DISCOVERING AND EXPLOITING NOVEL SECURITY VULNERABILITIES IN APPLE ZEROCONF

(Xiaolong Bai, Luyi Xing) (co-first authors),

Nan Zhang, XiaoFeng Wang, Xiaojing Liao, Tongxin Li, Shi-Min Hu

Tsinghua University, Indiana University Bloomington Georgia Institute of Technology, Peking University

Who are we ?

- System Security Lab, Indiana University Bloomington
 - Focus on novel problems in system security
 - High-impact publications on IEEE S&P, ACM CCS, Usenix Security, NDSS
 - http://sit.soic.indiana.edu/en/
- Our advisor: Prof. XiaoFeng Wang
 - Top 10 authors on leading security venues for the past 10 years
 - http://www.informatics.indiana.edu/xw7/

Who are we ?

- We have two talks on Black Hat USA 2016
 - Luyi Xing and Xiaolong Bai, DISCOVERING AND EXPLOITING NOVEL
 SECURITY VULNERABILITIES IN APPLE ZEROCONF, August 4, Jasmine
 Ballroom, 12:10 13:00
 - Nan Zhang, DANGEROUS HARE: HANGING ATTRIBUTE REFERENCES HAZARDS DUE TO VENDOR CUSTOMIZATION, August 4, South Seas GH, 17:00 - 17:25

DISCOVERING AND EXPLOITING NOVEL SECURITY VULNERABILITIES IN APPLE ZEROCONF

ZeroConf

- Zero Configuration Networking
- Automatically configures a usable computer network
 - No manual configuration
 - No specific configuration server
- Designed to reduce users' burden
 - Setting up a new network
 - Use a new service.

ZeroConf

- Bonjour protocol
 - zero-configuration networking over IP that Apple has submitted to the IETF.
- Goals:
 - With little or no configuration
 - to add devices/services to a local network
 - Existing devices can automatically find and connect to those new devices/services

Bonjour

- Administrators
 - no need to assign IP, host names, service names to network services (e.g., printer)

- When using a service, users simply
 - ask to see what network services are available
 - and choose from the list of automatically discovered services.

How about traditional configured network?

Traditionally

9

DNS server

Traditionally

Must Configure:

- IP
- Printer name,
 - e.g., lh135-soic.ads.iu.edu
- DNS server

Features of Bonjour

- 1. Service configures itself
 - IP, hostname, service instance name
- 2. Clients automatically discover available services
 - No pre-knowledge of the service's name, hostname or IP

ZeroConf Concept
 So, how?

Features of Bonjour

- 1. Service configures itself
 - IP, hostname, service instance name
- 2. Clients automatically discover available services
 - No pre-knowledge of the service's name, hostname or IP

Add a new printer to a network

A printer finishes configuring itself

Features of Bonjour

- 1. Service configures itself
 - IP, hostname, service instance name
- 2. Clients automatically discover available services
 - No pre-knowledge of the service's name, hostname or IP

Two phases: Discovery and Resolution

Automatically find the printer: Discovery

Automatically find the printer: Resolution

Automatically find the printer: Resolution

Added/Saved the printer to your list

	Printers & Scan	iners	IP fo 20 work and 1224	?
Printers bl-soic-gemini.ads.iu • Idle, Last Used Printer@Room135 • Idle		Printer@Room135 Open Print Queue Options & Supplies	fe80::abcd:1234 Hostname HP9FE5.host.local Service Instance Nam	t.local ?
	Location: Kind: Status:	Generic PostScript Printer	HP-Service-9FE5	?

Added/Saved the printer to your list

Applications store service instance names, so if the IP, port, or host name changed, the application can still connect.

Service instance name HP-Service-9FE5 is saved

	Printers & Scanners		Q	mononum	IP
Printers bl-soic-gemini.ads.iu • Idle, Last Used Printer@Room135 • Idle		ter@Room135 Open Print Queue ptions & Supplies			fe80::abcd:1234 Hostname HP9FE5.host.local Service Instance Name HP-Service-9FE5
	Location: room Kind: Gene Status: Idle	135 ric PostScript Printer			

Saved printer = A printer who owns service name HP-Service-9FE5

Adversary Model

- On a device (malware infected) in your local network
- Aims to intercept secrets/files transferred between uninfected devices

Adversary Model

- Your Mac/printer are un-infected
- Steal your printing documents?

ZeroConf Concept
 ZeroConf How
 ZeroConf Breaking

ZeroConf Concept
 ZeroConf How
 ZeroConf Breaking

Case 1: Attack Bonjour

Attack Bonjour

- Two examples
- Printer
 - Printers using Bonjour
- PhotoSync

– Synchronizing photos between Mac and iPhone using Bonjour

- Not an application-specific or service-specific problem
 - Vulnerabilities in the design of Bonjour protocol

A device infected by malware

A device infected by malware

A device infected by malware

Why it happens?

Three **Changing** Attributes:

- IP
- Hostname
- Service Instance Name

Apple:

Applications store service instance names, so if the IP, port, or host name changed, the application can still connect.

Lack of authentication

Three Changing Attributes:

- IP
- Hostname
- Service Instance Name

- Anyone can claim any value of the three attributes
- The protocol only guarantees no duplicates.

If not saving service instance names, is it secure enough?

Attack Bonjour

- PhotoSync
 - Synchronizing photos between Mac and iPhone using Bonjour
- Not saving service instance name
 - Client discovers and resolves the server each time

• Discovery: Client browses for server

• Discovery: Server responds with service instance name

• Resolution 1: Client queries for the host name of the service

• Resolution 1: Server responds with the host name

• Resolution 2: Client queries for the address of the host

• Resolution 2: Server responds with its address

- Another malware-infected device spoofs the client
 - Successful Man-in-the-Middle
- During Resolution
 - Service instance name to host name
 - Host name to address

• Attack 2: service instance name to host name

•••

Demo

 <u>https://www.youtube.com/watch?v=WUWusqgqFr0&feature=</u> youtu.be

Fundamental Problem

- Lack of authentication
- Anyone can claim any value of the identification attributes
- The protocol only guarantees no duplicates, but not security.

Is it easy to provide authentication?

ZeroConf Concept
ZeroConf How
ZeroConf Breaking

Case 2: Airdrop

Airdrop between Apple devices

• With AirDrop, you can share photos, videos, websites, locations, and more with people nearby with an Apple device.

Attack Airdrop

Jeff's Macbook: Q1: Anyone has an airdrop service?

Alice's iPhone: I have a service named abcd.airdrop.service

3

Attack Airdrop

Attack Airdrop

TLS in Airdrop

Alice's iPhone

So the certificate in airdrop can hardly be used for authentication.

Domain should match the certificate

Domain should match the certificate

Alice's iPhone

What's wrong with TLS in Airdrop

- The certificate in airdrop cannot be used for authentication
 - E.g, certificate should be issued to Alice
 - but indeed issued to appleid.ABCD...

• The certificate should be issued to WHAT?

What's wrong with TLS in Airdrop

- Issue the certificate to the domain (host name)?
 - No. Host name may change and not representing a user
- Issue the certificate to the user's name?
 - No. Name can be duplicated
- Issue the certificate to the user's social security number?
 - No. social security number is too private

What's wrong with TLS in Airdrop

- Linking a human to her certificate is complicated
 - challenge in finding any identifiable information that are
 - well-known
 - no privacy implication
 - and unique

Demo

https://www.youtube.com/watch?v=2JEJLpvnRO4
Technical Details

- Airdrop service daemon: /usr/libexec/sharingd
 - Responsible for Bonjour process and https connection

- Not ethernet interface, Apple private interface
 - awdl0: Apple Wireless Direct Link
 - Device-to-device direct link

Technical Details

- How to work on this interface?
 - sharingd uses an Apple-private socket option SO_RECV_ANYIF (0x1104)

Some customized ZeroConf protocols

- FileDrop
 - TCP packets for discovery
 - elliptic curve cryptography for security
 - Failed in authentication
 - challenge in linking a human to her public key

ZeroConf Concept
 ZeroConf How

3. ZeroConf Breaking

Case 3: Apple's Vulnerable framework

Apple's Vulnerable framework

- Multipeer Connectivity (MC)
 - A framework for automatic service discovery between nearby devices across Wi-Fi and Bluetooth without configuration
- Object to identify each app: peerID
 - displayName (public) & uniqueID (private)

- Automatic Service Discovery Without Configuration
 - Servers advertise peerIDs

- Automatic Service Discovery Without Configuration
 - Servers advertise peerIDs, Client browse peerIDs (show displayName)

• Even if servers have the same displayName

- Even if servers have the same displayName
 - uniqueIDs generated by MC will always be different

- Even if servers have the same displayName
 - uniqueIDs generated by MC will always be different

- Attacker acts as both client and server
 - Browse and acquire peerID object from victim server

- Attacker acts as both client and server
 - Advertise using the same peerID object

• Client can not distinguish because of same uniqueID

- Client can not distinguish because of same uniqueID
- Client maps the only peer to attacker's address (MitM)

Technical Details

- MitM attacker
 - First acts as client browsing for advertising servers
 - Once found a server, advertise using the same peerID

}

If not using peerID to for identification, is it secure enough?

ZeroConf Concept
 ZeroConf How

3. ZeroConf Breaking

Case 4: MC in QQ

MC in QQ

- Popular instant messaging software in CN – 829 million active accounts (Wikipedia)
- Face-To-Face Transfer
 - Transfer files between nearby peers by using Multipeer Connectivity
- Not using peerID for identification
 - Customized unique QQ ID

• Receiver advertises its QQ ID

• Sender browses for receivers and found their QQ IDs

• Sender connects to receiver and gives its QQ ID

• Sender connects to receiver and gives its QQ ID

• Receiver advertises its QQ ID

• Attacker found victim receiver's QQ ID

• Attacker advertise using the same QQ ID

Receiver

• Sender found only one QQ ID

Sender

Sender connects to Attacker

Receiver

• Attacker connects to Receiver using the Sender's QQ ID

Demo

https://www.youtube.com/watch?v=B71FID3_vrc

ZeroConf Concept
 ZeroConf How

3. ZeroConf Breaking

Case 5: Bluetooth

All your iOS notifications belong to me

- ZeroConf on Bluetooth: Apple Handoff
 - A service that lets iOS and OS X synchronize data through Bluetooth without configuration

- Handoff creates Bluetooth Channel without configuration
 - Devices logged in with the same iCloud account
 - Pairing automatically through iCloud account

- Bluetooth ZeroConf: No app-level authentication
- Apple Notification Center Service (ANCS)
 - designed for Bluetooth accessories to access notifications on iOS devices

- Bluetooth ZeroConf: No app-level authentication
- Apple Notification Center Service (ANCS)
- Through Bluetooth channel created by Handoff

- Bluetooth ZeroConf: No app-level authentication
- Apple Notification Center Service (ANCS)
- Through Bluetooth channel created by Handoff

Demo

https://www.youtube.com/watch?v=c5viAzAs0Uo

Summary of attacks

- Attacks on Apple ZeroConf channels
 - Bonjour (Printer, PhotoSync)
 - Airdrop
 - Customized ZeroConf protocols (Filedrop)
 - Multipeer Connectivity (MCBrowserViewController, QQ)
 - Handoff
- All vulnerabilities were reported to vendors, acknowledged by most vendors

- 1. ZeroConf Concept
- 2. ZeroConf How
- 3. ZeroConf Breaking
- 4. Impact

Impact

- Measurement
 - We analyzed 61 popular Mac and iOS apps working with ZeroConf
 - 88.5% are vulnerable to man-in-the-middle or impersonation attacks

ZeroConf Channels	Vulnerable/ Sampled	Sensitive Information Leaked
Bonjour	18/22	files, directories and clipboard synced, documents printed, instant message
MC	24/24	files and photos transferred, instant message
BLE	10/13	User name and password for OS X
Customized protocols	2/2	remote keyboard input and files transferred

ZeroConf Concept
 ZeroConf How
 ZeroConf Breaking
 Impact
 Protecting ZeroConf

Protecting ZeroConf

- Problem: link a human to her certificate is complicated
- Speaking out Your Certificate (SPYC)
 - Voice biometrics ties certificate to identity

Speaking Out Your Certificate

Protecting ZeroConf

- Challenge: link a human to her certificate
- Speaking out Your Certificate (SPYC)
 - Voice biometrics ties certificate to identity
 - Human Subject Study: convenient and effective

Conclusion

- Apple's ZeroConf techniques are not secure as expected

 The usability-oriented design affects security
- Addressing such security risks is nontrivial
 - Challenge in binding a human to her certificate
- Our Defense: SPYC
 - Voice biometrics ties certificate to identity