

blackhat USA 2016

An AI Approach to Malware Similarity Analysis: Mapping the Malware Genome With a Deep Neural Network

> Konstantin Berlin, Ph.D. Lead Research Scientist Invincea Labs

JULY 30 - AUGUST 4, 2016 / MANDALAY BAY / LAS VEGAS

Why AI?

- Intelligence is critical for prevention and remediation
- Al is good at finding patterns in large data

Hacking 1,500 Malware Social Error Misuse Physical Environmental 1.000 500 Breach count 0 2007 2005 2009 2011 2013 2015

Number of Network Breaches Per Year (Verizon's 2016 Data Breach Investigations Report)

Figure 4.

Number of breaches per threat action category over time, (n=9,009)

Intelligence through Similarity

- Benefits
 - Identify threat actors
 - Link various attacks to a single actor
 - Quickly understand functionality
 - Speed up reverse engineering
 - Mitigation
 - Signatures
 - Network Rules

Finding Similar Malware

Attribute Extraction

Similarity Search

• MinHash

...

- Feature hashing
- Other sketching

Attributes

- Byte n-grams
- Opcode n-grams
- Printable strings
- System calls

Attribute A

Attribute Map (Embedding)

Jang, Jiyong et. al. *Proceedings of the 18th ACM conference on Computer and communications security*. ACM, 2011. Sæbjørnsen, Andreas, et al. *Proceedings of 18th international symposium on Software testing and analysis*. ACM, 2009. Bayer, Ulrich, et al. *NDSS*. Vol. 9. 2009. **...Many more**

How to get consistent results, regardless of attributes?

5

Supervised Classification (Endpoint Solution)

• 2.0M Training files

Given a set of attributes how do we create a "good" map?*

*No luck required

Imaginary World of Malware Factories

- Ideal World
 - Each hidden factory produces one malware family/variant
 - Factories are positioned relative to what and how they exploit vulnerabilities
- ...but this imaginary, no!?

Idealized Map

Secret sauce A

There is No Spoon Map...

- We created the map when we selected the attributes
- We can morph them in any way we choose
- One good way to morph the attributes is using a deep neural network

"The Matrix", 1999

Toy Embedding Visualization

• Example

- 8 family/variant prediction
- 2D embedding

•	virus.win32.nabucur.d
0	virus.win32.ramnit.i
0	virus.win32.sality.at
0	virus.win32.shodi.i
•	virus.win32.virut.ae
0	virus.win32.virut.br
•	virus.win32.virut.k
0	worm.win32.allaple.a

β

Results

- 800K samples
 - 1500 family/variants (99% coverage)
- Time-split Validation
 - Train on old data
 - Test on 30 days later
- Measure F1-score of 3-nearest neighbor classifier

Printable Strings

Deep-learning Features

Issues with Attribute Maps

Conclusion

- Developing feature extraction is expensive and requires time consuming tuning to adapt to a specific domain
- Traditional approaches to malware similarity are hard to tune
- Using supervised-learning approaches we can improve existing features by embedding them into better maps
- Automatic (re)tuning will improve attribution and reduce cost

More Information

- Acknowledgement
 - Josh Saxe and Robert Gove
 - Invincea Inc.
- More information
 - Name: Konstantin Berlin
 - Email: <u>kberlin@invincea.com</u>
 - Twitter: <u>@kberlin</u>
- We are hiring!
 - Research Scientist
 - Senior Research Scientist
 - Principal Research Scientists

