
USING EMET TO DISABLE EMET

USING EMET TO DISABLE EMET

Presented by
Abdulellah Alsaheel, Consultant

Raghav Pande, Research Scientist

COPYRIGHT © 2016, FIREEYE, INC. ALL RIGHTS RESERVED.

COPYRIGHT © 2016, FIREEYE, INC. ALL RIGHTS RESERVED. 2

Abdulellah Alsaheel

•  Consultant at Mandiant (A FireEye Company) Saudi Arabia, Riyadh office.

•  Acted as a software developer.

•  The National Company of Telecommunication and Information Security – NCTIS.

•  Research focus

•  Software Security Assessments.

•  Exploit Development.

•  Malware Reverse Engineering.

COPYRIGHT © 2016, FIREEYE, INC. ALL RIGHTS RESERVED. 3

Raghav Pande

•  Researcher at FireEye, Bangalore office.

•  Focus

•  Software Development.

•  System Security.

•  Automation.

•  Detection Research.

COPYRIGHT © 2016, FIREEYE, INC. ALL RIGHTS RESERVED. 4

WHAT IF I TOLD YOU

COPYRIGHT © 2016, FIREEYE, INC. ALL RIGHTS RESERVED. 5

Outlines

•  EMET Introduction

•  Previous Techniques for EMET Disabling

•  Techniques for EMET Evasion

•  Evading Hooks and Anti-Detours

•  Application of Evasion Research

•  New Technique to Disable EMET Using EMET

•  Demonstration

•  Importance of Custom Exploit Prevention Solutions

•  Q/A

COPYRIGHT © 2016, FIREEYE, INC. ALL RIGHTS RESERVED. 6

EMET Introduction

•  Microsoft’s Enhanced Mitigation Experience Toolkit (EMET)

•  Tool that adds security mitigations to user mode programs.

•  Runs inside programs as a Dynamic Link Library (DLL).

•  Uses userland inline hooking to implement mitigations.

•  Makes various changes to protected programs.

COPYRIGHT © 2016, FIREEYE, INC. ALL RIGHTS RESERVED. 7

Detoured vs. Detouring

COPYRIGHT © 2016, FIREEYE, INC. ALL RIGHTS RESERVED. 8

EMET Protections

•  EMET 1.x, released in October 27, 2009

•  Structured Exception Handling Overwrite Protection (SEHOP).

•  Dynamic Data Execution Prevention (DEP).

•  NULL page allocation.

•  Heap spray allocation.
•  EMET 2.x, released in September 02, 2010

•  Mandatory Address Space Layout Randomization (ASLR).

•  Export Address Table Access Filtering (EAF).

COPYRIGHT © 2016, FIREEYE, INC. ALL RIGHTS RESERVED. 9

EMET Protections

•  EMET 3.x, released in May 25, 2012

•  Imported mitigations from ROPGuard to protect against Return Oriented
Programming (ROP).

•  Memory Protection Checks.

•  Caller Check.

•  Stack Pivot.

•  Simulate Execution Flow.

•  Bottom-up ASLR.

•  Load Library Checks.

COPYRIGHT © 2016, FIREEYE, INC. ALL RIGHTS RESERVED. 10

EMET Protections

•  EMET 4.x, released in April 18, 2013

•  Deep Hooks.

•  Anti-detours.

•  Banned functions.

•  Certificate Trust (configurable certificate pinning).

•  EMET 5.x, released in July 31, 2014

•  Attack Surface Reduction (ASR).

•  EAF+.

COPYRIGHT © 2016, FIREEYE, INC. ALL RIGHTS RESERVED. 11

Previous Techniques For EMET Disabling

•  EMET 4.1 disable switch:

•  Exported global variable located at offset 0x0007E220 in emet.dll, in
writable data section. (offensive-security)

•  EMET 2.1 disable switch:

•  Exported global variable located at offset 0x0000C410 in emet.dll, also in
writable data section.

COPYRIGHT © 2016, FIREEYE, INC. ALL RIGHTS RESERVED. 12

Previous Techniques For EMET Disabling

•  EAF protection can be disabled by clearing hardware breakpoints:
•  CONTEXT structure with zero out its debugging registers values.

typedef struct _CONTEXT {
DWORD ContextFlags;
DWORD Dr0;
DWORD Dr1;
DWORD Dr2;
DWORD Dr3;
..
} CONTEXT;

•  NtSetContextThread or NtContinue can be used to set the CONTEXT to
the current thread. (Piotr Bania)

COPYRIGHT © 2016, FIREEYE, INC. ALL RIGHTS RESERVED. 13

Previous Techniques For EMET Disabling

•  EMET 5.0 disable switch:

•  Global variable placed on the heap within a large structure (i.e.
CONFIG_STRUCT) with the size of 0x560 bytes.

•  Pointer to CONFIG_STRUCT located at offset 0x0AA84C in emet.dll

•  Zero out CONFIG_STRUCT+0x558 turns off most of EMET protections.

•  To disable EAF and EAF+ there is unhooked pointer to
NtSetContextThread stored at CONFIG_STRUCT+0x518. (offensive-
security)

COPYRIGHT © 2016, FIREEYE, INC. ALL RIGHTS RESERVED. 14

Previous Techniques For EMET Disabling

•  EMET 5.1 disable switch:

•  Global variable at offset 0x000F2A30 in emet.dll holds encoded pointer
value to some structure (i.e. EMETd).

•  EMETd structure has a pointer field to CONFIG_STRUCT structure that
holds the global switch at the offset CONFIG_STRUCT+0x558.

•  Since the global switch is in read-only memory page, an unhooked pointer
to ntdll!NtProtectVirtualMemory stored at CONFIG_STRUCT+0x1b8 can
be used to to mark it as a writable memory page.

•  Same as EMET 5.0, to disable EAF and EAF+ there is unhooked pointer
to NtSetContextThread stored at CONFIG_STRUCT+0x518. (offensive-
security)

COPYRIGHT © 2016, FIREEYE, INC. ALL RIGHTS RESERVED. 15

Techniques for EMET Evasion

•  Most used protections

•  Stack Pivot.

•  Caller Check.

•  SimExecFlow.

•  EAF.

COPYRIGHT © 2016, FIREEYE, INC. ALL RIGHTS RESERVED. 16

Most Used Protections

•  Stack Pivot

•  Stack Switching (not new)

•  Custom Class (not new, observed in CVE-2015-3113)

COPYRIGHT © 2016, FIREEYE, INC. ALL RIGHTS RESERVED. 17

Stack Pivot

•  Stack Switching

COPYRIGHT © 2016, FIREEYE, INC. ALL RIGHTS RESERVED. 18

Custom Class

•  Custom Class

COPYRIGHT © 2016, FIREEYE, INC. ALL RIGHTS RESERVED. 19

Most Used Protections

•  Caller Check

•  Using CALL gadget (with proper destination).

•  Return into shellcode.

COPYRIGHT © 2016, FIREEYE, INC. ALL RIGHTS RESERVED. 20

Caller Check

•  Using CALL Gadget

•  Detection Logic

•  Check if return address is preceded by a call.

•  Check if that call is destined towards hooked API.

COPYRIGHT © 2016, FIREEYE, INC. ALL RIGHTS RESERVED. 21

Caller Check

•  Return Into Shellcode

•  State of Memory

COPYRIGHT © 2016, FIREEYE, INC. ALL RIGHTS RESERVED. 22

Most Used Protections

•  SimExecFlow

•  Double call gadget

•  ~20 Ret

COPYRIGHT © 2016, FIREEYE, INC. ALL RIGHTS RESERVED. 23

SimExecFlow

•  Double Call Gadget

COPYRIGHT © 2016, FIREEYE, INC. ALL RIGHTS RESERVED. 24

SimExecFlow

•  ~20 Return Instructions

COPYRIGHT © 2016, FIREEYE, INC. ALL RIGHTS RESERVED. 25

Most Used Protections

•  EAF

•  Modifying PEB

•  Using IAT instead of EAT

COPYRIGHT © 2016, FIREEYE, INC. ALL RIGHTS RESERVED. 26

EAF

•  Modifying PEB

COPYRIGHT © 2016, FIREEYE, INC. ALL RIGHTS RESERVED. 27

EAF

•  Using IAT instead of EAT

•  Common targets

•  Msvcrt.dll

•  User32.dll

COPYRIGHT © 2016, FIREEYE, INC. ALL RIGHTS RESERVED. 28

Targeted Evasion

•  Easy to deploy

•  Hook Evasion using ROP

•  Product specific

•  Failure chances are high

COPYRIGHT © 2016, FIREEYE, INC. ALL RIGHTS RESERVED. 29

EMET Evasion

•  Assumptions

•  ROP execution
•  Address of any of the following API is available

•  ZwProtectVirtualMemory
•  VirtualProtectEx
•  VirtualProtect
•  ZwAllocateVirtualMemory
•  VirtualAllocEx
•  VirtualAlloc
•  WriteProcessMemory
•  LoadLibraryA

COPYRIGHT © 2016, FIREEYE, INC. ALL RIGHTS RESERVED. 30

EMET Evasion

•  Find API address

•  Check if function prologue is reachable

•  Calculate saved prologue address from API address

•  JMP to saved prologue

COPYRIGHT © 2016, FIREEYE, INC. ALL RIGHTS RESERVED. 31

EMET Evasion

COPYRIGHT © 2016, FIREEYE, INC. ALL RIGHTS RESERVED. 32

EMET Evasion

•  Chain required

COPYRIGHT © 2016, FIREEYE, INC. ALL RIGHTS RESERVED. 33

Application of Evasion Research

•  Exploit Detection Products

•  Shared Protections

•  Few Extra per each one

•  Some Modded over each other

•  Evasion of one protection affects others

•  Design flaws are unusually common

COPYRIGHT © 2016, FIREEYE, INC. ALL RIGHTS RESERVED. 34

Application of Evasion Research

•  Main Highlights

•  Return Address validation.

•  Exception validation.

•  Attack surface reduction.

COPYRIGHT © 2016, FIREEYE, INC. ALL RIGHTS RESERVED. 35

Application of Evasion Research

•  Evasion

•  Not so common

•  However Attackers are catching up

•  CVE-2015-2545 evading EMET

•  Angler Exploit kit Evading EMET

COPYRIGHT © 2016, FIREEYE, INC. ALL RIGHTS RESERVED. 36

New Technique to Disable EMET

•  At EMET.dll+0x65813 there is a function responsible for unloading EMET.

•  Reachable from DllMain().

•  Jumping there results in subsequent calls, which:

•  Remove EMET’s installed hooks.

•  Zero out the debugging registers (Disabling EAF & EAF+ mitigations).

COPYRIGHT © 2016, FIREEYE, INC. ALL RIGHTS RESERVED. 37

New Technique to Disable EMET

•  Prototype of DllMain :
•  BOOL WINAPI DllMain(

 In HINSTANCE hinstDLL,
 In DWORD fdwReason,
 In LPVOID lpvReserved
);

hinstDLL: A handle to the DLL module.

fdwReason: x00 if DLL_PROCESS_DETACH, 0x01 if DLL_PROCESS_ATTACH or 0x02 if DLL_THREAD_ATTACH.
lpvReserved: NULL if FreeLibrary has been called or the DLL load failed.

•  DllMain(GetModuleHandleA("EMET.dll") , DLL_PROCESS_DETACH , NULL);

•  Note: GetModuleHandleA is not hooked by EMET.

COPYRIGHT © 2016, FIREEYE, INC. ALL RIGHTS RESERVED. 38

New Technique to Disable EMET

•  At EMET.dll+0x27298 there is a function that removes EMET hooks.

COPYRIGHT © 2016, FIREEYE, INC. ALL RIGHTS RESERVED. 39

New Technique to Disable EMET

•  struct Detoured_API {

BOOL isActive; // isActive field shows the hooking status, Active: 0x1
PVOID DetouredAPIConfig; // pointer to Detoured_API_Config structure

PVOID nextDetouredAPI; // pointer to the next Detoured_API structure
};

•  struct Detoured_API_Config {

PVOID DetouredWindowsAPI; // pointer to the detoured Windows API
PVOID EMETDetouringFunction; // pointer to where EMET protection implemented
PVOID DetouredFunctionPrologue; // pointer to the Windows API prologue

…
};

COPYRIGHT © 2016, FIREEYE, INC. ALL RIGHTS RESERVED. 40

New Technique to Disable EMET

•  Patch_Functions walks the Hook_Config linked list of structures.

•  struct Hook_Config {

PVOID nextHookConfig; // pointer to the next Hook_Config
BOOL isActive; // isActive field shows the hooking status, Active: 0x1

PVOID ptrEffectiveFunction; // pointer to EMETDetouringFunction or non-detoured API
PVOID DetouredWindowsAPI; // pointer to the detoured Windows API

PVOID EMETDetouringFunction; // pointer to where EMET protection implemented
…

};

COPYRIGHT © 2016, FIREEYE, INC. ALL RIGHTS RESERVED. 41

New Technique to Disable EMET

•  Patch_Functions memcpy:

COPYRIGHT © 2016, FIREEYE, INC. ALL RIGHTS RESERVED. 42

New Technique to Disable EMET

•  Before calling Patch_Functions:

•  After calling Patch_Functions:

COPYRIGHT © 2016, FIREEYE, INC. ALL RIGHTS RESERVED. 43

New Technique to Disable EMET
EAF & EAF+ protections

•  At EMET.dll+0x609D0 there is a function that zeroes out and reinitializes CONTEXT structure.

•  Zero out CONTEXT structure code.

COPYRIGHT © 2016, FIREEYE, INC. ALL RIGHTS RESERVED. 44

New Technique to Disable EMET
EAF & EAF+ protections

•  Then it calls NtSetContextThread to disable EAF & EAF+ mitigations.

COPYRIGHT © 2016, FIREEYE, INC. ALL RIGHTS RESERVED. 45

New Technique to Disable EMET
ROP Implementation

•  We built our ROP gadgets on top of an existing exploit for old vulnerability CVE-2011-2371.

•  ROP gadgets considerations:

•  MZ signature is at EMET.dll base address.

•  Offset to PE signature (i.e. PE_HEADER) is at EMET_BASE_ADDRESS + 0x3C.

•  AddressOfEntryPoint offset is at EMET_BASE_ADDRESS + PE_HEADER + 0x28.

•  DllMain() is at EMET_BASE_ADDRESS + AddressOfEntryPoint.

•  Call the DllMain() with the parameters (EMET.dll base address, 0, 0).

COPYRIGHT © 2016, FIREEYE, INC. ALL RIGHTS RESERVED. 46

New Technique to Disable EMET
ROP Implementation

COPYRIGHT © 2016, FIREEYE, INC. ALL RIGHTS RESERVED. 47

New Technique to Disable EMET

•  Pros:

•  Easy and reliable.

•  Write once, and disable EMET everywhere.

•  EMET (4.1, 5.1, 5.2, 5.2.0.1).

•  EAF & EAF+ protections do not require a special treatment.

COPYRIGHT © 2016, FIREEYE, INC. ALL RIGHTS RESERVED. 48

New Technique to Disable EMET
EMET 5.5 Fix

•  Additional checks on the DllMain().

•  Unloading code still exist at offset 0x00063ADE in emet.dll.

•  Detoured_API structures and Hook_Config still exist.

•  Hook_Config.EMETDetouringFunction retrieves hook address and size,
instead of the API original prologue address and size.

•  memcpy.

COPYRIGHT © 2016, FIREEYE, INC. ALL RIGHTS RESERVED. 49

Importance of custom exploit prevention solutions

•  Security Through Obscurity

•  Not too effective, but we should not rule it out

•  Gives defensive measures more time
•  Unknown Detection System

•  More advantageous

•  More effective telemetry
•  Using Multi Layered Defenses

•  Some products miss, some products catch.

COPYRIGHT © 2016, FIREEYE, INC. ALL RIGHTS RESERVED. 50

Acknowledgments

•  Michael Sikorski

•  Dan Caselden

•  Corbin Souffrant

•  Genwei Jiang

•  Matthew Graeber

THANK YOU

COPYRIGHT © 2016, FIREEYE, INC. ALL RIGHTS RESERVED.

