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Splunk Acquires @ Caspida

Extends Security Analytics Leadership by Adding Behavioral
Analytics to Better Detect Advanced and Insider Threats
Come see us at the Black Hat Booth #347
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Research Background

Security Research - Related Research:

—  First security talk ever attended @ Decfon 8: Jon Erickson —  Fractal random walks: predicting time series
“Number Theory, Complexity Theory, Cryptography, and »  Human Behavior (stocks), Physical Processes (heat, magnetism)
Quantum Computing” » Molecular kinetics (Brownian motion, quantum mechanics)
» | am still trying to understand that talk... »  Stochastic Fast Dynamo, Stochastic Anderson Equation

—  Llate 90’s: Traffic baselines and Layer 2 behavioral profiling » Time as a random process

using MRTG and first generation NMS
Recently: Consultant on cybersecurity analytics projects the
last few years standing up custom solutions
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ML: Predicting Time Series
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A.l. and the “Big” Picture

Can Strong Al help predict..

— The dynamo effect?
— Pole shifts?
— Extinction events?
— Military escalations?
— Cybersecurity catastrophes?
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Cybersecurity Defense: Failings and Motivations

Mudge, “How a Hacker Has Helped Influence the Government - and Vice Versa” Blackhat 2011

9,000 Malware Samples Analyzed

— 125 LOC for Average Malware Sample
—  Stuxnet = 15,000 LOC (120x average malware sample LOC)
— 10,000,000 = Average LOC for modern firewall/security stack

Key Takeaway: For one single offensive LOC defenders write 100,000 LOC

120:1 Stuxnet to average malware
— 500:1 Simple text editor to average malware
— 2,000:1 Malware suite to average malware
— 100,000:1 Defensive tool to average malware
— 1,000,000:1 Target operating system to average malware

Bruce Schneier, “The State of Incident Response by Bruce Schneier” Blackhat 2014

—  G. Akerlof, “The Market for Lemons: Quality Uncertainty and the Market Mechanism”
Key Takeaway: Security is a lemons market!

—  Prospect theory “As a species we are risk adverse when it comes to gains and risk taking when it comes to
losses”

Key Takeaway: We don’t buy security products until it is too late!




A Philosophy of Defense

"Once you understand The Way broadly, you can see it in all things."
— Miyamoto Musashi, Book of Five Ring 1643




A Philosophy of Defense

"Once you understand The Way broadly, you can see it in all things."
— Miyamoto Musashi, Book of Five Ring 1643

 Musashi was undefeated samurai (60 duels)

* Throughout the book, Musashi implies that the
way of the Warrior, as well as the meaning of a
"True strategist" is that of somebody who has

made mastery of many art forms away from that
of the sword...

* Such a philosophy is fractal — it has similar
properties on many scales



Fractal Defense

"Once you understand The Way broadly, you can see it in all things."
— Miyamoto Musashi, Book of Five Ring 1643

e A fractal is a natural phenomenon or a
mathematical set that exhibits a repeating
pattern that displays at every scale.

e Security is a combination of detection,
protection and response

* Fractal defense: a philosophy for scaling
detection, protection and response up and
down the IT ecosystem



Fractal Defense: Example

From our white paper “Defense at scale: Building a Central Nervous
System for the SOC”
Behavioral Indicator of Compromise (I0C)

P(W1,...,Wa) =P(W1) [ [P(Wi|Wi_y,..., W)

=2

— Leverage expressive ways to target TTP’s (tactics, techniques and
procedures) that are reusable and scalable across many use cases/

behaviors

— Can incorporate classical signatures into a probabilistic scoring
mechanism



Fractal Defense: Example

From our white paper “Defense at scale: Building a Central Nervous
System for the SOC”

Behavioral Indicator of Compromise (I0C)

P(W1,...,Wa) =P(W1) [ [P(Wi|Wi_y,..., W)

=2

Model 1. Let W be a string of length n such that W is composed of characters W1, ..., W, in increasing order. For
example if W = google then Wi = g, Wy =0,Ws=0,Wy=g,Ws=1,Ws=e. Apply the Bayes "chain rule” to get

P(W,|Wh) 1 #(wi-1w;) 3 Ag#(wi—wi—lwi)

(1.1) P(Wy,...,Wy) = P(Wy)... B(W,) 12 {’\1% th #(w;_1) #(wi—ow;-1)




Fractal Defense: Example

From our white paper “Defense at scale: Building a Central Nervous
System for the SOC”

Behavioral Indicator of Compromise (I0C)

P(W1,...,Wa) =P(W1) [ [P(Wi|Wi_y,..., W)
=2

Model 2. Let W be any sequential data representing for instance an incoming stream of bytes or content types from
prozy logs. For example let Wy = text/html,

Wa = application/java-archive, W3 = application/octet-stream.

P(WyW1) 1+
IP)(Wé) g ']P)(Wn)

1 1
29 (w;)

#(wi—lwi)

(14) (Wi, W) = % #(wi-1)

+

i=1




Central Nervous System Approach

F, = Snort I0C "MALWARE-CNC Win.Trojan.Zeus

encrypted POST Data exfiltration”
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Sound Bytes

— Fractal Defense: Reuse logic (and code) across different
security use cases. Make behavior based I0C’s map to
adversary tactics, techniques and procedures for better
scalability.

— Cybersecurity Analytics ROIl: Make security requirements
functional by setting realistic benchmarks based on your
own data

— Lambda Architecture: a generic problem solving system
built on immutability and hybrid batch/real-time
workflows
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Cybersecurity Analytics

« Motivation
— Number one mistake | see researchers making is modeling the

“Continuum of behaviors” vs. modeling a discrete security use case
— Help rank order use cases for management/researchers without security
background (ranking should coincide with security expert intuition)

« Possible attack behaviors are infinite!

— Intractable dimensionality
— “Project the problem down to finitely many sub problems”

- Anomaly Detection != Actionable Intelligence



Cybersecurity Analytics Roadmap

Step 1: Make a grab bag of your favorite use cases/gaps of the threat surface
— Model primitives: actionable units or single behaviors

Step 2: Determine existing coverage and cost of impact per use case
(APPROXIMATE! Unless you are have been logging costs of security events
internally similar to MS...)

Step 3: Build ROI Graph
— What is your formula for ROI?

Step 4: Rank Order

— Rank by determining which ordering provides additional value to minimizing risk

— Our example uses the added structure of LAN and WAN but you can complicate
things further by trying to incorporate adversary capabilities, point solution
metrics, etc...



Enumerate Threat Surface
Use Cases: In5|der/LAN Threats

PtH/PtT

Time of Day Model
Lateral Reconnaissance
Pop @ Risk

Passive DNS

Data Store Exfiltration
Two Factor Attack
Exploit Kits

Crowd sourced Executable Classification

MITM

Telecommuter Ground Speed/
Triangulation

Data mart reconnaissance/mapping
VIP Asset Profiling

User to Group Behavior Metrics
User Access Pattern Models

Shadow IT misconfiguration and gap
profiling

Beachhead/DMZ attack graph modeling



Enumerate Threat Surface
Use Cases: External/WAN Threats

Web Referral Graph

Time of Day Model
Heartbeat Beacon Detection
SSL Side Channel Analysis
Watering Hole Analytic
Passive DNS Al

Predictive Blacklisting

URL Relative Path Tokens

Edit Distance Classification

Exploit Kits Analytics

Pseudo Random Domain Detection
Executable Graph Classifier

DNS Tunneling



Enumerate Threat Surface
Use Cases: loT and Shadow IT

Embedded Systems Behavioral = Credential compromise
Profiles

BYOD Population Analysis

Passive mobile application classifier

= Rogue Device Detection

« HVAC Controller Attacks (BacNet)

Mobile app store profiling

Common environment baselines for
mobile users

Mobile Beacon Detection
SSL Side Channel Analysis



Security Analytics ROI

What is the intrinsic value of each model we build?

— False Positive/True Positive ratios, AUC, etc.

— Cost of Validating the Model

— What is the risk to the organization for missing the threat?
— Find Net New Threats!

How to prioritize what analytic models to invest in
— Dimensions: Impact Risk, Cost of Validation, Cost of Investment, Cost of
Maintenance, Adversary Model

S CYBERSECURITY ROI =
S IMPACT RISK — (S COST OF INVESTMENT + S COST OF VALIDATION)



Model Value

Model Value vs. Total Cost of Validation and Impact Risk
Figeity @ o5 @ o5 @ o7 @ os @ oo

[ )
Evolultionary Clustering

[ )
Signify Model (User Machine/Application Associatiors)

v

Validation Cost/Imapct Risk



Model Value

Model Value vs. Total Cost of Validation and Impact Risk
Figeity @ o5 @ o5 @ o7 @ os @ oo

Status * DS * PM * POC

[ ]
Heartbeat Detection nomalie
®
URL Relative Path Tokens - y
([ ]
TCP Port/Application Fingerprint Behavio!
] .
Passive DNS
Q] @ ~ n . . . . . . . ® | M
SSL Side Channel Behavior ignify Model (User Machine/Application Z8sociatiori§)' ©°" Mo
~ Steganographic Command and Contrc m
~
3
A . -
Hash/Ticl ttacl
.)

Validation Cost/Imapct Risk



Model Value

Model Value vs. Total Cost of Validation and Impact Risk
Figeity @ o5 @ o5 @ o7 @ os @ oo

Status * DS * PM * POC

Best Short
Term “ROV”

v

Validation Cost/Imapct Risk




Adversary Capabilities and the Threat Surface

ih ] ok ation ate High
« Attacker capability vs. Security Hetigm st
Capability is an important
dimension to consider when =
prioritizing new solutions/ poeissiey Ry File Intogrie
analytics oo f IS
=
= z;
% Cyber Criminal §
« Try to handle the low hanging 5 — = S
. CT) Analysis Analysis ;
fruit to more complex adversary = £
behavior by road mapping il £

custom analytics based on gaps

in existing and future technology Audit Gompliance Officer( T € S

Protection

) D)
SOI utions ( IDS/IPS ) C IDS/IPS ) C IDS/IPS )
B C Antivirus ) C Antivirus ) C Antivirus % Antivirus

Protection

IDS/IPS

i 0 G55 @& ] ...
« Itis a mistake to model the most Pass An Audit ey

complex adversaries first



Nextgen Benchmarks

- DARPA, Predict.org spearheading the collection and annotation of

complex data sets for security research
— Skaion 2006 DARPA Dataset

— Contagio Malware Dump
— CTU University: CTU-13 Dataset. A Labeled Dataset with Botnet, Normal

and Background traffic

- Evidence Collection and the SOC
— Most important workflow that is missing from large scale Intel/telemetry

sharing across organizations.,

 Public Repos / OSINT



Functional Requirements!

- Real problem in security is requirements are non-functional

- Benchmark next gen product by isolating the sub problems and
holding specific metrics accountable to real world data

- How do you rank order the value of a cybersecurity analytic?
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Why Build A Defensive Tool?

- Incident Response Is Hard Work! What
can we automate?

A security analyst is an oracle whose
input is evidence and whose output is

True Positive, False Positive, True
Negative or False Negative

— The list of possible questions is large but
typically the flow is a type of decision tree for

______
————————

.............




Why Build A Defensive Tool?

Ve

Security Oracle Workflow
Example 1:
Evidence => Periodic Communication
=> LAN to WAN Data =>WAN URL has
Bad Reputation => Correlate with VT
=> True Positive

Example 2:
Evidence => Potential C2 Domain =>

LAN to WAN Data => WAN URL is new
Google IP => False Positive

.............

______________

.............

.............




Lambda Security

Lambda Architecture: batch + real time computing paradigm

Minimizes the complexity in historical computations overcoming
bottlenecks SOC has experienced operating first gen SIEMs

Data model that is append-only, distributed and immutable is optimized
for security centric workflows and analyst queries

T~ Real Time 10C’s

‘ Real Time Path > & \

—_— D - — _— Precomputed View
= = == — 1 Query
—_—— —> Interface

v Layer
laster
I—* Immutable R A //

Dataset —> Historica 1/Batch

C] D G Views




Lambda Security

« Architecture is described by three simple equations:

batch view = function(all data)
realtime view = function(realtime view, new data)
query = function(batch view, realtime view)

— s N
F— \\\\\ Real Time 10C’s
Real Time Path — &
—_— D - — //// Precomputed View N
i — '
-5 Query

- - Interface
Layer
I Master
Immutable ,
'Da:‘a:e( © —> Historical/Batch |/

| -




Lambda Security

Lambda architecture provides a design paradigm for a
scalable central nervous system for the SOC whose

components include

— Machine learning based ETL(Extract/Transform/Load)

— Distributed crawlers

— Automated identity/session resolution and fingerprinting

— Formal evidence collection protocol for automated labeling of
incident response data

— Analytics Metrics and establishing benchmarks for
heterogeneous data



When is a model ready?

» batch

mpo

diff(mt, Mi-1) < &

A model stabilization algorithm:

A

notRead

>0 >0 >0



Lambda Firewalls?!

Manage the paths accordingly start building lambda
workflows into Everything!!!

- Lambda firewall
— Statistical whitelist computation aspect (fuzzy ACL’s)

— Path for signatures and sequential behaviors that is more expressive than
PCRE

- Central nervous system approach to blending signals
— Defense should scale up and down the size of organization: a properly
engineered central nervous system should be able to protect SMB market
as well as large scale deployments



Complexity Class P-Complete and NC

- The Complexity Class P-Complete and NC
— NC => parallelizable

- Some problems don’t parallelize well!!
— P-Complete => Inherently Sequential
— Any problem where you have to maintain state across nodes: Circuit Value

Problem, Linear programming
— Streaming models are usually harder to maintain than batch models

In complexity theory, the notion of P-complete decision problems is useful in the analysis of both:

1. which problems are difficult to parallelize effectively, and;

2. which problems are difficult to solve in limited space.
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Cybersecurity and Graph Mining

- Dynamic Temporal Graphs
— Social Network of Communications forms a dynamic graph that evolves over
time
— Given a graph structure we can leverage state of the art graph mining

techniques to detect anomalous graph patterns
» Anomalous Clicks

» Rare Sub-Structures

» Rare Paths

- Anomalies in graphs can be easy to identify algorithmically
— PageRank
— Graph Cut/Partitioning
— Random Walk Driven Label Propagation



Behavioral IOC: Mobile C2

&

Command and Control (C2)
" traffic has been established
BEle between compromised
hosts inside the corporate
network and C2 servers

Timet_0

IP: 66.253.41.67




Behavioral IOC: Mobile C2

Timet_1
IP: 47.99.1.63

/ C2 Infrastructure changes locations of command
4 and control server new communication path is
y; established



Behavioral IOC: Mobile C2

e
Timet_1
IP: 47.99.1.63
.
===

C2 Infrastructure changes locations of command
and control server new communication path is
established



Behavioral IOC: Mobile C2

Timet_2
IP: 210.2.13.22




Behavioral IOC: Mobile C2

At each time step (typically a
day or two) the C2
Infrastructure changes
locations of command and
control via this “Fluxing”

behavior. A subset of these ¢ Timet_2
type of graph patterns is IP: 210.2.13.22

known as “Fast Fluxing”




The constant mobility of
command and control
infrastructure will
continue this IP/Domain
fluxing movement until
detected

Behavioral IOC: Mobile C2

Time t_n
IP: 82.21.4.6




Behavioral IOC: Perimeter Pivot

Command and Control (C2)
traffic has been established
between “Beachhead” and
command and control
operator




Behavioral IOC: Perimeter Pivot

Heartbeat traffic
signals C2 operator
that infected asset
is up and ready for
instructions

-




Behavioral IOC: Perimeter Pivot

Destination Protocol  Length Info
! 37.59.5.67 HTTP 260 POST /sears/sears.php HTTP/1.0
A 37.59.5.67 HTTP 260 POST /sears/sears.php HTTP/1.0
\ 37.59.5.67 HTTP 260 POST /sears/sears.php HTTP/1.0

A

Obfuscated instructions |\
get returned through an ~

Upstream conversation -

embedded in PHP, .js, e

Flash, etc.. %
BEele

Commands obfuscated in

this way can be through

of as a hidden
“Downstream Beacon”




Behavioral IOC: Perimeter Pivot

Embedded commands can
signal infected asset to
enumerate local information on
the machine, attach to open
network shares and perform
lateral reconnaissance and
privilege escalation throughout
the compromised network
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Behavioral IOC: Perimeter Pivot

! After targeted lateral movement and privilege

enumeration all cases of targeted attacks
* eventually involve the compromise of the directory
services roots servers (Usually AD Forest Roots)

and exfiltration of key personnel information along
\ with any

r
\ 7=

—




Behavioral IOC: Perimeter Pivot

€ <— —.

* n\'
\.
»
\'

L ) \
\ ~

Exfiltration and other N
patterns have

\ <«
different network ~N |

components but are

usually constrained by BBee
the pictures they /7%

make as pathsin a

graph... — -



Behavioral

&

A
=3

|OC: Perimeter Pivot

Edge weights can be encoded with key security features to
increase overall model accuracy regardless of the underlying
algorithms

N Y

.
BBeeele

BFS/DFS + Other classic graph search algorithms are a great
examples of algorithms useful in detecting this graph signature




Fractal Defense: Batch + Real Time




Batch + Real Time: Identity Resolution




Batch + Real Time: Updates

tion




Central Nervous System Approach

F, = Snort I0C "MALWARE-CNC Win.Trojan.Zeus

encrypted POST Data exfiltration”
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Machine Learning and Cybersecurity

- Specific Challenges

— No Ground Truth: Machine Learning works best in the case of large amount of labeled

examples
— Concept/Adversarial Drift: Labels change over time

« Lack of Labeled Data => “No Free Lunch”
— Wolpert, D.H., Macready, W.G. (1997), "No Free Lunch Theorems for Optimization",
IEEE Transactions on Evolutionary Computation 1, 67.
—  Wolpert, David (1996), "
The Lack of A Priori Distinctions between Learning Algorithms", Neural Computation,
pp. 1341-1390.

The so called No-Free-Lunch principle is a basic insight of machine learning.
It may be viewed as stating that in the lack of prior knowledge (or inductive
bias), any learning algorithm may fail on some learnable task.




Limits of Automated Intrusion Detection

« Travis Goodspeed: “Packets in Packets”

— Paper showing any communication medium we can embed a covert
language to avoid eavesdropping in open channels

- Can we programmatically answer the questions: “Does a

communication contain steganography?”
— Equivalent to checking if a computer program will halt?

- Polymorphic Malware => NFL



A.l. and Meta-Theorems

Is intelligence achievable in software (Strong Al)?
— Scott Aronson: Unlikely software/hardware combinations are competing against
3 Billion years of evolution

Keep a catalogue of deep results and curiosities
— Godel's Incompleteness

— Church-Turning

— Blum's Speedup Theorem

— No free Lunch

— One Learning Algorithm Hypothesis

— Grover's/Shor’s Algorithms

Track Cutting Edge ML

— Paper: “Building high-level features using large scale unsupervised learning”
» Andrew Ng and Jeff Dean et al. (2012) ICML



Halting Problem

The Halting Problem
Theorem 1 If we define language
HALT = {{a, x)|M,, stops on input x}

then this language is not accepted by any Turing Machine.

- The problem is to determine, given a program and an input to the program,
whether the program will eventually halt when run with that input

- The halting problem is famous because it was one of the first problems
proven algorithmically undecidable. This means there is no algorithm which

can be applied to any arbitrary program and input to decide whether the
program stops when run with that input.



Theoretical Backbone

— Classical Computation

» Logical Consistency of Computer Languages (Church-Turing)
» Physical Realization of Turning Machine (Church turning + Von Neumann)
» Floating point representation with controllable error propagation

— Weak/Strong Al

» Halting problem and No Free Lunch theorems => building intelligent software
is “hard”
» Current machine learning methods are a type of weak Al

— Distributed Computation
» Complexity classes P-Complete, NC
» CAP Theorem
» Actor Models
» Batch + Real-Time := Lambda Architecture



Data Science in Cybersecurity

« What is a behavior mathematically?
— Fraud in Cybersecurity manifests itself in infinitely many possibilities

- Automated identification of fraud in IT is in some sense

equivalent to trying solve the halting problem on a Turning

Machine
— Computationally it is impossible to “enumerate” all possible behaviors



Blackhat Sound Bytes

— Fractal Defense: Reuse logic (and code) across different
security use cases. Make behavior based I0C’s map to
adversary Tactics, Techniques and Procedures for better

scalability.

— Cybersecurity Analytics ROIl: Make requirements
functional by setting realistic benchmarks based on your
own data and metrics

— Lambda Architecture: a generic problem solving system
built on immutability and hybrid batch/real-time
workflows
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One Learning Algorithm Hypothesis

o Modular Minds Hypothesis — The mind is primarily composed of stable cortical circuits
which encapsulate specific cognitive competences and exhibit a high degree of structural and
informational modularity.

o Single Algorithm Hypothesis — There is one fundamental algorithm that underlies all or
most cortical computations; it is implemented on a computationally homogeneous cortical
substrate and runs simultaneously in multiple instances on different inputs.

Sparse coding illustration

The “One Learning Algorithm” Hypothesis Natural Images

Learned bases




Theoretical Background

- Doctoral Research
— lterated Processes: What happens when we replace time with a

random process?
» Set t “=" B(t) where B is a Brownian motion
— Can Feynman Path Integral be defined Mathematically?
» Feynman-Kac’s Formula: Duality between PDE’s and SDE’s
» Measures on the space of continuous functions
— Fractional Brownian motion and processes with long memory
» Random walks that are not Markov
» Malliavin Calculus: (Used to prove Hérmander’s Theorem)
— Malliavin built a calculus out of Random processes replacing time by hin a
Hilbert space



Stochastic Processes with Long Memory

- Since ancient times the Nile River has been known for its long periods of
dryness followed by long periods of floods

- The hydrologist Hurst was the first one to describe these characteristics when
he was trying to solve the problem of flow regularization of the Nile River.

Yearly Minimum Water Level for Nile River
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Fractional Brownian Motion

Definition 2.2.1 Fractional Brownian motion
A Fractional Brownian motion with Hurst parameter H € (0,1) is a centered Gaussian

process B = {B(t) : t > 0} with covariance function given by E[B(t)B(s)] = %(|t|2H+

2H 2H
[sI7" = It = s[77).

The first mathematical definition of Brownian motion was given by Bachelier in his
1900 Ph.D. thesis entitled “Theorie de la Speculation.” Albert Einstein also worked
on Brownian motion and its relation to the heat equation in the 1906 paper titled “On
the theory of the Brownian movement” [14]. In this seminal paper Einstein derived

the heat equation involving a so called Diffusion constant .
— = rAp (2.1)
The solution to this equation is

(x, 1) ! e <7|ML|2)
x,t) = T ex
L (471'5]‘)5‘ b 4kt

From this formula Einstein expressed the position of a Brownian particle B(¢) at time

t using a probabilistic notation or more specifically

P (B(t) € [a,b]) = / plx, t)du (2.2)

a
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Analytics-Driven Security Use Cases

f

INCIDENT SECURITY & REAL-TIME MONITORING FRAUD INSIDER
INVESTIGATIONS COMPLIANCE MONITORING OF OF UNKNOWN DETECTION THREAT
& FORENSICS REPORTING KNOWN THREATS THREATS

Splunk software complements replaces and goes beyond traditional SIEMs.
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Splunk Security Intelligence Platform
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Splunk App for Enterprise Security

Pre built searches, alerts reports, dashboards, incident workflow, and threat intelligence feeds

Asset Investigator
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Splunk Is Used Across IT and the Business

Strong ROI & facilitates cross-department collaboration
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