
SGX Secure Enclaves in Practice
Security and Crypto Review

JP Aumasson, Luis Merino

This talk
● First SGX review from real hardware and SDK
● Revealing undocumented parts of SGX
● Tool and application releases

Props
Victor Costan (MIT)
Shay Gueron (Intel)
Simon Johnson (Intel)
Samuel Neves (Uni Coimbra)
Joanna Rutkowska (Invisible Things Lab)
Arrigo Triulzi
Dan Zimmerman (Intel)
Kudelski Security for supporting this research

.theory What's SGX, how secure is it?

.practice Developing for SGX on Windows and Linux

.theory Cryptography schemes and implementations

.practice Our projects: reencryption, metadata extraction

Agenda

What's SGX, how secure is it?

New instruction set in Skylake Intel CPUs since autumn 2015

SGX as a reverse sandbox
Protects enclaves of code/data from

● Operating System, or hypervisor
● BIOS, firmware, drivers
● System Management Mode (SMM)

○ aka ring -2
○ Software “between BIOS and OS”

● Intel Management Engine (ME)
○ aka ring -3
○ “CPU in the CPU”

● By extension, any remote attack

= reverse sandbox

Simplified workflow
1. Write enclave program (no secrets)
2. Get it attested (signed, bound to a CPU)
3. Provision secrets, from a remote client
4. Run enclave program in the CPU
5. Get the result, and a proof that it's the

result of the intended computation

Example: make reverse engineer impossible
1. Enclave generates a key pair

a. Seals the private key
b. Shares the public key with the authenticated client

2. Client sends code encrypted with the enclave's public key
3. CPU decrypts the code and executes it

A trusted computing enabler
Or secure computing on someone else's computer

Not a new idea, key concepts from the 1980s

Hardware-enforced security requires:

● Trusted computing base
● Hardware secrets
● Remote attestation
● Sealed storage
● Memory encryption

Trusted computing base
● CPU’s package boundary: IC, ucode, registers, cache
● Software components used for attestation (mainly QE)

You have to trust Intel
anyway if you use an
Intel CPU :-)

Caveats:

● You need a trusted dev environment for creating enclaves
● No secure human I/O: enclave may compute the right result,

but the system may show the wrong one on the screen

Hardware secrets
Two 128-bit keys fused at production:

● Root provisioning key
● Root seal key (not known to Intel)

Derived keys depend on the seal key,
so Intel can't know them

Image: Intel

Remote attestation
Proof that an enclave runs a given software, inside a given CPU,
with a given security level, for a given ISV

SGX mostly useless without

Image: Intel

Sealed storage
Enclaves’ data/code is not secret

Secrets are provisioned later, and can be encrypted to be stored
out of the enclave through the sealing mechanism:

● Encrypted blob
○ Stored outside the enclave
○ Only decryptable by the enclave

● Different keys generated for debug- and production-mode
● Backward compatibility with newer security version numbers
● Replay protection, possible time-based policies

Security limitations
Cache-timing attacks

● Programs should be constant-time, cache-safe
(SGX won't transform insecure software into secure software)

Physical attacks

● Need physical access, may destroy the chip
(such as laser fault injection attacks)

Microcode malicious patching

● Needs special knowledge, persistence difficult

Vulnerability research
SGX is complex, unlikely to be bug-free

Most SGX is black-box, with a large part implemented in ucode :-/

● Complex instructions like EINIT, EGETKEY: partially
documented, but all ucode; black-box testing/fuzzing?

● Platform software: Drivers, critical Intel enclaves, etc.
● SDK: Debug-mode libs available for SGX’ libc and crypto

Vulnerabilities can be disclosed at https://security-center.intel.com/

https://security-center.intel.com/

CPU bugs
From Intel’s 6th Generation family specs update

http://www.intel.com/content/dam/www/public/us/en/documents/specification-updates/desktop-6th-gen-core-family-spec-update.pdf

Bugs in dependencies
Example: SGX’ aesm_service.exe uses OpenSSL

“ASN.1 part of OpenSSL 1.0.1m 19 Mar 2015”

Is CVE-2016-2108 exploitable?

Can SGX be patched?
Yes for most of it, including trusted enclaves & microcode

The memory encryption crypto cannot be patched (hardware)

Developing for SGX

Setup
● Purchase an SGX-enabled Skylake CPU
● Enable SGX in the BIOS (if supported)
● Windows:

○ Install MS Visual Studio Professional 2012 (30-days trial)
○ Install Intel Platform Software and SDK

● Linux: download and build Platform Software and SDK

Same issue with the PSW download

HTTPS download of the SDK? Yes but no

Observed on April 7th, 2016,
reported to Intel (now fixed)

Expired SDK installer cert

Platform Software (PSW)
Required to run SGX enclaves, contains:

● Drivers, service, DLLs
● Intel privileged enclaves:

○ le.signed.dll: Launch policy enforcement
○ qe.signed.dll: EPID, remote attestation
○ pse.signed.dll: Provisioning service

All PEs have ASLR and DEP enabled

PEs signed, FORCE_INTEGRITY not set

SDK
Required to develop SGX enclaves and applications under Visual
Studio 2012 Professional (not free, license needed).

● SGX libs: Intel-custom libc and crypto lib, each coming in two
versions, debug and release

● Tools:
○ sgx_edger8r to generate glue code
○ sgx_sign to sign enclaves with our dev key

● Example code, not fully reliable

Debugging and disassembly
Visual Studio debugger for debug-mode enclaves

Release-mode enclaves undebuggable, like one big instruction

SGX decoded by the popular disassemblers (IDA, r2, etc.)

Developing an enclave application
An SGX-based applications is partitioned in two parts:

● Untrusted: Starts the enclave, interacts with external parties
● Trusted: Executes trusted code using secrets
● They can call each other ("ecalls" and "ocalls")

Challenges:

● Minimize the enclave's code, to reduce attack surface
● Validate untrusted inputs (the OS can’t be trusted)

Dev constraints
● Syscalls & some CPU instructions are not allowed
● Enclaves are statically linked (all code must be measured)
● ring3 only, no kernel mode
● Can't use the real thing easily

● Debug mode is not secure
● Release mode needs an Intel approved developer key

(human interaction and NDA required)

Launching enclaves
● Developers need to be SGX licensees
● OCSP signer certificate status check (cacheable)
● Launch Enclave checks attributes and provides a token signed

with the launch key (derives from HW secrets)

Major change ahead:
Intel will enable custom Launch Enclaves in future CPUs, as
recent documents indicate, to enable custom launch policies

Remote attestation
We want to:

● Remotely verify the enclave integrity
● Establish a secure channel client–enclave

In practice:

● Handshake to get a proof from the enclave + ECDH
● Verify proof yourself: enclave hash, signature, version, !debug
● Verify proof against an Intel web service
● If trusted, provision secrets :)

So, how to handle secrets?
● Don’t embed them in the code
● Establish trust before provisioning them
● Use a secure channel terminated in the enclave
● Seal them at rest
● Design the interface to ensure they won't leak

At last! Linux SDK and PSW
Released on June 25th

SDK and PSW source code, LE/PE/QE binaries
https://01.org/intel-softwareguard-eXtensions
https://github.com/01org/linux-sgx
https://github.com/01org/linux-sgx-driver

https://01.org/intel-softwareguard-eXtensions
https://01.org/intel-softwareguard-eXtensions
https://github.com/01org/linux-sgx
https://github.com/01org/linux-sgx
https://github.com/01org/linux-sgx-driver
https://github.com/01org/linux-sgx-driver

Linux SDK & PSW source code
● ~ 170 kLoCs of C(++)
● BSD License (+ limited patent license)
● Trusted libc derived from OpenBSD's (and some NetBSD)
● Deps: dlmalloc, Protocol Buffers, STLPort, OpenSSL, etc.

Builds shared libraries and CLI tools

Prebuilt binaries
https://01.org/sites/default/files/downloads/intelr-software-guard-extensions-linux-
os/sgxprebuilt-1.5.80.27216.tar
sha256sum on June 27th:
4d2be629a96ab9fca40b70c668a16448caecd9e44bed47aef02f1c99821d127b

Prebuilt enclaves (LE, QE, PVE) with symbols

https://01.org/sites/default/files/downloads/intelr-software-guard-extensions-linux-os/sgxprebuilt-1.5.80.27216.tar
https://01.org/sites/default/files/downloads/intelr-software-guard-extensions-linux-os/sgxprebuilt-1.5.80.27216.tar
https://01.org/sites/default/files/downloads/intelr-software-guard-extensions-linux-os/sgxprebuilt-1.5.80.27216.tar

Crypto in SGX

Image: Intel

SGX crypto zoo
● RSA-3072 PKCS 1.5 SHA-256, for enclaves signatures
● ECDSA over p256, SHA-256, for launch enclave policy checks
● ECDH and ECDSA (p256, SHA-256), for remote key exchange
● AES-128 in CTR, GCM, CMAC at various places: GCM for

sealing, CMAC for key derivation, etc.

→ 128-bit security, except for RSA-3072 (≈ 112-bit)

Memory encryption engine (hw), cf. Gueron’s RWC’16 talk:

● New universal hash-based MAC, provably secure
● AES-CTR with custom counter block

Built-in SGX crypto lib: “somewhat limited”
Libraries sgx_tcrypto.lib and sgx_tcrypto_opt.lib

AES (GCM, CTR), AES-CMAC, SHA-256, ECDH, ECDSA

● Secure, standard algorithms, 128-bit security
● CTR supports weak parameters (e.g. 1-bit counter)

What crypto lib?
Code from Intel’s proprietary IPP 8.2 “gold” (2014)

Only binaries available (debug-mode libs include symbols)

SGX crypto lib on Linux
Similar IPP code too, but comes with source code

● In sdk/tlibcrypto, external/crypto_px, etc.
● SGX public keys in psw/ae/data/constants/linux

Clean and safe code compared to some other crypto libs

SDK's AES implementation (Windows)
“To protect against software-based side channel attacks, the
crypto implementation of AES-GCM utilizes AES-NI, which is
immune to software-based side channel attacks.“
(SDK documentation)

● AES-NI used for the rounds (AESENC, AESDEC)
● Not for the key schedule (no AESKEYGENASSIST)
● Table-based implementation instead with defenses

against cache-timing attacks

SDK's AES implementation (Linux)
No AES-NI, textbook implementation instead (slower)
S-box = 256-byte table with basic cache-timing mitigation

However, AES in prebuilt enclaves to use AES-NI

SGX' libc does not support the weak rand() and srand()

Only RDRAND-based PRNG (not RDSEED):

sgx_status_t sgx_read_rand(
unsigned char *rand,
size_t length_in_bytes

);

“there are some circumstances when the RDRAND
instruction may fail. When this happens, the recommendation
is to try again up to ten times (...)” (Enclave’s writer guide)

No weak randomness in SGX’ libc?

sdk/trts/linux/trts_pic.S sgx_trts.lib:trts_pic.obj

sgx_read_rand implements the 10x retry

RDRAND / RDSEED are the only non-SGX SGX-enabled
instructions that an hypervisor can force to cause a VM exit

Can be used to force the use of weaker randomness

Crypto DoS warning

Toy crypto lib in /sdk/sample_libcrypto/
Beware weak crypto

The quoting enclave (QE)
Critical for remote attestation:

1. Verifies an enclave's measurement
(create by the EREPORT instruction)

2. Signs it as EPID group member
3. Create a QUOTE: an attestation

verifiable by third parties

Uses an undocumented custom crypto scheme...

Quoting enclave's crypto

Random 16-byte key and 12-byte IV, unsealed EPID private key
Details in https://github.com/kudelskisecurity/sgxfun

https://github.com/kudelskisecurity/sgxfun

Quoting enclave's crypto

● Hybrid encryption, IND-CCA (OAEP) + IND-CPA (GCM)
● Random-IV GCM safe since K is random too
● SHA-256(K) leaks info on K, enables time-memory tradeoffs
● No forward secrecy (compromised RSA key reveals prev. Ks)

Enhanced Privacy ID anonymous group signatures
Signatures verified to
belong to the group, hiding
the member that signed

Issuer, holds the
"master key", can grant
access to the group

Members sign an
enclave's measurement
anonymously

Group = CPUs of same
type, same SGX version

Verifier ensures that an
enclave does run on a
trusted SGX platform

EPID implementation
Not in microcode, too complex

Not in SGX libs, but in the QE and PVE binaries

Undocumented implementation details:

● Scheme from https://eprint.iacr.org/2009/095
● Barretto-Naehrig curve, optimal Ate pairing
● Code allegedly based on https://eprint.iacr.org/2010/354

Pubkey and parameters provided by Intel Attestation Service (IAS)

https://eprint.iacr.org/2009/095
https://eprint.iacr.org/2010/354

EPID scheme security
Allegedly 128-bit security for SGX' implementation

Relies on variants of the Diffie-Hellman assumption on EC:

● Decisional Diffie-Hellman (DDH):
Should be hard to distinguish (ga, gb, gab) from (ga, gb, gc)

● q-Strong Diffie-Hellman (qSDH)
Should be hard to find x and y where x = g1

1/(y+r)
given (g1, g1

r , g1
r^2,…, g1

r^q , g2, g2
r)

Well-known crypto assumptions, DDH the most solid

Our projects

SGX and crypto applications
SGX allows us to cheat, by using the CPU as a TPM, rather than
using complex and slow protocols for

● Fully homomorphic encryption
● Multiparty computation
● Secure remote storage
● Proxy reencryption
● Secure delegation
● Encrypted search

Reencryption
Transform ciphertext Enc(K1, M) into ciphertext Enc(K2, M):

● Without exposing plaintext nor keys to the OS
● Symmetric keys only, no private key escrow!
● Sealed keys and policies:

○ Which keys can I encrypt to/from?
○ Which clients can use my key? When does it expire?

Applications: enterprise file sharing, network routing, pay-TV,
etc.

Our PoC: multi-client, single-server, available on
https://github.com/kudelskisecurity/sgx-reencrypt

https://github.com/kudelskisecurity/sgx-reencrypt
https://github.com/kudelskisecurity/sgx-reencrypt

Reencryption security
Goal: leak no info on plaintext, secret keys, key IDs, policies

Limitations:

● OS may tamper with sealed blobs, but the enclave will notice it
● OS may distinguish algorithms using side channels
● No trusted clock: OS can bypass the key expiration, cannot

implement reliable time-based policies
● Sealed keys are fetched on every reencrypt request: OS can

see which pairs are used together

ds

request = (ClientID, nonce, kID0, kID1, C0)

crypto_open(box)

(C0 in error responses to make them indistinguishable from legit responses)

box = crypto_box(pk-enc, request)
crypto_open(box)

If policy check fails: response = nonce || err0 || C0
If (P = Dec(key0, C0)) fails: response = nonce || err1 || C0

response = nonce || OK || Enc(key1, P)

box = crypto_box(pk-cli, response)

Reencryption implementation
● Curve25519 key agreement, Salsa20-Poly1305 auth'd enc.

○ SGX'd TweetNacl: compact minimal standalone crypto lib
○ Channel keypair generation + sealing during setup

● No remote attestation implemented:
○ Initial setup in a trusted environment
○ Authenticate the enclave with the channel public key

● Interfaces (NaCl boxed request + response):
○ register_key: seals a new key + policy, returns key ID
○ reencrypt: given a ciphertext and 2 key IDs, produces a

new ciphertext if the policy is valid, errs otherwise

Command-line tools
On https://github.com/kudelskisecurity/sgxfun

● parse_enclave.py extracts metadata from an enclave:
signer and security attributes, build mode, entry points, etc.

● parse_quote.py extracts information from a quote: EPID
group ID, key hash, ISV version, encrypted signature, etc.

● Parse_sealed.p extracts information from sealed blobs: key
policy, payload size, additional authenticated data (not
encrypted), etc.

DEMO!

https://github.com/kudelskisecurity/sgxfun

Conclusions

Open questions
● How bad/exploitable will be bugs in SGX?
● Will cloud providers offer SGX-enabled services?
● Will board manufacturers enable custom LEs in their BIOS?
● Will open-source firmware (such as coreboot) support SGX?
● Will SGX3 use post-quantum crypto? :-)

Black Hat sound bytes
● Intel® SGX enables to run trusted code on a remote untrusted

OS/hypervisor
● Many complex software and crypto components need to be

secure so that SGX lives up to its promises
● We are not disclosing major security issues, but presenting

undocumented aspects of the SGX architecture

Main references
● Intel's official SGX-related documentation (800+ pages)

○ Intel Software Guard Extensions Programming Reference, first-stop for SGX
○ SDK User Guide, SGX SDK API reference
○ Intel’s Enclave Writer’s Guide

● Baumann et al, Shielding Applications from an Untrusted Cloud with Haven, USENIX 2014
● Beekman, https://github.com/jethrogb/sgx-utils
● Costan & Devadas, Intel SGX Explained, eprint 2016/086
● Gueron, Intel SGX Memory Encryption Engine, Real-World Crypto 2016
● Gueron, A Memory Encryption Engine Suitable for General Purpose Processors, eprint 2016/204
● Hoekstra et al, Using Innovative Instructions to Create Trustworthy Software Solutions, HASP 2013
● Ionescu, Intel SGX Enclave Support in Windows 10 Fall Update (Threshold 2)
● NCC Group, SGX: A Researcher’s Primer
● Rutkowska, Intel x86 considered harmful
● Rutkowska, Thoughts on Intel's upcoming Software Guard Extensions (parts 1 and 2)
● Shih et al, S-NFV: Securing NFV states by using SGX, SDN-NFVSec 2016
● Shinde et al, Preventing Your Faults from Telling Your Secrets: Defenses against Pigeonhole Attacks, arXiv

1506.04832
● Schuhster et al, VC3: Trustworthy Data Analytics in the Cloud using SGX, IEEE S&P 2015
● Li et al, MiniBox: A Two-Way Sandbox for x86 Native Code, 2014

https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://software.intel.com/en-us/sgx-sdk/documentation
https://software.intel.com/en-us/sgx-sdk/documentation
https://software.intel.com/sites/default/files/managed/ae/48/Software-Guard-Extensions-Enclave-Writers-Guide.pdf
https://software.intel.com/sites/default/files/managed/ae/48/Software-Guard-Extensions-Enclave-Writers-Guide.pdf
https://github.com/jethrogb/sgx-utils

Prior works
Some stuff already published, mostly without code:

● MIT’s Costan & Devadas “Intel SGX Explained” (essential!)
● Microsoft’s Haven about SGXing full apps (influenced SGX2)
● Microsoft’s VC3: SGXed Hadoop/MapReduce
● CMU & Google’s 2-way sandbox
● Birr-Pixton’s password storage (first PoC released publicly?)
● Juels et al.'s Town Crier authenticated data feeds

Thank you!
Slides and white paper soon online on
https://github.com/kudelskisecurity/sgxfun

@veorq @iamcorso
https://kudelskisecurity.com

https://github.com/kudelskisecurity/sgxfun
https://github.com/kudelskisecurity/sgxfun
https://kudelskisecurity.com
https://kudelskisecurity.com

