
A Retrospective on the Use of
Export Cryptography

David Adrian
@davidcadrian

Top 10 Ways Bill Clinton Broke TLS!

or,

David Adrian
@davidcadrian

Meanwhile…

1995 — SSLv2 designed, deployed, and deprecated

1996 — SSLv3 replaces SSLv2, forms the basis for modern TLS

1999 — TLSv1.0 standardized by the IETF

Contains export cryptography

8

Export regulations weakened protocol design to
the point where they are directly harmful clients
using modern cryptography.

Publications
A Messy State of the Union: Taming the Composite State Machines of
TLS
Benjamin Beurdouche, Karthikeyan Bhargavan Antoine Delignat-Lavaud, Cedric Fournet, Markulf Kohlweiss,
Alfredo Pironti, Pierre-Yves Strub, Jean-Karim Zinzindohoue
Oakland 2015

Imperfect Forward Secrecy
David Adrian, Karthikeyan Bhargavan, Zakir Durumeric, Pierrick Gaudry, Matthew Green, J. Alex Halderman,
Nadia Heninger, Drew Springall, and Emmanuel Thomé, Luke Valenta, Benjamin VanderSloot, Eric Wustrow,
Santiago Zanella-Béguelin and Paul Zimmermann
CCS 2015

DROWN: Breaking TLS with SSLv2
Nimrod Aviram, Sebastian Schinzel, Juraj Somorovsky, Nadia Heninger, Maik Dankel, Jens Steube, Luke Valenta,
David Adrian, J. Alex Halderman, Viktor Dukhovni, Emilia Käsper, Shaanan Cohney, Susanne Engels, Christof
Paar, and Yuval Shavitt
USENIX 2016

11

FREA
K

Logja
m

DROW
N

FREAK

Q: How do you selectively weaken a protocol based on RSA?

A: Use a shorter RSA key!

Q: How do you select which RSA key to use?

A: Convoluted protocol handshake!

Client Hello: client random, ciphers (…RSA…)

Server Hello: server random, chosen cipher

Client Key Exchange: EncryptPK(premaster secret)

Kms:= KDF(premaster secret, client random, server random)

Client Finished: EKms(Hash(m1 | m2 | …))

Server Finished: EKms(Hash(m1 | m2 | …))

Certificate: certificate chain (public key PK)

Client Hello: client random, ciphers (…RSA…)

Server Hello: server random, chosen cipher

Client Key Exchange: EncryptPK512(premaster secret)

Kms:= KDF(premaster secret, client random, server random)

Client Finished: EKms(Hash(m1 | m2 | …))

Server Finished: EKms(Hash(m1 | m2 | …))

Certificate: certificate chain (public key PK)

Server Key Exchange: SignPK(PK512)

Bug: Accepted on

non-export ciphers

512 bits RSA

Client Hello: ciphers (…RSA…) Client Hello: ciphers (…RSA_EXPORT…)

Server Hello: cipher: RSA Server Hello: cipher: EXPORT_RSA

EKms(Hash(m1 | m2 | …)) [RSA] EKms(Hash(m1 | m2 | …)) [RSA_EXPORT]

EKms(Hash(m1 | m2 | …)) [RSA_EXPORT]EKms(Hash(m1 | m2 | …)) [RSA]

Certificate: certificate chain (public key PK)

Server Key Exchange: SignPK(PK512)

Client Key Exchange: EncryptPK512(premaster secret)

Kms:= KDF(premaster secret, client random, server random)

Attack can

decrypt

Factored by

attacker

2

1
2

2
2

3
2

4
2

5
2

6

40

80

120

160

256,64
256,16

128,64 128,64

64,64

128,16
128,4

64,4
32,16

32,4
16,4

16,4
16,1 8,1

4,1 2,1 1,1

Time (hrs)

C
o
s
t
(
U
S
D
)

lbp 28; td 120

lbp 29; td 120

lbp 29; td 70

https://teespring.com/shop/hobby-tshirts/factoring

Factoring as a Service
Luke Valenta, Shaanan Cohney, Alex Liao, Joshua Fried, Satya Bodduluri, Nadia Heninger
FC 2015

https://teespring.com/shop/hobby-tshirts/factoring

Anyone who can spend $100 to factor a server’s RSA export key can
impersonate that server!

RSA Export Support

19

 0.1

 1

 10

 100

03/15

05/15

07/15

09/15

11/15

01/16

03/16
S

u
p
p
o
rt

 (
P

e
rc

e
n
t)

Date

RSA Export

Date Support
(Trusted HTTPS)

March 3,
2015 36.7%

March 10,
2015 6.5%

March 25,
2016 1.8%

Client Vulnerability

Gathered data about clients visiting freakattack.com
• Implemented TLS server that sent RSA key exchange on non-export ciphers
• Attempted to load subdomain using Javascript

1.2M page loads, 223K (18%) vulnerable
• Data is biased and not complete (from 2 days post disclosure)
• Users are not deduplicated
• Data is from several days after disclosure, browsers were in the process of patching

Vulnerable Firefox user agents
• Of the 223K vulnerable clients, 15.6K (7.0%) identified as Firefox
• Mozilla NSS was not vulnerable, this is likely due to client-side MITM proxies
• Experimentally confirmed behavior with packet traces of Avast Anti-Virus

20

http://freakattack.com

Mitigations

Disable RSA export ciphers
• Bugs in state machine are less impactful if bad crypto is disabled

Update OpenSSL/SecureTransport/SChannel
• All libraries were patched in 2015

Details on https://freakattack.com
• Instructions on how to patch various server software.

21

FREAK Origins

SSLv3 drafted in the middle of DJB v. US
• FREAK would not have existed if the regulations had been lifted

FREAK is a protocol bug in SSLv3, implementation bug in TLS 1.0
• Need to have clear specifications with well defined edges
• Standard should not be OpenSSL

FREAK is caused by interaction between export and non-export
• Individually, ciphers were implemented correctly
• Composing state machines is difficult
• Reasoning at both the protocol and implementation level is hard

22

Logjam

Q: How do you selectively weaken a protocol based on Diffie-Hellman?

A: Use a shorter prime!

Q: How do you select which prime to use?

A: Convoluted protocol handshake!

Logjam

Downgrade attack against TLS
• Identical attack flow to FREAK
• Server must support export Diffie-Hellman ciphers

Protocol vulnerability, not implementation bug
• Impossible to distinguish export Diffie-Hellman exchange from non-export
• Client can only partially mitigate

Compute 512-bit discrete log instead of factoring 512-bit key
• Most work is in 1 week precomputation per prime
• Calculate individual discrete logs in less than one minute

26

Client Hello: client random, ciphers (…DHE…)

Server Hello: server random, chosen cipher

Server Key Exchange: p, g, ga, SignCertKey(p, g, ga)

Client Key Exchange: gb

Kms: KDF(gab, client random, server random)

Client Finished: EKms(Hash(m1 | m2 | …))

Server Finished: EKms(Hash(m1 | m2 | …))

Certificate: certificate chain (public key)

512 bit prime

for export DHE

ciphers

Client Hello: ciphers (…DHE…) Client Hello: ciphers (…DHE_EXPORT…)

Server Hello: cipher: DHE Server Hello: cipher: EXPORT_DHE

EKms(Hash(m1 | m2 | …)) [DHE] EKms(Hash(m1 | m2 | …)) [DHE_EXPORT]

EKms(Hash(m1 | m2 | …)) [DHE_EXPORT]EKms(Hash(m1 | m2 | …)) [DHE]

Certificate: certificate chain (public key)

Server Key Exchange: p512, g, ga, SignCertKey(p512, g, ga)

Client Key Exchange: gb

Kms: KDF(gab, client random, server random)

Feasibility

Do real-world servers support export Diffie-Hellman?
• How many trusted HTTPS hosts support export DHE? Alexa Top 1M?
• Did people disable export DHE when disabling export RSA?

Precomputation takes ~1 week. Not feasible for many unique p
• How many unique 512-bit primes are used by trusted servers?
• Do implementations regenerate primes?

Use ZMap and ZGrab
• Implement support for export Diffie-Hellman
• Parse out selected Diffie-Hellman parameters

29

IPv4 Support

30

 0.1

 1

 10

 100

03/15

05/15

07/15

09/15

11/15

01/16

03/16

S
u

p
p

o
rt

 (
P

e
rc

e
n

t)

Date

DHE Export

IPv4 Support

31

 0.1

 1

 10

 100

03/15

05/15

07/15

09/15

11/15

01/16

03/16

S
u

p
p

o
rt

 (
P

e
rc

e
n

t)

Date

RSA Export
DHE Export

Top 1M Support

8.5% of the Alexa Top 1M supported DHE_EXPORT
3.4% of the trusted IPv4 supported DHE_EXPORT

32

Prime Popularity among Top 1M domains

Apache mod_ssl 82%

nginx 10%

Other (463 primes) 8%

Implications for Standards

Standardized groups are Diffie-Hellman best practice
• Many attacks on invalid groups, safer to standardize ahead of time
• Need to choose strong enough groups for full lifetime of protocol

Don’t want to standardize weak groups
• TLS would need groups strong enough to last longer than two decades
• Why standardize export groups when the regulations were being overturned?

Standardized groups encourage monoculture
• Could make impact of a 1024-bit break worse
• Want to move to ECDHE instead

33

Mitigations

Browsers
- No longer support 512-bit
- Will be sunsetting 768-bit and 1024-bit
- Chrome canary has fully disabled DHE
- ERR_SSL_WEAK_SERVER_EPHEMERAL_DH_KEY
Server Operators
- Disable DHE_EXPORT
- Move to 2048-bit or elliptic curve variant (ECDHE)

34

DROWN

Q: How do you selectively weaken a protocol that uses symmetric
ciphers?

A: Send N - 5 bytes of the key in cleartext!

State of SSLv2

SSLv2 is already known to be broken
• Does not authenticate handshake
• Only used for one year (1995), officially deprecated in 2011

FREAK and Logjam show harms of supporting obsolete cryptography
• Conventional wisdom for servers was to support all ciphers for compatibility
• Recent work has shown this advice to be actively harmful

Is SSLv2 a harmless vestige, or can it be used to attack modern TLS?
• SSLv2 has export ciphers, how does this affect modern TLS?
• Do servers still support SSLv2 for compatibility? Are people actually using SSLv2?

38

Top 1M SSLv2 Support

39

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10
 100

 1000

 10000

 100000

 1e+06

F
ra

ct
io

n
 o

f
T

o
p

 N
 D

o
m

a
in

s

Rank

SSLv2
TLS

Non-HTTPS SSLv2

40

All Certificates Trusted Certificates
Protocol Port TLS SSLv2 TLS SSLv2

SMTP 25 3,357 K 936 K (28%) 1,083 K 190 K (18%)
POP3 110 4,193 K 404 K (10%) 1,787 K 230 K (13%)
IMAP 143 4,202 K 473 K (11%) 1,781 K 223 K (13%)

HTTPS 443 34,727 K 5,975 K (17%) 17,490 K 1,749 K (10%)
SMTPS 465 3,596 K 291 K (8%) 1,641 K 40 K (2%)
SMTP 587 3,507 K 423 K (12%) 1,657 K 133 K (8%)
IMAPS 993 4,315 K 853 K (20%) 1,909 K 260 K (14%)
POP3S 995 4,322 K 884 K (20%) 1,974 K 304 K (15%)

DROWN

41

Impact of Key Reuse

42

All Certificates Trusted Certificates

Protocol Port TLS SSLv2 Vulnerable Key TLS SSLv2 Vulnerable Key

SMTP 25 3,357 K 936 K (28%) 1,666 K (50%) 1,083 K 190 K (18%) 686 K (63%)

POP3 110 4,193 K 404 K (10%) 1,764 K (42%) 1,787 K 230 K (13%) 1,031 K (58%)

IMAP 143 4,202 K 473 K (11%) 1,759 K (59%) 1,781 K 223 K (13%) 1,022 K (58%)

HTTPS 443 34,727 K 5,975 K (17%) 11,444 K (33%) 17,490 K 1,749 K (10%) 3,931 K (22%)

SMTPS 465 3,596 K 291 K (8%) 1,439 K (40%) 1,641 K 40 K (2%) 949 K (58%)

SMTP 587 3,507 K 423 K (12%) 1,464 K (40%) 1,657 K 133 K (8%) 986 K (59%)

IMAPS 993 4,315 K 853 K (20%) 1,835 K (43%) 1,909 K 260 K (14%) 1,119 K (59%)

POP3S 995 4,322 K 884 K (20%) 1,919 K (44%) 1,974 K 304 K (15%) 1,191 K (60%)

Early DROWN Patching

43

Disclosure (March 1) Still Vulnerable (March 26)

Trusted HTTPS Top 1M 25% 15%

Trusted HTTPS 22% 16%

All HTTPS 33% 28%

Special DROWN

Leave no Bleichen-unbachered!

An implementation bug that allows for attackers to man-in-the-middle
secure connections.

44

Special DROWN
Vulnerable Key

Special DROWN
Vulnerable Name

Trusted HTTPS Top 1M 9% 19%

Trusted HTTPS 26% 38%

All HTTPS 26% —

Mitigations and Lessons

Fully disable SSLv2
• Don’t only disable export ciphers
• If only ciphers are disabled, make sure they’re actually disabled (CVE-2015-3197)

Have single-use keys
• Usually discussed in the context of signatures vs. encryption
• Prudent to use different keys across different protocol versions

Authenticate the client before sending secret-derived data
• DROWN is possible because of the early ServerVerify message
• Design protocols to check the client has knowledge of the secret first

45

Lessons and Implications

Technology Implications

Obsolete cryptography considered harmful
• Maintaining support for old services is not harmless backward compatibility
• Not just harmful as bloat in modern protocols—existence is also harmful

Limit complexity
• Cryptographic APIs and state machines are often overly complicated
• Design protocols to limit implementation mistakes
• Design APIs to limit usage mistakes

Weakened cryptography considered harmful
• All forms of export cryptography are now broken
• Export RSA (FREAK attack), Export DHE (Logjam), Export symmetric (DROWN)

47

Policy Implications

Cryptography regulations have lasting effects
• Maintaining support for old services is not harmless backward compatibility
• Not just harmful as bloat in modern protocols—existence is also harmful

Technological evidence opposes backdooring cryptography
• Weakened/export cryptography is not the same as a backdoor
• Weakened crypto is arguably less intrusive than backdoors, but still devastating
• Current state of technology suggests cryptography is fragile enough

Cannot assign cryptography based on nationality
• Internet is global, traffic flows everywhere, CDNs amplify this effect
• Can’t technologically say a non-US citizen uses different cryptography

48

A Retrospective on the Use of Export Cryptography

Attacks

https://freakattack.com

https://weakdh.org

https://drownattack.com

Contact

https://davidadrian.org

David Adrian
@davidcadrian

https://freakattack.com
https://weakdh.org
https://drownattack.com
https://davidadrian.org

