
DPTrace: Dual Purpose Trace for
Exploitability Analysis of Program

Crashes

Rohit Mothe (@rohitwas)
Senior Security Researcher

rohit.mothe *noSPAM* intel.com

Rodrigo Rubira Branco (@BSDaemon)
Principal Security Researcher

rodrigo.branco *noSPAM* intel.com

Disclaimer

u We don’t speak for our employer(duh!). All the opinions and
information presented here is our responsibility (actually no
one has seen this talk before today)

u IMPORTANT: No, we are *not* part of the Intel Security Group
(McAfee)

Agenda

• Objectives
• Current state of Affairs or Security Today
• Taint Analysis Introduction
• Our approach – Dual Tracing
• Comparison with other ideas
• Demos
• Limitations
• Future

Objectives

• Contribute towards improving the state of the art in crash
analysis

• Automate laborious/repetitive parts, but still requiring skilled
exploit writer/analyst

• Discuss hybrid usage of techniques and the mixture of
automation with manual analysis

Current State of Affairs

u Buggy programs deployed on critical servers

u Rapidly-evolving threats, attackers and tools (exploitation
frameworks)

u Lack of developers training, resources and people to fix
problems and create safe code

u That’s why we are here today, right?

tl; dr

thnx Marcio !

Taint Analysis for Program
Crashes

u Through our work we try to answer two fundamental questions:
u Are the input operands in the attacker’s control?
u And if so, is the forward execution providing a primitive

that is good for an attacker?

u Taint Analysis is one specific kind of program flow analysis and
we use it to define the influence of external data (attacker’s
controlled data) over the analyzed application

u Since the information flows, or is copied to, or influences other
data there is a need to follow this influence in order to
determine the control over specific areas (registers, memory
locations). This is a requirement in order to determine
exploitability

History and Lore-
Backward-Taint

u Original Motivation: Complex client-side vulnerability
in a closed (at the time) file format

u Extended Motivation: Trying to better analyse
hundreds of thousands of bugs in Microsoft Word
(search for Ben Nagy, Coseinc)

u Initial version integrated with a fuzzer, only for Linux
(showed in 2011 at Troopers)

u Ported version for Solaris to analyze a vulnerability
released by Secunia in the same software RISE
Security released a vulnerability a month before
(also circa 2011)

u Thanks to Julio Auto’s parallel research in the same
field, a Windows version was created (extended in
this research)

History and Lore-
Forward-Taint

u Original Motivation: Triaging submissions in a
vulnerability purchase program is hard. Many
submissions lack a complete exploit but still might
have real value

u Extended Motivation: Categorizing fuzzing crashes is
a pain (NOT bang(!) exploitable categorizing)

u Manual process includes lots of repetitive steps
u Automation is key. Certain classes repeat

themselves (such as UAF)
u ‘Prototyping Exploitation’ in such cases is both cost

and time effective. Also a more reasonable and
simpler ‘automatable’ problem than automating
exploit writing for all classes of bugs. Prototype or
GTFO!

Existing Solutions - What we aren’t
u !exploitable

u Tries to classify unique issues (crashes appearing through different code paths, machines
involved in testing, and in multiple test cases). Group the crashes for analysis

u Quickly prioritizes issues (since crashes appear in thousands, while analysis capabilities are
VERY limited)

u Classic, timeless!

u Spider Pig
u Created by Piotr Bania

u Not available for testing, but from the paper: It is much more advanced them the provided
tool (but well, it is not available?)

u Virtual Code Integration (or Dynamic Binary Rewriting)

u Disputable Objects: Partially controlled data is analyzed using the parent data

u Taint Bochs
u Used for tracking sensitive data lifecycle in memory

Existing Solutions - What we aren’t
contd..

u Taint Check

u Uses DynamicRIO or Valgrind

u Taint Seed: Defining the tainted values (data comming from the network for example)

u Taint Tracker: Tracks the propagation, Taint Assert: Alert about security violations

u Used while testing software to detect overflow conditions, does nto really help in the exploit
creation

u Bitblaze

u An amazing platform for binary analysis

u Provides better classification of exploitability (Charlie Miller talk in BH)

u Can be used as base platform for the provided solution (VINE)

u Moflow Framework
u Cisco Talos. Tools built on CMU’s BAP framework.

u sliceflow- post-crash graph back taint slicer

u Post-crash forward symbolic emulator looking for more exploitable conditions

u Pretty neat and advanced!

State Transition for Memory
Corruption

u Case 1 (green):
Format String

u Case 2 and 3
(red and blue):
buffer overflow

u Case 4 (purple):
unpredictable

c: corrupting
instruction
t: takeover instruction
f: faulting instruction

Source:
Automatic Diagnosis and
Response to Memory
Corruption Vulnerabilities

Moving Backward

u Legitimate assumption:
u To change the execution of a program illegitimately

we need to have a value being derived from the
attacker’s input (which we call: controlled by the
attacker)

u String sizes and format strings should usually be
supplied by the code itself, not from external, un-
trusted inputs

u Any data originated from or arithmetically derived
from un-trusted source must be inspected

Analyzing Taint

u Tainted data: Data from un-trusted source

u Keeps track of tainted data (from un-trusted
source)

u Monitors program execution to track how tainted
attribute propagates

u Detect when tainted data is used in sensitive way

Taint Propagation
u When a tainted location is used in such a way that a value of

other data is derived from the tainted data (like in
mathematical operations, move instructions and others) we
mark the other location as tainted as well

u The transitive relation is:
u If information A is used to derive information B:

u A->t(B) -> Direct flow

u If B is used to derive information C:
u B->t(C) -> Direct flow

u Thus: A->t(C) -> Indirect flow

u Due to the transitive nature, you can analyze individual
transitions or the whole block (A->t(C))

Location
u A location is defined as:

u Memory address and size

u Register name (we use the register entirely, not partially -> thus
%al and %eax are the same)

u When setting a register, we set it higher (setting %al as tainted will also
taint %eax)

u When clearing a register, we clear it lower

u To keep track over bit operations in a register it is important to
taint the code-block level of a control flow graph
u This create extra complexity due to the existence of the flow

graph and data flow dependencies graph

u The dependencies graph represents the influence of a source
data in the operation been performed

Flows

u Explicit flow:
u mov %eax, A

u Implicit flow:
u If (x == 1) y=0;

u Conditional statements require a special analysis
approach:
u In our case, we are analyzing the trace of a

program (not the program itself, but only what was
executed during the debugging section)

u We have two different analysis step: tracing and
analysis

Special Considerations

u Partial Tainting: When the untrusted source does
not completely control the tainted data

u Tainting Merge: When there are two different
untrusted sources being used to derive some data

u Data
u In Use: when it is referenced by an operation

u Defined: when the data is modified

Inheritance problems

Rare
e.g., malloc/free, system calls

Frequent
e.g., memory access,
data movement

Events

Problem: state explosion for binary operations !

mov %eax ß A
mov B ß %eax

taint(%eax) = taint(A)
taint(B) = taint(%eax)

Application Propagation
Tracking

%eax inherits from A
B inherits from %eax

Inheritance
Tracking

add %ebx ß D taint(%ebx) |= taint(D) insert D into %ebx’s
inherit-from list

Tracking Instructions
u Pure assignments: Easy to track

u If a tainted location is used to define another location, this
new location will be tainted

u Operations over strings are tainted when:

u They are used to calculate string sizes using a tained
location

u a = strlen(tainted(string));

u Since the ‘string’ is tainted, we assume the attacker
controls ‘a’

u Search for some specific char using a tainted location,
defining a flag if found or not found

u pointer = strchr(tainted(string), some_char);

u If (pointer) flag=1;

u ‘flag’ is tainted if the attacker controls ‘string’ or
‘some_char’

Tracking Instructions contd..

u Arithmetic instructions with at least one tainted
data usually define tainted results

u Those arithmetic instructions can be simplified to
map to boolean operations and then the
following rules applies

Eflags and Flow Information

u The eflags register can also be tainted to monitor
flags conditions influencing in operations (and
flow)

u In the presented approach, conditional branches
are taken care due to the trace generated by
the WinDBG plugin (single-stepping)

Backward Taint Analysis

u Divide the analysis process in two parts:
u A trace from a good state to the crash (incrementally

dumped to a file) -> Gather substantial information about
the target application when it receives the input data,
which is formally named 'analysis'

u Analysis of the trace file -> Formally defined as 'verification'
step, where the conclusive analysis is done

24
Ø To see what kind of primitives (read/write/calls) are available we

‘prototype’ input control and allocate a fake object structure in
memory such that the program can continue from the point of the
crash to other code paths.

Ø The property of such fake memory structure should guarantee to a
reasonable extent that any memory references (like virtual function
tables or other object pointers) will be resolved including memory
address references that are additive or subtractive to the faulting
address(which is already assumed controllable).

Ø In essence one could imagine it as simulating the reallocation of a fake
object ‘within’ the debugger in a use-after-free situation and
continuing the exception. Or allocating an adjacent object in an out of
bounds access violation, etc.

Forward Taint Analysis

Fake Memory Structure
Sample

Forward Logic
u In the debugger you see a seemingly non exploitable read AV

(access violation).
u Example: mov eax ,[ecx] ; (ecx is supposed here to be a pointer to

attacker controlled memory.)

u You allocate a chunk of memory within the process (preferably the size
of the memory pointed to by ecx to mimic an accurate freed block
control using heap massaging,feng-shui)

u The permissions of all memory blocks in a linked list chain are
read-only. So any attempt to write/execute on any of the
values within the memory blocks would cause an exception
later and that shows evidence of exploitability

u Now manually change the ecx value in the crash to point to
the address of the root of this linked list which is the root of the
chain of memory blocks pointing to one another

u Continue the program execution and it will continue from the
point of crash with the modified value of ecx.

u Assembly instructions have explicit operands, which are easy
to deal with, and sometimes implicit operands:
u Instruction: push eax

u Explicit operand: eax

u What it really does?
u ESP = ESP – 4 (a substraction)

u SS:[ESP] = EAX (a move)

u Here we have ESP and SS as implicit operands

u Tks to Edgar Barbose for this great example!

Need for Intermediate
Languages

Implementing the Tracer
u Instead of using an intermediate language, we play straight

with the debugger interfaces (WinDBG). Windbg or GTFO!

u The tracer stores some useful information, like effective
addresses and data values and also simplifies the instructions
for easy parsing:

u CMPXCHG r/m32, r32 -> 'Compare EAX with r/m32. If
equal, ZF is set and r32 is loaded into r/m32. Else, clear ZF
and load r/m32 into AL'

u Such an instruction creates the need for conditional
taints, since by controlling %eax and r32 the attacker
controls r/m32 too.

Implementation Details
u Instead of using an intermediate language, we play straight with the

debugger interfaces (WinDBG). Windbg or GTFO!

u Trace File Contains:

u Mnemonic of the instruction and operands

u Dependences for the source operand

u Eg: Elements of an indirectly addressed memory

u This creates a tree of the dataflow, with a root in the crash
instruction

u The verification (GUI and cmdline program) step reads this file and:

u Search this tree using a BFS algorithm

u Forward step uses the debugger interfaces for the memory allocation
and forward execution

30
ICE CREAM ICE
CREAM ICE CREAM
ICE CREAM ICE
CREAM ICE CREAM
ICE CREAM ICE
CREAM ICE CREAM
ICE CREAM ICE
CREAM ICE CREAM
ICE CREAM ICE
CREAM ICE CREAM
ICE CREAM ICE
CREAM ICE CREAM
ICE CREAM ICE
CREAM ICE CREAM

Program Execution Timeline 31
Program start

Initial Crash, AV

Exception à Constraint 1

Exploitable Primitive?! Profit!

OR march on, down to hell L

Exception à Constraint n

Trace! Check Taint! Forward Execution

Trace! Check Taint!

…
…

…
…
…

Trace! Check Taint! Forward Execution

Trace! Check Taint! Forward Execution

…
…
…

…
…

Theoretical Example

u 1-) mov edi, 0x1234 ; dst=edi, src=0x1234

u 2-) mov eax, [0xABCD] ; dst=eax, src=ptr 0xABCD ; Note 0xABCD is evil
addr

u 3-) lea ebx, [eax+ecx*8] ; dst=ebx, src=eax, srcdep1=ecx

u 4-) mov [edi], ebx ; dst=ptr 0x1234, src=ebx

u 5-) mov esi, [edi] ; dst=esi, src=ptr 0x1234, srcdep1=edi

u 6-) mov edx, [esi] ; Crash!!!

Theoretical Example contd..

u 6-) Where does [esi] come from?

u 5-) [edi] is moved to esi, where edi comes from and what does
exist in [edi]?

u 4-) [edi] receives ebx and edi is defined in 1-) from a fixed
value

u 3-) ebx comes from a lea instruction that uses eax and ecx

u 2-) eax receives a value controlled by the attacker

u ... ecx is out of the scope here :)

Assumptions & Challenges
u Since we only use the trace information, if the crash input data does not

force a flow, we can’t see the influence of the input over this specific flow
data

u To solve that:

u If a jmp is dependent of a flag, the attacker controls branch decision

u Control over a branch means tainted EIP

u To define the value of EIP, consider:

u The address if the jump is taken

u The address of the next instruction (if the jump is not taken)

u The value of the interesting flag register (0 or 1)

u Then: %eip <- (address of the next instruction) + value of the
register flag * (|address if jump is taken – address of the next
instruction|)

Forward Analysis
u The method here was conceived originally to help

determine whether crashes for potential UAF (Use-After-
Free) bugs in browsers are exploitable or not

u UAFs in browsers or any significantly large programs for
that matter are often hard to analyze for exploitability
and typically involve following varied code paths in the
control flow to find a write access violation/potential
code redirection using indirect calls

u The idea is not just limited to UAFs though

u After input control(first part of the problem) has been
determined, the next logical step is to gauge what can
be done with it.

Command-line options

Analyzer 37

Forward

Forward

40
Sample Analysis on dead bugs

41Sample Analysis 1

- CVE-2010-0188 – Adobe Reader Libtiff TIFFFetchShortPair Stack-based Buffer
Overflow
- TIFF file embedded in a PDF were the IFD Entry has Tag ID (0x0129, 0x0141,
0x0212 or 0x0150) and Tag Type 3 (short)
- The field data count of the TIFF file will be used as size (dc*2) to copy to a
fixed buffer in stack

We did a bit of cheating to avoid huge traces (from that point on
til the crash, we would have traced more than 10 million instructions)

42
Contd…

At the crash point, we check the trace to see if the pointer is
Indeed controlled

43

Dataflow information can be visualized in the GUI

Contd…

44

We indeed control the values (coming from our input file)

Contd…

Sample Analysis 2

CVE-2014-0282 IE8/9/10/11 ‘Cinput’ Use-After-Free (MS14-035)

Replace Freed object with the root of the fake object chain

Contd…

Continue from initial crash and trace each subsequent
breakpoint/access violation

Contd…

Contd…

Add the range of the fake allocated objects, so when we look for the taint
information on the instruction of interest, we can confirm it is mapped to our
controlled memory areas

Contd…

Program Control Immediately evident. We just need to make sure we
can point indeed it to our fake structure

50
Contd…

We see that the EIP value at time of crash comes from our fake object
allocated at the previous crash

51

Visualize it in the tracer and trace the program control (or directly in the
command line of the debugger, shown later)

Contd…

52
Contd…

Taint source is confirmed also in the analyzer (visual here). Same
thing can be obtained in the command line by !dptrace_analyzer
<analyzer_binary> <trace_file> <keep GUI open> <ranges> <index of
instruction to check the taint of>

53

Because the backward taint analysis demand tracing the process, so
we can later construct the BFS analysis, it is important to use
intelligently/diligently. In the case of this issue, we use to analyze a
part of the execution, instead of the initial crash.

Contd…

54
Contd…

55
Contd…

56
Contd…

Everything that was done using the GUI (setting the taint ranges, defining
the instruction of interest and analyzing its taint information) is possible to
do via the command-line of the debugger, as shown here

57Sample Analysis 3

CVE-2015-6152 IE 11 CObjectElement Use-After-Free . Initial Crash on IE 11
without patches.

58

Fake object chain of 4 objects of size 200. Precise size can be determined by
manual analysis to figure out the freed/alloc’d function and checking the
size of the root object.

Contd…

59

‘Redefine’ the reference to freed reference (eax) with the first fake object .
Continue the execution with !dptrace_trace and monitor the forward trace .

Contd…

60

Add taint range and check to see if the source of an access violation can
be traced back to controlled input

Contd…

61

Following another path by meeting a new constraint

Contd…

62

More constraints

Contd…

63

Checking the taint source again. This particular execution run leads
us to uncertainty and we aren’t sure of an exploitable primitive yet.

Contd…

64

So we carry on another execution while trying to meet some other
constraints and hit an alternate code path this time.

Contd…

65

We try another path this time by crafting some different values within the fake
object, notably the value of 0x40000 in the dword @ fake_object+0x24. We
also modify references to the same fake object in edi (CTreeNode *) and on
the stack (esp+24). Hit a more interesting exception!

Contd…

66

Preliminary analysis shows us that the MSHTML!!report_securityfailure call
was triggered due to a failed VTguard_check (next figure)

Contd…

67

Confirm taint control and we influence the pointer which is dereferenced to do the
vtguard check. That there is code execution right after the vtguard_check can either
be looked into the debugger or within IDA for more clarity as shown above

Contd…

Challenges & Limitations

u Determining the actual range of memory which needs
to be traced. Determining this is easier for some cases
(like file format bugs) whereas for browser based bugs
this can be difficult (and sometimes unnecessary)

u Explosion and partial tainting (we assume full control
when merging taint)

u Because the tracer outputs instruction information, it
needs to understand the semantics of it (for example,
source and destination operands):
u It only supports the most basic x86 subset (no x87,

MMX, XMM, etc) (future versions , also, helping is
caring!)

69

Ø Another limitation of the approach is covering conditional
code paths that hit only on certain values expected to be in
the memory address (checking of reference counters, object
type tag or some other metadata that affects the control
flow of the program after the crash point)
Ø Branch Explosion! Similar problems can arise with

symbolic execution approach

Ø Manual analysis involves knowing where to break , where to
start tracing, etc. The closer to the exception the better
because of smaller traces and faster processing time by the
analyzer

Ø Not a magic solution that works on its own without a skilled
analyst. Not a one size fits all solution either. Meant to
augment crash analysis.

Challenges & Limitations

Future
u We aren’t soothsayers. More like sooth-slayers \,,/

u Please, read TODO.txt in the code trunk and send pull requests :p

Latest version of this
presentation, paper, code
and demos available at:

u https://github.com/rrbranco/blackhat2016

Acknowledgments

u Julio Auto for his previous work alongside one of the authors of this work
(Rodrigo Branco) in implementing VDT (Vulnerability Data tracer) which
was the original implementation of the backward taint tracing plugin

u David D. Rude(@bannedit) and Kiran Bandla(@kb) for ideas and
feedback regarding the initial prototype of the forward trace

u All of the other researchers who contributed to this field!

Thanks!

Rohit Mothe (@rohitwas)
Senior Security Researcher

rohit.mothe *noSPAM* intel.com

Rodrigo Rubira Branco (@BSDaemon)
Principal Security Researcher

rodrigo.branco *noSPAM* intel.com

