ZIGBEE EXPLOITED
-
The good, the bad and the ugly
WHO ARE WE?

- **Tobias Zillner**
- Senior IS Auditor @Cognosec in Vienna
 - Penetration Testing,
 - Security Audits, Security Consulting
 - Breaking stuff
- Owner of a ZigBee based home automation system :D

- **Sebastian Strobl**
- Principal Auditor @Cognosec in Vienna
 - Plans and leads various types of IT audits
 - Still trying to get his HD drone vision to work
 - Now uses Z-Wave for home automation until we manage to break it too
AGENDA

- Introduction
- ZigBee Security Measures - The good
- ZigBee Application Profiles - The bad
- ZigBee Implementations - The ugly
- Demonstration
- Summary
WHAT IT’S ABOUT?
WHAT IS ZIGBEE?

ZigBee

- Based on IEEE 802.15.4
- Low-cost
- Low-power
- Two-way
- Reliable
- Wireless
WHERE IS IT USED?

ZigBee Application Domains:
- Home Automation
- Building Automation
- Health Care
- Smart Energy
- Retail Services
- Telecom Services
- Remote Control
WHY IS IT IMPORTANT?

- Trend is wireless connections

- Samsung CEO BK Yoon:
 - “Every Samsung device will be part of IoT till 2019”

- Over 500 smart device per household in 2022

2 http://www.gartner.com/newsroom/id/2636073
FUTURE OF WIRED IOT

https://hivizme.files.wordpress.com/2012/06/cable-mess.jpg
WHY SECURITY?

• **HOME** automation has high privacy requirements
• Huge source of personalized data

"Items of interest will be located, identified, monitored, and remotely controlled through technologies such as radio-frequency identification, sensor networks, tiny embedded servers, and energy harvesters - all connected to the next-generation internet."¹

-Former CIA Director
David Petraeus

¹ http://www.wired.com/2012/03/petraeus-tv-remote/
ZIGBEE SECURITY MEASURES

- THE GOOD
ZIGBEE SECURITY MEASURES

Security Measures

- Symmetric Encryption: AES-CCM* 128bit
- Message Authentication
- Integrity Protection: MIC 0 - 128 bit
- Replay Protection: Frame Counter 4 Byte
• One security level per network
• Security based on encryption keys
 • Network Key
 • Used for broadcast communication
 • Shared among all devices
 • Link Key
 • Used for secure unicast communication
 • Shared only between two devices
Trust in the security is ultimately reduced to:

• Trust in the secure **initialization** of keying material

• Trust in the secure **installation** of keying material

• Trust in the secure **processing** of keying material

• Trust in the secure **storage** of keying material
HOW ARE KEYS EXCHANGED?

- Preinstalled Devices
- Key Transport
 - Out of band recommended
- Key Establishment
 - Derived from other keys
 - Also requires preinstalled keys
APPLICATION PROFILES

• Define communication between devices
 • Agreements for messages
 • Message formats
 • Processing actions

• Enable applications to
 • Send commands
 • Request data
 • Process commands
 • Process requests

• Startup Attribute Sets (SAS) provide interoperability and compatibility
• Default Trust Center Link Key
 • 0x5A 0x69 0x67 0x42 0x65 0x65 0x41 0x6C 0x6C 0x69 0x61 0x6E
 • ZigBeeAlliance09

• Use Default Link Key Join
 • 0x01(True)
 • *This flag enables the use of default link key join as a fallback case at startup time.*

• Return to Factory Defaults
 • *In support of a return to factory default capability, HA devices shall implement a Network Leave service. Prior to execution of the NWK Leave [...] the device shall ensure all operating parameters are reset to allow a reset to factory defaults.*
• Devices in a ZLL shall use ZigBee network layer security.

• “The ZLL security architecture is based on using a fixed secret key, known as the ZLL key, which shall be stored in each ZLL device. All ZLL devices use the ZLL key to encrypt/decrypt the exchanged network key. “

• “It will be distributed only to certified manufacturers and is bound with a safekeeping contract“
rt: @MayaZigBee

#DIY lover #ZLL master key 9F 55 95 F1 02 57 C8 A4 69 CB F4 2B C9 3F EE 31
#ZigBee #Philips #Hue

MayaZigBee @MayaZigBee · Mar 29
Should the #ZLL master key be illegal? Should a #free #DIY #interoperability be illegal (w a light bulb, mind you)? Make sure the key lives!
• nwkAllFresh
 • *False*
 • *Do not check frame counter*

• Trust center link key
 • 0x5a 0x69 0x67 0x42 0x65 0x65 0x41 0x6c 0x6c 0x69 0x61 0x63 0x65 0x30 0x39
 • *Default key for communicating with a trust center*

• Use insecure join
 • *True*
 • *Use insecure join as a fallback option.*
"To avoid "bugs" that an attacker can use to his advantage, it is crucial that security be well implemented and tested. […] Security services should be implemented and tested by security experts [...]." (ZigBee Alliance 2008, p. 494)
"The request-key service provides a secure means for a device to request the active network key, or an end-to-end application master key, from another device" (ZigBee Alliance 2008, p. 425)
/**

Remote device asked us for key.

Application keys are not implemented.
Send current network key.
Not sure: send unsecured?
What is meaning of that command??
Maybe, idea is that we can accept "previous" nwk key?
Or encrypt by it?
*/
/

Initiate unsecured key transfer.
Not sure it is right, but I really have no ideas about request meaning of key for network key.

*/
• Door Lock

• Smart Home System

• Lighting Solutions
• ALL tested systems only use the default TC Link Key for securing the initial key exchange

• No link keys are used or supported
 • Complete compromise after getting network key

• No ZigBee security configuration possibilities available

• No key rotation applied
 • Test period of 11 month
• Device reset often difficult
 • Removal of key material not guaranteed
 • One device does not support reset at all

• Light bulbs do not require physical interaction for pairing

• Workarounds like reduced transmission power are used to prevent pairing problems
 • Devices have to be in very close proximity for pairing
DEMONSTRATION - SecBee
SecBee

- ZigBee security testing tool
- Target audience
 - Security testers
 - Developers
- Based on `scapy-radio, μracoli` and `killerbee`
- Provides features for testing of security services as well as weak security configuration and implementation
 - Support of encrypted communication
 - Command injection
 - Scan for weak key transport
 - Reset to factory
 - Join to network
 - Test security services

https://github.com/zu1na/SecBee
DATA TRANSFER

DIRECT

Coordinator → End device
- DATA
- ACK

Coordinator → End device
- DATA
- ACK

INDIRECT

Coordinator → End device
- Data request
- ACK
- DATA

Coordinator → End device
- Data request
- ACK
- DATA

Timeframe < 8ms
DEMONSTRATION

KEY EXTRACTION
Fallback key exchange insecure

Most vendors only implement fallback solution

Same security level as plaintext exchange
THATS NO ISSUE

TIMEFRAME IS VERY LIMITED
So, the

1. Timeframe is limited

2. Proximity is necessary

3. Key extraction works only during pairing

... what would an attacker do?
Typical End-User

DEVICE LOST CONNECTION

WHAT NEXT?
It is not only about technology :D
DEMONSTRATION

COMMAND INJECTION
Devices are paired and working

1. Identify the target device

2. Reset to factory default settings

1. Join the target device to our network
No physical access is required

No knowledge of the secret key is needed

Usability overrules security
• Security measures provided are good

• Requirements due to interoperability weaken the security level drastically

• Vendors only implement the absolute minimum to be compliant

• Usability overrules security
• Proper implementation of security measures is crucial - Compliance is not Security

• Learn from history and do not rely on “Security by Obscurity”

• There is a world beside TCP/IP
THANK YOU!
TIME FOR QUESTIONS
- LET’S TALK ABOUT IT
Please complete the speaker feedback survey.