read,write encrypted_heap
crypto_phase -> output_phase call output

output_phase exec output
output_phase syscalls *
output_phase read encrypted_heap

Figure 5: Source code of the sample ELFbac policy.

symbol tables to determine which imported library func-
tions get called and creates a call rule for each of those.
So far, the programmer needs to manually allow call-
backs and other instances where the library should be
allowed to call a function in the main program.

Because it is difficult to determine control flow within
ELF sections or which data should be accessible by
which code from binary code alone, more advanced tools
are under development.

7 Designing for Intent-level Semantics

Our goal is to help humans and systems better reason and
communicate about trustworthy behavior. A basic char-
acterization of a trustworthy system is “the system and
all of its components behave as intended and expected.”
Thus, to build a trustworthy system, it is crucial to be
able to express and communicate both intentions and ex-
pectations as well as verify their congruence (or at least
compatibility). One of the simplest and yet most impor-
tant elements of this communication is specifying intent
of a particular software component—that is, a high-level
description of what it is meant for.

An application’s developers typically have the best un-
derstanding of what the intended behaviors of the appli-
cation’s code units are, even within large multi-developer
applications. An application’s developers are also best
suited for picking out what variables/symbols/data/con-
trol flows are most sensitive and important with regards
to security. For example, the developers tend to have
the best idea of which sections of code should be off-
limits until a user has authenticated, and which sections

10

of data should be off-limits to external helper libraries17

throughout the program’s runtime. Therefore, we have
designed ELFbac with the purpose of allowing an appli-
cation’s developers to express an application’s intended
behaviors in an ELFbac policy in a concise yet usable
manner.

7.1 Co-designing Application Structure
and Policy

We believe the solution is to move toward compartmen-
talizing segments of code and data inside a process’s ad-
dress space. Our approach is to use the code and data
granularity already present in the loader format to spec-
ify intra-process security policy, and then to augment the
existing software and hardware architectures to enforce
it. We believe that this approach will lend itself to devel-
oping policies supporting intent-level semantics.

We need to be able to create policies that support
intent-level semantics on the appropriate code and data
granularity. To achieve this goal, we rely on a series of
insights:

• Code and data are already semantically divided at
development.

• These code/data divisions are conveniently carried
over to the binary level by the loader format speci-
fication.

• Even if the developer does not explicitly specify a
policy, we can often infer an implicit policy from
the code/data divisions already in the executable’s
ELF section headers and symbol tables.

Developers tend to structure their applications into dif-
ferent modules and formulate “interface contracts” be-
tween the modules that specify the intent and behavior
of each unit of code. Such rules/contracts can be explic-
itly encoded in object-oriented languages such as C++
and Java, where classes, fields, and methods are marked
as public, private, or protected. It is up to the compiler
to enforce these rules—unfortunately, this knowledge is
discarded and thus not enforced at runtime.

Since software is designed in terms of libraries, mod-
ules, and individual symbols, our policy mechanism tar-
gets these as granularity levels. We focus on the binary
toolchain because it operates at precisely these granu-
larities. Libraries and modules correspond to different
ELF files, and most compilers allow the programmer to
arbitrarily group symbols into sections through vendor-
specific extensions at granularities that make the most

17Attackers leveraged vulnerabilities in popular image and media li-
braries to get through them at the application’s “crown jewels” data,
even though those libraries were obviously not intended to access such
data, only to render generic presentation material.

sense to the developer. For example, in Figure 2, the pro-
grammer can write a very fine-grained policy for security
critical components such as the encrypt() function, yet
treat the entire process() module (which in a real world
application would consist of many functions) as a single
entity.

7.2 A Note on Semantics of Unit Relation-
ships

It’s also important to consider the unit relationships be-
tween code and data. In a well-designed program, exclu-
sive access relationships alone can serve as a good proxy
for the unit’s intent—and therefore as a basis for succinct
expression of an enforceable access policy. (As we show
later in Section 7.4, the standard ELF section structure
already expresses a wealth of such relationships.)

Due to the inherent complexity of modern applica-
tions, we treat code units as black boxes whose intended
behavior can only be verified by their interaction with
other code and data units. Non-trivial semantic rela-
tionships can be extracted from mere annotations of in-
tended accesses, just as a grammatically correct sentence
made of nouns of obscure or undefined meaning never-
theless conveys important information about the refer-
ents of these nouns. A classic example is “the gostak
distims the doshes”18: even though we don’t know what
the gostak or the doshes are, we know of their relation-
ships that the gostak is that which distims the doshes, that
distimming is what the gostak does to the doshes, and so
on. For all intents and purposes, we can now define a
policy to describe this as an intended behavior, so long
as we have labels for gostak and doshes, and can recog-
nize distimming.

A complex program contains many code units that will
likely remain as opaque to a policy mechanism as the
gostak is to English speakers, and whose intended be-
havior can only be described based on their relationships
with other units. This opacity strongly correlates with the
amount of context needed for a code unit to determine if
the data it is about to work on is valid. For a parser (or
an input recognizer in general), it is comparatively easy
enough—or should be easy enough with the right mes-
sages format design—to check if a particular input bits or
bytes are as the input language grammar specifies, based
on locally available context (e.g., a few bytes previously
seen in input or a few bytes of look-ahead).

Unfortunately, not all code units are so comparatively
lucky. Consider a typical collection data structure such
as a heap or a hash table of C structs or C++ objects
that are chained (via pointers or offsets) internally and

18The phrase was coined in 1903 by Andrew Ingraham, and popu-
larized by C.K. Ogden and I.A. Richards in their book The Meaning of
Meaning.

11

with other objects; and consider code units that follow
the pointers and change the collection elements and their
linkages. For such a structure collection to be valid (“as
expected”), it does not suffice for just the bytes of each
particular member to be valid—all of the pointer (or off-
set) linkages must also be valid. Should a link point to
an invalid location, a method that uses that link to mutate
its target object will likely mutate something else, lend-
ing itself to exploitation use (as demonstrated by a large
amount of hacker research, e.g., [3, 23, 26] and the most
recent [5]).

This poses a conundrum for the programmer writing
such code units. To make sure that all the linkages are
correct (for the semantics of data structure), one would
potentially need to walk them all, which is unrealistic,
inefficient, and would explode a simple task, such as
adding or deleting an element from a heap free list or
a hash table’s collision list, into verifying a lot of things
about the entire table first. In other words, the context
needed to verify the data being worked on is too large
and non-local. So this is not how such code is written.
This brings us to how it’s actually done.

A typical accompanying expectation for these code
units is that they are substantially isolated from (prop-
erly validated) inputs—otherwise maliciously crafted in-
put easily leads to numerous heap metadata and object
store exploits that make exploit primitives out of inno-
cent object maintenance routines. Therefore, when pro-
grammers write such code, they make believe that all
the previous invocations of related code units have left
the data units in valid linkage states, and no other code
units have touched it. In other words, the programmer’s
expectations of input validity are not checked byte-for-
byte, but rather are based on the isolation of the data and
its orderly access only by specifically allowed code units
working in concert with the data being read or written—
that is, it is based on exclusive access relationships of
code and data units.

Broadly speaking, programmers conceive both intent
and trustworthiness of these code units in terms of data
flows from and to these units. Although a simple in-
put parser would know if the next byte is wrong be-
cause of the previous bytes, a data collection mainte-
nance method such as a heap manager or hash table man-
ager method cannot realistically visit and check all the
bytes that matter for determination of validity. So the
granularity level of programmer expectation is, “no other
code has touched this heap segment”.19

19Note that hardened heaps such as Microsoft’s Low Fragmentation
Heap use canaries and XOR-ed check areas within the heap to create
local validation contexts for heap manipulator code units that comprise
the heap manager, as tell-tales of other code units’ forbidden access;
the security assumption there is that such an unexpected access will
trip the tell-tale and will invalidate the few bytes close (and checkable)
to the pointers or offsets being mutated by the manager code unit. Thus

This expression also has an attractive relational du-
ality20 in its expression of intent semantics: intent of
code is defined by the data it is expected to access, and
vice versa. To the best of our knowledge, this approach
has long been neglected (at least since the demise of
segment-based programming models and tagged archi-
tectures), with the recent exception of SegSlice [11].

Coming back to our gostak example, an intent-level
policy would play the role of the grammar to express the
ubiquitous programmer expectations described above—
expectations ubiquitously ignored at runtime. Only the
labeled gostak may distim the labeled doshes, and it’s
only the doshes that are being acted on by the gostak.
This is all we know, and it is enough for maintaining
a level of programmer intent. All of these entities are
opaque, as well as their intended actions, but we trust the
whole so long as no other actors and actions are in the
picture. A heap metadata chunk is only to be operated on
by heap manager, and a heap manager is what operates
on heap metadata chunk. If it distims the doshes, it’s the
gostak, and the gostak is what distims the doshes. Should
drokes or duskats attempt to act on the doshes, we know
something gets untrustworthy about the doshery.21

We can draw an analogy to what’s called duck-typing:
if it read/writes duck data, it’s a duck, and that’s all we
know. Then we describe the duck code to the runtime
reference monitor in these very reduction terms: enforce
such relations, keep non-duck-labeled code from touch-
ing duck-labeled data, let only the marked gostak distim
the labeled doshes.

7.3 Memory Flow Barriers between Code
Sections

One important aspect of enforcing the exclusive relation-
ships between code and data section is isolating code
from data that it is not expected or intended to con-
sume. Indeed, programmers assume such isolation when
they first apply sanity checks and transformations to in-
put data, and then write subsequent code under the as-
sumption that the data now has been “cleared” and can
be operated on safely. The attacker’s potential ability to
slip in other, uncleared data to code that expects cleared
data likely breaks its explicit or implicit assumptions and
leads to exploitation by maliciously crafted data pay-
loads. Indeed, effective lack of such isolation underlies

these hardened heaps bring granularity of checkable local context back
towards the parsers’ end of the spectrum.

20“Show me your flowcharts and conceal your tables, and I shall
continue to be mystified. Show me your tables, and I won’t usually
need your flowcharts; they’ll be obvious.” (F.P. Brooks, The Mythical
Man-Month [13])

21These additional entities appear in the interactive fiction “The
Gostak” by Carl Muckenhoupt; it is freely available online at several
interactive fiction sites.

12

most modern “no-code” exploitation scenarios for binary
executable targets.

As an example, consider a parser that is intended to
scan the input data and either “sanitize” or “normalize”
it, or to reconstitute it and build trusted data structures
for further processing. Once that parser is done, none of
the raw data in its input buffers should be accessible by
subsequent parts of the process if these are meant to con-
sume only “sanitized” and reconstituted data. However,
in multi-stage exploitation scenarios that rely on parser
bugs for their initial stage(s), that raw input data contains
payloads for further stages. These payloads are brought
into play by triggering the initial parser bug; blocking
the data flow from raw buffers to vulnerable code would
break the execution of the exploit.

Such a “memory wall” was introduced by The UD-
EREF part of the GrSecurity’s PaX22 hardening patch
for the Linux kernel. Empirically, this wall has dramati-
cally reduced the incidence of privilege elevation attacks.
The kernel programmers’ clear intention is for the kernel
code to access only such user memory contents that have
been validated, e.g., passed the appropriate checks at the
start of a system call. Lower layers of the system call’s
implementation rely on such checking to ensure that they
only receive coherent and well-formed data structures.
Consequently, exposing kernel code to data structures
constructed by the attacker in userland led to exploits:
kernel code executing at the highest privilege corrupted
kernel memory while operating on the crafted userland
data. UDEREF23 prevented a large number of such unin-
tended data flows by blocking the kernel from accessing
most of userland memory pages; the result was a dra-
matic reduction in exploitability of the hardened kernel.
Notably, the new SMAP feature of x86 processors opens
a way to more efficient implementations of UDEREF.24

ELFbac applies the same principle to the ABI-
granular, intention-level semantic division of a process’
code and data units.

7.4 Implicit Semantics of Standard ELF
Binary executable formats have been designed to present
to the OS a minimal description of the functionally dif-
ferent kinds of data (including compiled code) required
to construct the process runtime image. These formats
include special sections of metadata describing the ex-
tents and function of subsequent binary sections; these
metadata sections serve as the instructions for the OS
loader specifying the address ranges to copy the sections

22http://pax.grsecurity.net/, http://pax.grsecurity.

net/docs/
23For the discussion of UDEREF’s implementation details and effi-

cacy, see http://grsecurity.net/~spender/uderef.txt
24See “Supervisor Mode Access Prevention for PaX”, http://

forums.grsecurity.net/viewtopic.php?f=7&t=3046

to, and the desired protections of the underlying memory
pages.

Thus loader formats such as ELF already have im-
plicit intent-level access semantics at the granularity of
their code, data, and metadata sections. In ELF, these se-
mantic relationships are partially expressed in the section
header table fields (e.g., in ELF’s Info and Link section
entry fields), and partially implied by standard section
name pairings (such as .init and .ctors, .fini and .dtors,
.plt and .got, and others).

As the engineering of the Unix process’ runtime be-
came more sophisticated, ELF accommodated this trend
by defining the necessary new metadata structures. In
parallel, ELF added features to support more advanced
debugging and exception-handling mechanisms. As a re-
sult of this co-evolution, a typical ELF executable binary
contains over 30 sections, each of which corresponds to
code and data units with different runtime semantics—
expected behavior defined in relation to other sections.

This trend towards more detailed internal descriptions
allowed ELF to unify the representation of binaries-to-
be-loaded, and various intermediary stages of compila-
tion and runtime. In particular, ELF is used to represent
the compiler’s object code files (“.o”), shared libraries
(a.k.a. shared objects, “.so”), and even core dump files.

ELF files are largely composed of ELF sections. An
ELF section is simply a set of contiguous bytes in a ELF
file and is described by an ELF section header, of which
ELF maintains a table. Some ELF sections contain or
describe the code and data of the program proper (text
rodata, data). Others, such as bss, take no space in the
file besides the entry in the section table. The bss sec-
tion in particular describes the necessary allocation size
for the program’s uninitialized global variables. Other
sections contain code and the necessary supporting data
to be executed before the start of the main program or
after its end (regular or forced) to set up or tear down the
runtime. Examples of such sections are ctors, dtors,
init, and fini, which control the calling of the construc-
tor and destructor code for the objects in the runtime ad-
dress space, including the necessary initialization of the
runtime’s own structures. (Here and later, we use the
term object for a semantically distinct ELF code or data
unit, rather than in pure OO or C++ ABI sense.)

The contemporary ELF design separates both the spe-
cial purpose code and its data into separate ELF sections,
named according to their semantics. This design deci-
sion creates a special and exclusive relationship between
these sections. A violation of this relationship at run-
time is likely the sign that the process should no longer
be trusted. If the implicit read, write, and execute rela-
tionships between these ELF sections were enforced, a
number of exploitation techniques that use the contents
of these sections contrary to their intended use and place

13

http://pax.grsecurity.net/
http://pax.grsecurity.net/docs/
http://pax.grsecurity.net/docs/
http://grsecurity.net/~spender/uderef.txt
http://forums.grsecurity.net/viewtopic.php?f=7&t=3046
http://forums.grsecurity.net/viewtopic.php?f=7&t=3046

in the process timeline would become infeasible. For a
case in point, the data contained in ctors and dtors is
only meant to be interpreted and acted upon by init and
fini, respectively. A deviation from this access pattern
may be a sign of runtime loss of trustworthiness. For
example, Bello Rivas [37] demonstrates a method of ex-
ploiting a GCC-compiled program by making an entry in
dtors that points to malicious code located outside the
fini section.

Although this decomposition may have been origi-
nally motivated by abstracting away the algorithmically
common part and the program-specific data part of the
simple setup or teardown (“loop over a table of function
pointers to constructors/destructors, calling each one in
order”), the contents of .init need not be limited to a
single simple loop, nor the contents of .ctors to a sim-
ple function pointer table, and the same for .fini and
.dtors. As long as the contents of these sections agree,
they will be true to their ELF-semantic roles with a more
complex algorithm and more complicated data structures
to drive them. This same argument can be applied more
generally to any set or related code and data units.
PLT and GOT. The got (global offset table) and plt

(procedure linkage table) also show the special relation-
ship between code and data ELF sections. The plt con-
tains call stubs to external library functions to be linked
at runtime by the dynamic linker, whereas the got con-
tains the addresses through which these functions are in-
directly called.

Initially indirectly calling a function through its got

entry gives control to the dynamic linker which, with the
help of this stub, is provided with an index of the func-
tion’s dynamic linking symbol, including its name. After
the dynamic linker resolves the symbol name and loads
the appropriate libraries, it rewrites the got entry to point
directly to the address where the function is loaded, so
that further indirect calls through the plt result in call-
ing that function with just a single indirection (through
its got entry).

Although only plt is expected to read the got while
dispatching through it, the dynamic linker is expected to
write its entries. However, the rest of the code in the pro-
cess’ address space should not write got entries; in fact,
any of its code unit doing so likely indicates a dynamic
code hijacking [17, 43]. Notice also that any given got

entry is meant to be written only once.
Dynamic directory. The dynamic sections, indexed in
the dynamic section and segment, together form a com-
plex data structure consisting of symbol tables, their ac-
companying string tables, version tables, hash tables, the
got and the plt, the relocation data for all of the above
as necessary, and a global directory to all of the above.

These semantics could provide security policies—and
we can provide tools to help the developer extend these

policies and make them explicit. However, the conven-
tional “forgetful” Unix OS loader discards all this wealth,
much to the attackers’ delight.

7.5 Making the Loader Unforgetful of
ELF Semantics

Unfortunately, under the current UNIX implementation
conventions, the OS loader forgets all ELF information
that went into creating the process’ runtime virtual ad-
dress space. We call this the forgetful loader prob-
lem. In particular, the OS loader is driven by the seg-
ment header table rather than by the section header ta-
ble. Segments aggregate many semantically different
sections based merely on their memory read/write/exe-
cute profiles, and ignore other semantic differences.

For example, in ELF, the .text section is often
grouped with the .rodata section into the same “R-X”
segment because both sections are expected to be non-
writable (and an attempt to write them indicates un-
trustworthy behavior); however, this is just about the
only thing they have in common, semantically. The
one important exception to this is the two segments that
serve dynamic linking: the short .interp segment that
contains the path to the dynamic linker-loader, and the
.dynamic segment that indexes all sections referenced by
the dynamic linker in its runtime operation.

Thus the loader, as it is currently conceived of, is the
weak link in the chain of passing semantic information
on ELF units. Both the assembler and the linker sup-
port source code pragmas for placing generated code and
data in custom target sections; the loader, however, oper-
ates only on section-aggregating segments, and ignores
sections. This appears to be a decision influenced by
the paucity of OS/kernel and MMU support for discrimi-
nating between different program semantics units at run-
time.

However, technically there is nothing preventing the
OS loader and kernel from being as aware of ELF sec-
tions as the components of the development toolchain or
the dynamic linker: the section header table is either typ-
ically mapped into the runtime address space, or can be
trivially mapped so. Should the sections be relocated,
this table could also easily be patched by means of the
standard relocator implementation.

In fact, crucial section information is replicated in the
dynamic symbol tables accessible to the dynamic linker
through the dynamic segment, and is so made available
in its context. This decision probably reflects the concep-
tual gap between the legacy, limited OS loader/kernel’s
view of the runtime process semantic structure, and the
more recent dynamic linker/loader’s view of this struc-
ture (which the latter manages).

However, these is no reason why we should stick to

14

this disparity between an older and a newer design and
keep the OS loader to a dumbed-down and forgetful
view. Our vision is outlined in the next section.

8 Prototypes

We implemented software ELFbac prototypes for Linux
on x86 64 and ARM. However, our design aims for
portability across operating systems and ABI architec-
tures that generally follow the COFF format design, such
as Microsoft’s PE or Apple’s Mach-O.

Our implementation is based on existing virtual mem-
ory capabilities in x86 and ARM processors. We create
a separate virtual memory context for each policy state,
so that memory accesses relevant to our policy cause
page faults, which we intercept in the kernel. Just as
threading adds a one-to-many relationship of memory
contexts to execution flows, we create a many-to-many
relationship—since each execution flow can now change
its memory context with each FSM state transition.

8.1 Implementation

We produced the original prototype for x86 64 and later
ported it to ARM, to add an extra layer of policy to in-
dustrial control embedded systems we were hardening.
We describe the ARM-specific details after the overall
description of the x86 64-based prototype.
Per-state shadow memory contexts. Our prototypes re-
place the kernel’s view of a process’ virtual memory con-
text with a collection of “shadow” contexts, one per each
policy FSM state. Each shadow context only maps those
regions of memory that can be accessed in the current
state without violating the policy (which corresponds to
loops in FSM). Any other access is trapped; the trap ei-
ther causes a transition to another allowed FSM policy
state, or is a policy violation.25 On a legitimate state
transition, the virtual memory context is changed; on a
violation, appropriate handling logic (e.g., logging of the
violation event and process termination) is invoked.

These state-specific memory contexts are only used by
the page fault handler and in context switching routines.
For the rest of the kernel functionality, the original vir-
tual memory context still serves as a global view of the
process address space (of which each of the shadow con-
texts makes a subset accessible). Therefore, we do not
need to change any other subsystems in the kernel or any
userspace code, as they can continue to use the system
calls and kernel APIs to modify the address space, with-
out impacting ELFbac enforcement.

25This implementation makes it hard to implement “once-only” ac-
cess of a memory region as a policy primitive; we will pursue this in
future work.

The state-specific shadow contexts are lazily filled—
every state starts empty and is filled by the page fault
handler. Initially, an empty shadow virtual memory con-
text is created for every state in the policy and the context
corresponding to the initial state is activated. Whenever
the process accesses an address not mapped in this con-
text, the MMU raises a page fault, which ELFbac inter-
cepts. If the access is allowed by the policy and does
not result in a state transition, the corresponding mem-
ory mappings (and page table entries) are copied to the
shadow context, so they will not cause a fault when ac-
cessed in the future from the same state. If, on the other
hand, the access results in a state transition, the shadow
virtual memory context corresponding to the new state is
activated.

Whenever a region in the original memory context is
changed, it is unmapped in all the shadow context, so the
next access to this area will again be validated against the
policy.
Additions to the process descriptor. Our implemen-
tation adds only three pointers to the Linux kernel task
structure (task struct).

First, a pointer (elf policy mm) to a per-state separate
virtual memory context is added. As explained above,
this pointer is only used by the page fault handler and
in context switching routines, so that the remaining large
portion of the kernel, which accesses the traditional vir-
tual memory context pointer (tsk->mm in Linux) to ma-
nipulate mappings, address holes or for accounting pur-
poses, retains the illusion of a single address space per
process. This reference also makes sure that the same
address is never re-used and allows familiar debugging
tools to work unmodified with the ptrace system call.

Secondly, a pointer (elfp current) to the policy cur-
rently in effect for a process is stored. The policy is
stored as a digraph of states, where each node stores a
binary search tree of edges to other states.

Thirdly, a stack of userspace stack pointers is stored in
the elfp stack pointer, which is used to implement the
stack-changing mechanism.
Per-state shadow spaces as a new caching layer. In
theory, the policy is verified on every memory access by
hooking the page fault handler. As trapping every mem-
ory access would be catastrophic for performance, we
add a layer of “caching” on top of the existing hardware
caching layers.

Consider a memory access policy in standard UNIX.
The authoritative view of memory is given by the
mm struct struct of a process. The actual page ta-
bles (pointed to by CR3 on x86) serve as a “just-in-
time compiled” expression of the policy, since the appro-
priate PDE/PTE entries are created as needed by mmap

and other system calls. Thus, the page table serves
as a “caching layer” for the actual policy expressed in

15

vma structs. Moreover, page table look-ups are cached
by the TLB structures (separate for instruction and data
paths on x86).

We generalize this architecture by adding another
layer of shadow memory for each process, within which
different code sections (corresponding to the phases of
the process or policy FSM states) receive different views
of memory via different page tables—and must therefore
generalize the caching accordingly. Namely, the shadow
contexts create an extra load on the TLBs, as it would
cause them to be flushed on every FSM state change.
To somewhat reduce this impact, we use our “lazy” de-
sign for filling per-state shadow contexts, in which each
policy state starts with an empty page table and gets the
appropriate mappings copied into each on each valid ac-
cess. This design emulates the relationship of between
the page tables and the TLB: just like the TLB, the pol-
icy state’s page table accumulates successfully accessed
mappings.

As soon as the addresses are unmapped in the global
context, they are deleted from each page table as well.
The page table associated with the current state is loaded
on each context switch.

On newer architectures, we additionally reduce the
performance impact of shadow contexts by using PCID
tags.

As an architectural desiderata, we posit that since
caching is heavily involved on the path of enforcing a
memory access policy, it should in fact become an actor
in enforcing this policy. This means, in particular, that
cache entry invalidation must be elevated from the status
of a heuristic to that of a policy primitive. Our full tech-
nical report includes a proposal for FlexTrap, a design
that connects caching and trapping policy primitives.
Per-state syscall checking. In addition to the above
virtual memory manipulation, the current state—i.e.
the label of the code unit (ELFbac section) currently
executing—is verified on every syscall. Each policy state
either allows or disallows each syscall; more fine-grained
checking can be delegated to userspace wrapper func-
tions.
Policy entry points and loading. All Unix-family
processes (after init) are originally created through a
fork()-type syscall. This syscall preserves the ELF pol-
icy of the parent process.26 When a new executable is
loaded with the exec() call, the policy is replaced with
the policy of the new executable.

On dynamic binaries, we use the linker to set up the
policy. If the ELF binary is dynamically linked, the

26 If a fork should be treated as a special policy event, the fork()
library function can be wrapped to provide the transition just after the
fork. Access to the fork() system call from any other policy state should
then be prohibited.

kernel first loads a statically linked interpreter binary27,
whose policy will be loaded initially. The main exe-
cutable is then relocated and set up by the interpreter.
Since the ELFbac policy is just another ELF object,
the linker is already equipped to relocate the policy as
needed. Before control transfers to the main program, the
interpreter calls a special system call that loads the relo-
cated policy. Thereafter, this system call is disabled until
a new binary is set up. Hence, neither the policy parser
nor any other part of the kernel have to worry about how
the address space was set up, e.g. by ASLR.

8.2 ELFbac on ARM

We used ELFbac as hardening layer for a control ap-
plication running on an industrial (embedded) computer.
The application involved parsing a complex ICS proto-
col (DNP3) and selectively proxying its “safe” subset.
Consequently, the policies we deployed in this system
were much simpler—essentially, isolating the raw input
buffers from any code but the validating parser’s, and the
parser from any application data other than the well-type
protocol objects it created. However, the control appli-
cation required stricter performance bounds, which had
to be measured for all the relevant state transitions. We
outline these measurements in Section 9.3.

Here is the summary of the changes we needed for the
port.

Rather than keeping a complete mm struct per ELF-
bac state, we instead tracked just a separate page table
per state, reducing the amount of synchronization needed
between, e.g., the VMAs in between ELFbac states on
various mm events. We defined a new format for binary
policies consisting solely of fixed-width integers defin-
ing the relevant policy objects, simplifying parsing of bi-
nary policies in the kernel. We loaded ELFbac policy on
an ELF file load from binfmt elf rather than by syscall.
We optimized support for userspace stack switching. Fi-
nally, we used ARM ASIDs to reduce cost of ELFbac
transitions.

In summary, our porting experience validated our de-
sign decisions and the overall ELFbac architecture.

9 Evaluation

There is a difficulty in estimating the performance im-
pact of ELFbac, which is inherent in the measurement of
any security primitive: it ultimately depends on the soft-
ware it is used to protect how often and on what code
paths it is going to be hit. Our hypothesis is that well-
designed software already exhibits sufficient modularity

27On Linux, this is usually /lib/ld.so.

16

and locality to make frequent (and costly) ELFbac con-
text switching unnecessary, and amortizing the cost of
these switches over the productive sections and states of
the program.

Our performance measurements for the x86 64 and
ARM were structured differently, due to the differ-
ence in the respective policy applications. For x86,
we tested popular server and library software in both
a Qemu-based virtualized environment (with an eye to-
wards cloud applications) and on bare AMD and Intel
hardware. Our goal was to roughly evaluate the overall
overhead for such existing software.

For our ARM platform project, our policy was a part
of a hardened industrial control system (ICS), dedicated
to a specific control application with stricter performance
needs. Thus we focused on micro-benchmarking the rel-
evant state transitions to make sure the policy did not de-
grade the application response.

9.1 Security: implicit flows eliminated
The primary advantage of protecting systems with ELF-
bac is lessening the impact of an attacker. By preserving
and enforcing intent-level semantics, an attacker who has
gained code execution or an information leak in one part
of the application can no longer compromise other parts.
Among other benefits, ELFbac makes attack techniques
like return-oriented programming much more difficult.

In order to assess the efficacy of our system, we sam-
pled four recent high-impact vulnerabilities from the
Common Vulnerabilities and Exposures database28 that
could result in code execution.Because either the soft-
ware was not available in the first place or adequate vul-
nerability details were not disclosed, we did not attempt
to write an actual ELFbac policy for the relevant soft-
ware. Instead, we consider how a sensible default ELF-
bac policy, such as generated by our preliminary tools,
would limit the exposure from each vulnerability.
CVE-2012-3455. In this vulnerability, a heap buffer
overflow in the Word processor permits an attacker to
craft evil input that subverts the main KOffice process.

ELFbac could be used to separate the Word parser and
the main KOffice process. If an attacker crafts a docu-
ment that can perform computation with the parser, he
will no longer be able to read arbitrary files or spawn a
shell, but limited to using the internal KOffice API.
CVE-2012-3639, CVE-2012-2334. In CVE-2012-3639,
a bug in WebKit allows an adversary to subvert an entire
browser; in CVE-2012-2334, a bug in an image library
allows an adversary to subvert an entire office suite.

In both vulnerabilities, an application uses a parser for
display formats (HTML and PNG, respectively). How-
ever, both parsers only require minimal interaction with

28http://cve.mitre.org

the remaining components of a program. Other browsers
such as Google’s Chrome [9] already demonstrate that
WebKit only requires a handful of calls to render bitmaps
and consume input events. A PNG parser should only be
able to read an input buffer and write an output buffer.
Neither require access to any system calls or other pro-
gram data structures.

ELFbac could mitigate both vulnerabilities by confin-
ing the parser to exactly what it needs to touch, thus pre-
venting a compromised parser from subverting the rest
of the application. As opposed to the Chrome security
model, ELFbac does not require re-engineering of exist-
ing code and the same policy mechanism can be ported
across different operating systems.
CVE-2012-0199. In this vulnerability, a bug in the pro-
cessing of SQL database queries lets the attacker subvert
the rest of the application.

Usually, SQL injection attacks result from input text
fragments being copied into a SQL query without proper
escaping. To mitigate this, various database frameworks,
such as Microsoft .NET, use dedicated query builder
mechanisms. With ELFbac we can assure that no code
but the query builder can send data to the SQL client
API, defending both against inadvertent SQL injection
vulnerabilities and against the SQL layer being used af-
ter another exploitation.

9.2 Stability and Performance: x86 64

In this section we explain our evaluation criteria and
present a sketch of results. Cross-cutting performance
evaluation of key Linux software is still ongoing.
ELFbac policy injection: stability and coverage. ELF-
bac requires a policy section to be injected into ELF bi-
naries. In order to gain acceptance, such injection should
be seamless and work for the absolute majority of ELF-
based software.

Accordingly, we decided to target an entire
GNU/Linux distribution in our testing. We chose
the long-term support Ubuntu 12.04 64-bit distribu-
tion, and took advantage of its packaging system to
locate, rewrite, and test the resulting rewritten software
packages.

For this test, we deployed the publicly available ELF-
rewriting tool Mithril29 on the Amazon S3 cloud, using
PiCloud as the front end to access the cloud and drive the
experiment. The rewriting involved about 45,000 Ubuntu
packages in a roughly 20 GB repository. We successfully
rewrote the ELF binaries in the distribution’s packages,
inserting the .elfbac policy section and transforming
the file structure to a “canonical” form defined by a DSL
implemented by the tool.

29http://github.com/jbangert/mithril

17

http://github.com/jbangert/mithril

The rewriting took 260 core hours for two rebuilds.
We encountered a total of 20 build failures, which we
discovered to have occurred in *-data packages, con-
taining non-binaries. We then functionally tested the re-
sulting distributions using debootstrap, with no fail-
ures.
Overall performance hit. We are still searching for a
methodology that would allow us to separate ELFbac’s
inherent costs from the incidental ones easily avoided by
a programmer who decides to use it. Thus the follow-
ing case studies to estimate ELFbac’s performance hit
are preliminary and likely overestimate ELFbac’s costs.

In a nutshell, ELFbac overhead measured on an emu-
lated system (Linux 3.4/kvm+3.12) was approximately
9–10%. On bare hardware, we encountered a drastic
difference between performance on our AMD (Opteron
6320) and Intel (Xeon E3-1245, Sandy Bridge) test sys-
tems. Specifically, whereas on AMD our overhead was
approximately around 3%, on our Intel system in some
cases without our hardware optimizations it approached
25%. By using hardware optimizations of virtual mem-
ory translation such as Intel’s recent PCID feature, we
managed to somewhat reduce this overhead (e.g., re-
sulting in an approximately 85% reduction of DTLB
misses), but such gains remain load case-specific and re-
quire more comprehensive measurement.

We attribute this difference to the respective TLBs
flushing patterns when switching between multiple ad-
dress spaces. Below we report the worst cases of perfor-
mance, despite our AMD overheads being consistently
lower.
Libpng benchmarks. To evaluate the performance of
our prototype, we wrote an ELFbac policy for libpng
and benchmarked image decoding performance. This
mirrors the core use-case of ELFbac to isolate large, un-
trusted legacy code modules that perform CPU-heavy
computation on relatively well-defined inputs; libpng

is representative of such with its rich API of over 450
functions and callbacks.

Our test is based on publicly available benchmark
code30, modified to decode an image, perform mini-
mal processing (flip two color channels) and re-compress
the image 100 times, applied to Wikipedia’s PNG sam-
ple. The benchmark exercises 39 libpng calls, including
one call per row of pixels. The case is “medium-bad”,
as it is CPU-bound and has many inter-module func-
tion calls but no no complex memory operations such as
mmap()/munmap().

We evaluated our prototype both on the KVM hyper-
visor on a 3rd generation Core i7 processor as well as on
bare hardware:

30http://zarb.org/~gc/html/libpng.html

Platform Avg. sec. Avg. sec. with ELFbac
KVM + i7 1.06 1.16
Physical i7 1.01 1.32

Nginx benchmarks. We tested the popular Nginx web
server, a known high-value target for attackers. Nginx
input-parsing code is a complex state machine designed
from scratch, but Nginx still depends on several libraries:
PCRE, OpenSSL, and Zlib, as well as on libc for its sys-
tem interactions. We tested the ELFbac policy of sepa-
rating these libraries from the main body of Nginx.

We used the ApacheBench as our performance bench-
mark. As before, performance overhead under KVM-
emulated was smaller than on bare hardware: 9-15% on
the former, and up to 30% on the latter. We note that the
poor results on bare hardware are clearly due to too many
state transitions on the hot path; whereas KVM itself in-
curs performance losses, and optimizes virtual memory
handling against those.

These case studies show that ELFbac will stand to
profit from further CPU virtualization performance en-
hancements such as tagged TLBs, but also may already
be reasonable to use with high-assurance virtually hosted
applications—such as on cloud platforms.

9.3 Performance on ARM: micro-
benchmarks

We performed the following tests on the Altera SoC
FPGA development board that was the basis of our tar-
geted industrial computer.

We also considered testing performance under Qemu
ARM emulation, to compare the overheads on “bare
hardware” vs emulation. However, we discovered
that the Qemu ARM support doesn’t include emulating
ASIDs and always performs a full TLB flush, making
the apparent performace under emulation appear much
worse than on actual hardware.

For each of the tests below, a description of the bench-
marked state transition path and the average time(1)

times for each test are reported. The microbenchmarks’
code and raw outputs are included in our GitHub sources.
The nopol cases are those with ELFbac disabled, pol en-
abled.

Basic state transition between libc and the app:
start->libc->start->libc->start->libc (exit)

performing IO along the way (simple pol vs
simple nopol):

nopol real total: 0.0 avg: 0.0
pol real total: 0.01 avg: 0.001
nopol sys total: 0.0 avg: 0.0
pol sys total: 0.0 avg: 0.0
nopol user total: 0.0 avg: 0.0
pol user total: 0.0 avg: 0.0

Thrash: transition start->read->start->write

several times then exit (thrash pol vs nopol)

18

http://zarb.org/~gc/html/libpng.html

nopol real total: 1.96 avg: 0.196
pol real total: 1.96 avg: 0.196
nopol sys total: 0.0 avg: 0.0
pol sys total: 0.0 avg: 0.0
nopol user total: 0.0 avg: 0.0
pol user total: 0.0 avg: 0.0

Sum: transition start->heavy computation

state->start->exit (sum pol vs nopol)
nopol real total: 483.5 avg: 48.35
pol real total: 483.5 avg: 48.35
nopol sys total: 0.0 avg: 0.0
pol sys total: 0.0 avg: 0.0
nopol user total: 483.4 avg: 48.34
pol user total: 483.4 avg: 48.34

Sum Thrash: transition start->heavy computation

state and back several times, then exit

(sum thrash pol vs nopol)
nopol real total: 241.81 avg: 24.181
pol real total: 241.81 avg: 24.181
nopol sys total: 0.0 avg: 0.0
pol sys total: 0.0 avg: 0.0
nopol user total: 241.8 avg: 24.18
pol user total: 241.8 avg: 24.18

In summary, most of the transition micro-benchmarks
showed negligible overhead; those that didn’t still re-
mained under the responsiveness constraints of the ap-
plication.

10 Related Work

Although the main thrust of ELFbac is to suggest a pol-
icy design that taps a previously underused source of in-
formation about programmer intent, its implementation
can be considered a variant of Software Fault Isolation
(SFI). Thus we discuss where our prototype fits in the
SFI world, and then briefly comment on the relationship
between ELFbac and control-flow integrity (CFI) mitiga-
tions.

10.1 SFI and ELFbac
SFI systems isolate the components of an application.
The first modern system was introduced by Moris-
sett [27] and improved by many authors [20, 42]. SFI
is deployed in commercial web browsers with Native
Client [44]. These systems all come at significant per-
formance cost and allow only loose coupling between
components.

Every SFI component has its own memory region and
accesses across these regions are typically not supported.
This requires the introduction of Remote Procedure Call
style interfaces, which requires the programmer to mod-
ify the application and causes serialization overhead.
Some SFI systems, such as Chrome with NaCL, there-
fore provide for only one isolated module, which is pre-
vented from accessing the rest of the application, which

in turn can access everything. This approach fails if we
want to separate multiple components without a strict
trust hierarchy. For example, we would like vulnerabili-
ties in a SSL library to not affect web server data struc-
tures, while also preventing an exploited web server from
leaking the keys stored by the SSL library.

Another problem with SFI is that a module always has
the same set of permissions. However, in real systems
modules are re-used for different purposes. A compres-
sion library might be used to compress responses sent to
different users, or to compress log data. Each instance of
the compression library should be isolated.

Newer systems such as BGI [16] and LXFI [25]
address these challenges with capability-style systems.
BGI enforces revokable byte-level permissions on mod-
ules, which can be used as capabilities to give different
permissions to different invocations of a module. LXFI
uses object-style capabilities and module principals to
isolate different instances of the same module. Addi-
tionally, LXFI enforces data structure integrity, allowing
memory to be shared between modules.

We improve upon these systems in the following key
ways: temporal isolation, hardware-assisted enforce-
ment, and variable granularity.

First, existing systems focus on isolating along exist-
ing composition boundaries provided by the program-
ming environment, such as libraries and modules. ELF-
bac allows a domain to have different permissions during
different phases of execution, e.g. during initialization
and processing.

Second, ELFbac enforces policies via Linux’s virtual
memory system, as opposed to code rewriting. The use
of the VM system, due to developments in CPU de-
sign, has performance potential equal or better to that
of rewriting techniques, while improving flexibility and
simplicity. Finally, we allow protection domains to be
specified at different levels of granularity. Some aspects
of a policy might be better specified as individual li-
braries, modules or even functions interacting, whereas
in other cases the natural and convenient isolation bound-
aries might be a set of tightly coupled functions and data
structures spanning across different libraries.

We note that using ELF data structures to infer en-
forceable program properties related to code structure is
not limited to SFI, but can also help inform control flow
integrity (CFI) measures. For example, Payer et al. [33]
used import and export information from shared objects
(dynsym and symtab if available) to approximate the
programmer’s intended control flow and enforce it via
a CFI mechanism.

19

10.2 CFI and ELFbac
Control-flow integrity (CFI) is a stateless, mitigation-
based approach to preventing exploitation. CFI uses
static analysis to derive restrictions on the control flow
path of a program, and then enforces these restrictions at
runtime via a variety of mechanisms, killing the process
instance on a violation.

A wide variety of CFI analyses and mechanisms have
been proposed. Reviewing these is beyond the scope
of this paper. Reviews and effectiveness studies can be
found, e.g., in [2] and the recent [15].

We distinguish ELFbac’s goals from those of the ma-
jority of CFI by noting that CFI is essentially a mitigation
approach, deriving the programmer’s intent from code,
but providing no mechanism for the programmer to ex-
plicitly specify such intent as a concise, easily readable
policy.

By contrast, ELFbac’s goal is to provide the program-
mer with the succinct, explicit means of describing the
functional partitioning of the program into code and data
units, and by describing the units’ access relationships,
at the same granularity as these units are defined.

Thus ELFbac can complement the finer-grained CFI
measures, or be a policy largely orthogonal to the CFI
enforcement within the units.

11 Conclusion

Prior work in application security policies put much em-
phasis on explicitly restricting a program’s access to OS
resources and services, such as files and system calls,
and on enforcing inferred, implicit developer expecta-
tions of the program’s execution (including its control
and data flow) based on the programming language ab-
stractions. We argue that modern software composi-
tion also requires explicitly restricting the interactions of
components within a process space: intra-process, inter-
component access control, which expresses the rough
intent of each component via its accesses—and show
that leveraging linking information serendipitously al-
lows the C/C++ developer to specify such an explicit pol-
icy without a cognitive overload.

Our prototype ELFbac allows programmers to specify
and enforce intent-level semantics of different units of
code and data, by reusing existing ELF ABI infrastruc-
ture. ELFbac maintains compatibility with legacy code
and binaries, and noticeably raises the barrier to success-
ful exploitation.

Acknowledgments

This work was supported in part by the Intel Lab’s Uni-
versity Research Office, by the TCIPG project from the

Department of Energy (under grant DE-OE0000097),
and by the Schweitzer Engineering Laboratories Inc.,
who made the ARM port of ELFbac for ICS systems pos-
sible.

We would like to particularly thank Felix ’FX’ Lind-
ner and other researchers at Recurity Labs for many pro-
ductive discussions and critical insights. We gratefully
acknowledge the design inspirations by the Grsecurity/-
PaX project and the PaX team. On the subject of the ELF
structure and ABI composition mechanisms, we owe
many insights to the ERESI project by Julien Vanegue
and the ERESI team, as well as to the Grugq’s papers
on the subject, and to the early works by Silvio Cesare,
Klog, and others published in the Phrack magazine. We
thank Rodrigo Branco for many helpful discussions of
Linux kernel security.

Views expressed are those of the authors alone.

References
[1] XFI. https://pdos.csail.mit.edu/6.828/2007/lec/l-xfi.html.

[2] ABADI, M., BUDIU, M., ERLINGSSON, U., AND LIGATTI, J.
Control-flow Integrity Principles, Implementations, and Applica-
tions. ACM Trans. Inf. Syst. Secur. 13, 1 (Nov. 2009), 4:1–4:40.

[3] ANONYMOUS AUTHOR. Once upon a free(). Phrack 57:9. http:
//phrack.org/issues.html?issue=57&id=9.

[4] ARGP, AND HUKU. Pseudomonarchia jemallocum. Phrack 68:10,
April 2012. http://phrack.org/issues.html?issue=68&

id=10.

[5] ARGYROUDIS, P., AND KARAMITAS, C. Heap Exploitation Ab-
straction by Example. OWASP AppSec Research, August 2012.

[6] AVONDS, N., STRACKX, R., AGTEN, P., AND PIESSENS, F.
Salus: Non-Hierarchical Memory Access Rights to Enforce the
Principle of Least Privilege. In Security and Privacy in Commu-
nication Networks (SecureComm) (2013).

[7] BANGERT, J., AND BRATUS, S. ELF eccentricities. CONFi-
dence 2013, Krakow, Poland, 2013.

[8] BANGERT, J., BRATUS, S., SHAPIRO, R., AND SMITH, S. W.
The Page-Fault Weird Machine: Lessons in Instruction-less Com-
putation. In 7th USENIX Workshop of Offensive Technologies
(WOOT) (August 2013). https://www.usenix.org/system/
files/conference/woot13/woot13-bangert.pdf.

[9] BARTH, A., JACKSON, C., AND REIS, C. The security architec-
ture of the chromium browser. Tech. rep., Stanford, 2008.

[10] BOSMAN, E., AND BOS, H. Framing Signals—A Return to
Portable Shellcode. In Proceedings of the 2014 IEEE Symposium
on Security and Privacy (2014), pp. 243–258.

[11] BRATUS, S., LOCASTO, M., AND SCHULTE, B. Segslice: To-
wards a new class of secure programming primitives for trustwor-
thy platforms. In Trust and Trustworthy Computing, A. Acquisti,
S. Smith, and A.-R. Sadeghi, Eds., vol. 6101 of Lecture Notes in
Computer Science. Springer Berlin / Heidelberg, 2010, pp. 228–
245.

[12] BRATUS, S., LOCASTO, M. E., RAMASWAMY, A., AND
SMITH, S. W. New Directions for Hardware-assisted Trusted
Computing Policies (Position Paper). In Future of Trust in Com-
puting, D. Gawrock, H. Reimer, A.-R. Sadeghi, and C. Vishik,
Eds. Vieweg+Teubner, 2009, pp. 30–37.

20

http://phrack.org/issues.html?issue=57&id=9
http://phrack.org/issues.html?issue=57&id=9
http://phrack.org/issues.html?issue=68&id=10
http://phrack.org/issues.html?issue=68&id=10
https://www.usenix.org/system/files/conference/woot13/woot13-bangert.pdf
https://www.usenix.org/system/files/conference/woot13/woot13-bangert.pdf

[13] BROOKS, F. P. The Mythical Man-Month. Addison-Wesley,
1975, 1995.

[14] CARDELLI, L., AND WEGNER, P. On understanding types, data
abstraction, and polymorphism. ACM Computing Surveys 17, 4
(January 1985), 471522.

[15] CARLINI, N., BARRESI, A., PAYER, M., WAGNER, D., AND
GROSS, T. R. Control-flow Bending: On the Effectiveness of
Control-flow Integrity. In Proceedings of the 24th USENIX Con-
ference on Security Symposium (2015), SEC’15, USENIX Asso-
ciation, pp. 161–176.

[16] CASTRO, M., COSTA, M., MARTIN, J.-P., PEINADO, M.,
AKRITIDIS, P., DONNELLY, A., BARHAM, P., AND BLACK, R.
Fast byte-granularity software fault isolation. In Proceedings of
the ACM SIGOPS 22nd symposium on Operating systems princi-
ples (2009), ACM, pp. 45–58.

[17] CESARE, S. Shared Library Call Redirection via ELF PLT In-
fection. Phrack 56:7. http://phrack.org/issues.html?

issue=56&id=7.

[18] DULLIEN, T. Exploitation and state machines: Programming the
”weird machine”, revisited. In Infiltrate Conference (Apr 2011).

[19] ERIK BUCHANAN AND RYAN ROEMER AND HOVAV SHACHAM
AND STEFAN SAVAGE. When Good Instructions Go Bad: Gen-
eralizing Return-Oriented Programming to RISC. In Proceedings
of the 15th ACM conference on Computer and Communications
Security (2008), pp. 27–38.

[20] ERLINGSSON, U., ABADI, M., VRABLE, M., BUDIU, M., AND
NECULA, G. C. Xfi: Software guards for system address spaces.
In Proceedings of the 7th symposium on Operating systems de-
sign and implementation (2006), USENIX Association, pp. 75–
88.

[21] FORD, B., AND COX, R. Vx32: Lightweight user-level sand-
boxing on the x86. In USENIX Annual Technical Conference
(Boston, MA, 2008), USENIX, pp. 293–306.

[22] JAY FREEMAN (SAURIK). Exploit & Fix Android “Master Key”;
Android Bug Superior to Master Key; Yet Another Android Mas-
ter Key Bug. http://www.saurik.com/id/17,18,19, 2013.

[23] JP. Advanced Doug Lea’s malloc exploits. Phrack 61:6. http:
//phrack.org/issues.html?issue=61&id=6.

[24] KAMINSKY, D., PATTERSON, M. L., AND SASSAMAN, L. PKI
Layer Cake: New Collision Attacks against the Global X.509
Infrastructure. In Financial Cryptography (2010), Springer,
pp. 289–303.

[25] MAO, Y., CHEN, H., ZHOU, D., WANG, X., ZELDOVICH,
N., AND KAASHOEK, M. F. Software fault isolation with API
integrity and multi-principal modules. In Proceedings of the
Twenty-Third ACM Symposium on Operating Systems Principles
(2011), ACM, pp. 115–128.

[26] MAXX. Vudo malloc tricks. Phrack 57:8. http://phrack.

org/issues.html?issue=57&id=8.

[27] MCCAMANT, S., AND MORRISETT, G. Evaluating SFI for a
CISC architecture. In Usenix Security (2006), vol. 6.

[28] MÜLLER, T. ASLR smack and laugh reference. In Seminar
on Advanced Exploitation Techniques. RWTH Aachen, February
2007.

[29] NERGAL. Advanced return-into-lib(c) exploits: the PaX case
study. Phrack 58:4. http://phrack.org/issues.html?

issue=58&id=4.

[30] NICOLAS CARLINI AND ANTONIO BARRESI AND MATH-
IAS PAYER AND DAVID WAGNER AND THOMAS R. GROSS.
Control-Flow Bending: On the Effectiveness of Control-Flow In-
tegrity. In Proceedings of the 24th USENIX Security Symposium
(USENIX Security 15) (2015).

[31] NOORMAN, J., AGTEN, P., DANIELS, W., STRACKX, R.,
HERREWEGE, A. V., HUYGENS, C., PRENEEL, B., VER-
BAUWHEDE, I., AND PIESSENS, F. Sancus: Low-cost Trustwor-
thy Extensible Networked Devices with a Zero-software Trusted
Computing Base. In 22nd USENIX Security Symposium (2013),
pp. 479–498.

[32] OAKLEY, J., AND BRATUS, S. Exploiting the hard-working
dwarf: Trojan and exploit techniques with no native executable
code. In WOOT (2011), pp. 91–102.

[33] PAYER, M., BARRESI, A., AND GROSS, T. R. Fine-Grained
Control-Flow Integrity Through Binary Hardening. In Detec-
tion of Intrusions and Malware, and Vulnerability Assessment:
12th International Conference, DIMVA 2015, Milan, Italy, July
9–10, 2015 (2015), M. Almgren, V. Gulisano, and F. Maggi, Eds.,
Springer, pp. 144–164.

[34] REBECCA ’BX’ SHAPIRO AND SERGEY BRATUS AND SEAN W.
SMITH. Weird machines in ELF: a spotlight on the underappreci-
ated metadata. In Proceedings of the 7th USENIX conference on
Offensive Technologies (WOOT (2013).

[35] RICE, H. G. Classes of recursively enumerable sets and their
decision problems. Transactions of the American Mathematical
Society 74, 2 (1953), pp. 358–366.

[36] RIQ, AND GERA. Advances in format string exploitation. Phrack
59:7. http://phrack.org/issues.html?issue=59&id=7.

[37] RIVAS, J. M. B. Overwriting the .dtors section.
http://packetstormsecurity.org/files/23815/

dtors.txt.html, December 2000.

[38] ROEMER, R., BUCHANAN, E., SHACHAM, H., AND SAVAGE,
S. Return-Oriented Programming: Systems, Languages, and Ap-
plications. ACM Trans. Inf. Syst. Secur. 15, 1 (Mar. 2012), 2:1–
2:34.

[39] SCHUSTER, F., TENDYCK, T., LIEBCHEN, C., DAVI, L.,
SADEGHI, A.-R., AND HOLZ, T. Counterfeit Object-oriented
Programming: On the Difficulty of Preventing Code Reuse At-
tacks in C++ Applications. In Proceedings of the 2015 IEEE
Symposium on Security and Privacy (2015), pp. 745–762.

[40] SERGEY BRATUS AND MICHAEL E. LOCASTO AND MERED-
ITH L. PATTERSON AND LEN SASSAMAN AND ANNA SHU-
BINA. Exploit Programming: From Buffer Overflows to “Weird
Machines” and Theory of Computation. ;login: 36, 6 (December
2011).

[41] SKAPE. Locreate: An Anagram for Relocate. Uninformed 6
(2007).

[42] SWIFT, M. M., BERSHAD, B. N., AND LEVY, H. M. Improving
the reliability of commodity operating systems. In ACM SIGOPS
Operating Systems Review (2003), vol. 37, ACM, pp. 207–222.

[43] THE GRUGQ. Cheating the ELF: Subversive Dynamic Linking to
Libraries .

[44] YEE, B., SEHR, D., DARDYK, G., CHEN, J. B., MUTH, R.,
ORMANDY, T., OKASAKA, S., NARULA, N., AND FULLAGAR,
N. Native client: A sandbox for portable, untrusted x86 native
code. In 2009 30th IEEE Symposium on Security and Privacy
(2009), IEEE, pp. 79–93.

[45] ZHOU, Y., WANG, X., CHEN, Y., AND WANG, Z. ARMlock:
Hardware-based fault isolation for ARM. In Proceedings of the
2014 ACM SIGSAC Conference on Computer and Communica-
tions Security (2014), ACM, pp. 558–569.

21

http://phrack.org/issues.html?issue=56&id=7
http://phrack.org/issues.html?issue=56&id=7
http://www.saurik.com/id/17,18,19
http://phrack.org/issues.html?issue=61&id=6
http://phrack.org/issues.html?issue=61&id=6
http://phrack.org/issues.html?issue=57&id=8
http://phrack.org/issues.html?issue=57&id=8
http://phrack.org/issues.html?issue=58&id=4
http://phrack.org/issues.html?issue=58&id=4
http://phrack.org/issues.html?issue=59&id=7
http://packetstormsecurity.org/files/23815/dtors.txt.html
http://packetstormsecurity.org/files/23815/dtors.txt.html

Appendix A: ELFBac Kernel Structures

/* These structures describe an ELFbac policy in kernel memory. They

are created at runtime from the elfp_desc structures found in the

.elfbac section. This header file is intended to be used in all

ELFbac ports , so per -kernel aliases from elfbac -linux.h are used.*/

struct elf_policy{

struct elfp_state *states;

struct elfp_stack *stacks;

elfp_atomic_ctr_t refs; /* should be made atomic_t */

};

struct elfp_state {

elfp_context_t *context; /* This memory context maps a subset of the

processes tables and is filled on demand */

elfp_tree_root calls; /*Maps to OS tree implementation */

elfp_tree_root data;

struct elfp_state *prev ,*next; /* Linked list of states */

struct elf_policy *policy; /* Policy this state belongs to */

struct elfp_stack *stack; /* Last call transition taken */

elfp_id_t id; /* id of this state in the policy. Used for parsing

policy statements */

};

struct elfp_stack {

struct elfp_stack *prev ,*next;

elfp_id_t id;

uintptr_t low ,high;

elfp_os_stack os;

};

struct elfp_call_transition{

elfp_tree_node tree; /* Wraps OS rb-tree implementation */

struct elfp_state *from ,*to;

uintptr_t offset; /* Called address */

short parambytes; /* bytes copied from caller to callee */

short returnbytes; /* bytes copied from callee to caller. <0 to

disallow implicit return */

};

struct elfp_data_transition {

elfp_tree_node tree;

struct elfp_state *from ,*to;

uintptr_t low , high;

unsigned short type; /* READ / WRITE flags */

};

22

	Introduction
	Design Goals and Contributions

	Intent vs Unintended Computation
	Infer or Specify?

	Composition
	Motivating Example
	Our Approach
	ELFbac Architectural Design
	 ELFbac Policy
	 Policy Example
	 Automating Policy Creation

	Designing for Intent-level Semantics
	 Co-designing Application Structure and Policy
	 A Note on Semantics of Unit Relationships
	 Memory Flow Barriers between Code Sections
	 Implicit Semantics of Standard ELF
	 Making the Loader Unforgetful of ELF Semantics

	Prototypes
	Implementation
	ELFbac on ARM

	Evaluation
	 Security: implicit flows eliminated
	 Stability and Performance: x86_64
	Performance on ARM: micro-benchmarks

	Related Work
	SFI and ELFbac
	CFI and ELFbac

	Conclusion

