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Meanwhile…

1995 — SSLv2 designed, deployed, and deprecated 

1996 — SSLv3 replaces SSLv2, forms the basis for modern TLS 

1999 — TLSv1.0 standardized by the IETF 

Contains export cryptography
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Export regulations weakened protocol design to 
the point where they are directly harmful clients 
using modern cryptography.
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Q: How do you selectively weaken a protocol based on RSA? 

A: Use a shorter RSA key!

Q: How do you select which RSA key to use? 

A: Convoluted protocol handshake!



Client Hello: client random, ciphers (…RSA…)

Server Hello: server random, chosen cipher

Client Key Exchange: EncryptPK(premaster secret)

Kms:= KDF(premaster secret, client random, server random)

Client Finished: EKms(Hash(m1 | m2 | …))

Server Finished: EKms(Hash(m1 | m2 | …))

Certificate: certificate chain (public key PK)



Client Hello: client random, ciphers (…RSA…)

Server Hello: server random, chosen cipher

Client Key Exchange: EncryptPK512(premaster secret)

Kms:= KDF(premaster secret, client random, server random)

Client Finished: EKms(Hash(m1 | m2 | …))

Server Finished: EKms(Hash(m1 | m2 | …))

Certificate: certificate chain (public key PK)

Server Key Exchange: SignPK(PK512)

Bug: Accepted on 

non-export ciphers

512 bits RSA



Client Hello: ciphers (…RSA…) Client Hello: ciphers (…RSA_EXPORT…)

Server Hello: cipher: RSA Server Hello: cipher: EXPORT_RSA

EKms(Hash(m1 | m2 | …)) [RSA] EKms(Hash(m1 | m2 | …)) [RSA_EXPORT]

EKms(Hash(m1 | m2 | …)) [RSA_EXPORT]EKms(Hash(m1 | m2 | …)) [RSA]

Certificate: certificate chain (public key PK)

Server Key Exchange: SignPK(PK512)

Client Key Exchange: EncryptPK512(premaster secret)

Kms:= KDF(premaster secret, client random, server random)

Attack can 

decrypt

Factored by 

attacker
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https://teespring.com/shop/hobby-tshirts/factoring

Factoring as a Service 
Luke Valenta, Shaanan Cohney, Alex Liao, Joshua Fried, Satya Bodduluri, Nadia Heninger 
FC 2015

https://teespring.com/shop/hobby-tshirts/factoring


Anyone who can spend $100 to factor a server’s RSA export key can 
impersonate that server!



RSA Export Support
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Client Vulnerability

Gathered data about clients visiting freakattack.com 
• Implemented TLS server that sent RSA key exchange on non-export ciphers 
• Attempted to load subdomain using Javascript 

1.2M page loads, 223K (18%) vulnerable 
• Data is biased and not complete (from 2 days post disclosure) 
• Users are not deduplicated 
• Data is from several days after disclosure, browsers were in the process of patching 

Vulnerable Firefox user agents 
• Of the 223K vulnerable clients, 15.6K (7.0%) identified as Firefox 
• Mozilla NSS was not vulnerable, this is likely due to client-side MITM proxies 
• Experimentally confirmed behavior with packet traces of Avast Anti-Virus
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http://freakattack.com


Mitigations

Disable RSA export ciphers 
• Bugs in state machine are less impactful if bad crypto is disabled 

Update OpenSSL/SecureTransport/SChannel 
• All libraries were patched in 2015 

Details on https://freakattack.com 
• Instructions on how to patch various server software.
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FREAK Origins

SSLv3 drafted in the middle of DJB v. US 
• FREAK would not have existed if the regulations had been lifted 

FREAK is a protocol bug in SSLv3, implementation bug in TLS 1.0 
• Need to have clear specifications with well defined edges 
• Standard should not be OpenSSL 

FREAK is caused by interaction between export and non-export 
• Individually, ciphers were implemented correctly 
• Composing state machines is difficult 
• Reasoning at both the protocol and implementation level is hard
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Logjam



Q: How do you selectively weaken a protocol based on Diffie-Hellman? 

A: Use a shorter prime!

Q: How do you select which prime to use? 

A: Convoluted protocol handshake!





Logjam

Downgrade attack against TLS 
• Identical attack flow to FREAK 
• Server must support export Diffie-Hellman ciphers 

Protocol vulnerability, not implementation bug 
• Impossible to distinguish export Diffie-Hellman exchange from non-export  
• Client can only partially mitigate 

Compute 512-bit discrete log instead of factoring 512-bit key 
• Most work is in 1 week precomputation per prime 
• Calculate individual discrete logs in less than one minute
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Client Hello: client random, ciphers (…DHE…)

Server Hello: server random, chosen cipher

Server Key Exchange: p, g, ga, SignCertKey(p, g, ga) 

Client Key Exchange: gb

Kms: KDF(gab, client random, server random)

Client Finished: EKms(Hash(m1 | m2 | …))

Server Finished: EKms(Hash(m1 | m2 | …))

Certificate: certificate chain (public key)

512 bit prime 

for export DHE 

ciphers



Client Hello: ciphers (…DHE…) Client Hello: ciphers (…DHE_EXPORT…)

Server Hello: cipher: DHE Server Hello: cipher: EXPORT_DHE

EKms(Hash(m1 | m2 | …)) [DHE] EKms(Hash(m1 | m2 | …)) [DHE_EXPORT]

EKms(Hash(m1 | m2 | …)) [DHE_EXPORT]EKms(Hash(m1 | m2 | …)) [DHE]

Certificate: certificate chain (public key)

Server Key Exchange: p512, g, ga, SignCertKey(p512, g, ga) 

Client Key Exchange: gb

Kms: KDF(gab, client random, server random)



Feasibility

Do real-world servers support export Diffie-Hellman? 
• How many trusted HTTPS hosts support export DHE? Alexa Top 1M? 
• Did people disable export DHE when disabling export RSA? 

Precomputation takes ~1 week. Not feasible for many unique p 
• How many unique 512-bit primes are used by trusted servers? 
• Do implementations regenerate primes? 

Use ZMap and ZGrab 
• Implement support for export Diffie-Hellman 
• Parse out selected Diffie-Hellman parameters
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IPv4 Support
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IPv4 Support
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Top 1M Support

8.5% of the Alexa Top 1M supported DHE_EXPORT 
3.4% of the trusted IPv4 supported DHE_EXPORT 
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Prime Popularity among Top 1M domains

Apache mod_ssl 82%

nginx 10%

Other (463 primes) 8%



Implications for Standards

Standardized groups are Diffie-Hellman best practice 
• Many attacks on invalid groups, safer to standardize ahead of time 
• Need to choose strong enough groups for full lifetime of protocol 

Don’t want to standardize weak groups 
• TLS would need groups strong enough to last longer than two decades 
• Why standardize export groups when the regulations were being overturned? 

Standardized groups encourage monoculture 
• Could make impact of a 1024-bit break worse 
• Want to move to ECDHE instead
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Mitigations

Browsers
- No longer support 512-bit 
- Will be sunsetting 768-bit and 1024-bit 
- Chrome canary has fully disabled DHE 
- ERR_SSL_WEAK_SERVER_EPHEMERAL_DH_KEY 
Server Operators
- Disable DHE_EXPORT 
- Move to 2048-bit or elliptic curve variant (ECDHE)
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DROWN



Q: How do you selectively weaken a protocol that uses symmetric 
ciphers? 

A: Send N - 5 bytes of the key in cleartext!



State of SSLv2

SSLv2 is already known to be broken 
• Does not authenticate handshake 
• Only used for one year (1995), officially deprecated in 2011 

FREAK and Logjam show harms of supporting obsolete cryptography 
• Conventional wisdom for servers was to support all ciphers for compatibility 
• Recent work has shown this advice to be actively harmful 

Is SSLv2 a harmless vestige, or can it be used to attack modern TLS? 
• SSLv2 has export ciphers, how does this affect modern TLS? 
• Do servers still support SSLv2 for compatibility? Are people actually using SSLv2?
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Top 1M SSLv2 Support
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Non-HTTPS SSLv2
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All Certificates Trusted Certificates
Protocol Port TLS SSLv2 TLS SSLv2

SMTP 25 3,357 K 936 K (28%)  1,083 K 190 K (18%)
POP3 110  4,193 K 404 K (10%)  1,787 K  230 K (13%)
IMAP 143  4,202 K 473 K (11%)  1,781 K 223 K (13%)

HTTPS 443  34,727 K  5,975 K (17%)  17,490 K 1,749 K (10%)
SMTPS 465 3,596 K  291 K (8%)  1,641 K  40 K (2%)
SMTP 587  3,507 K  423 K (12%)  1,657 K  133 K (8%)
IMAPS 993  4,315 K 853 K (20%)  1,909 K  260 K (14%)
POP3S 995  4,322 K 884 K (20%)  1,974 K  304 K (15%)



DROWN

41



Impact of Key Reuse
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All Certificates Trusted Certificates

Protocol Port TLS SSLv2 Vulnerable Key TLS SSLv2 Vulnerable Key

SMTP 25 3,357 K 936 K (28%) 1,666 K (50%)  1,083 K 190 K (18%) 686 K (63%)

POP3 110  4,193 K 404 K (10%) 1,764 K (42%)  1,787 K  230 K (13%) 1,031 K (58%)

IMAP 143  4,202 K 473 K (11%) 1,759 K (59%)  1,781 K 223 K (13%) 1,022 K (58%)

HTTPS 443  34,727 K  5,975 K (17%) 11,444 K (33%)  17,490 K 1,749 K (10%) 3,931 K (22%)

SMTPS 465 3,596 K  291 K (8%) 1,439 K (40%)  1,641 K  40 K (2%) 949 K (58%)

SMTP 587  3,507 K  423 K (12%) 1,464 K (40%)  1,657 K  133 K (8%) 986 K (59%)

IMAPS 993  4,315 K 853 K (20%) 1,835 K (43%)  1,909 K  260 K (14%) 1,119 K (59%)

POP3S 995  4,322 K 884 K (20%) 1,919 K (44%)  1,974 K  304 K (15%) 1,191 K (60%)



Early DROWN Patching
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Disclosure (March 1) Still Vulnerable (March 26)

Trusted HTTPS Top 1M 25% 15%

Trusted HTTPS 22% 16%

All HTTPS 33% 28%



Special DROWN

Leave no Bleichen-unbachered! 

An implementation bug that allows for attackers to man-in-the-middle 
secure connections.
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Special DROWN 
Vulnerable Key

Special DROWN
Vulnerable Name

Trusted HTTPS Top 1M 9% 19%

Trusted HTTPS 26% 38%

All HTTPS 26% —



Mitigations and Lessons

Fully disable SSLv2 
• Don’t only disable export ciphers 
• If only ciphers are disabled, make sure they’re actually disabled (CVE-2015-3197) 

Have single-use keys 
• Usually discussed in the context of signatures vs. encryption 
• Prudent to use different keys across different protocol versions 

Authenticate the client before sending secret-derived data 
• DROWN is possible because of the early ServerVerify message 
• Design protocols to check the client has knowledge of the secret first

45



Lessons and Implications



Technology Implications

Obsolete cryptography considered harmful 
• Maintaining support for old services is not harmless backward compatibility 
• Not just harmful as bloat in modern protocols—existence is also harmful 

Limit complexity 
• Cryptographic APIs and state machines are often overly complicated 
• Design protocols to limit implementation mistakes 
• Design APIs to limit usage mistakes 

Weakened cryptography considered harmful 
• All forms of export cryptography are now broken 
• Export RSA (FREAK attack), Export DHE (Logjam), Export symmetric (DROWN)
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Policy Implications

Cryptography regulations have lasting effects 
• Maintaining support for old services is not harmless backward compatibility 
• Not just harmful as bloat in modern protocols—existence is also harmful 

Technological evidence opposes backdooring cryptography  
• Weakened/export cryptography is not the same as a backdoor 
• Weakened crypto is arguably less intrusive than backdoors, but still devastating 
• Current state of technology suggests cryptography is fragile enough 

Cannot assign cryptography based on nationality 
• Internet is global, traffic flows everywhere, CDNs amplify this effect 
• Can’t technologically say a non-US citizen uses different cryptography
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A Retrospective on the Use of Export Cryptography

Attacks

https://freakattack.com 

https://weakdh.org 

https://drownattack.com 

Contact

https://davidadrian.org

David Adrian 
@davidcadrian

https://freakattack.com
https://weakdh.org
https://drownattack.com
https://davidadrian.org

