
Defense at Scale: Building a Central Nervous System for
the SOC

Joseph Zadeh, George Apostolopoulos, Christos Tryfonas, Muddu Sudhakar
Splunk, Inc.

ABSTRACT
Data driven security is advocated as a way to augment tra-
ditional workflows in security operations. The goal of this
data driven approach is to design a system that automatically
labels escalation events as well as helping perform repro-
ducible forensic tasks. Additionally the problem of track-
ing the evolving threat surface is attacked by leveraging a
highly expressive composition of distributed systems called
a Lambda Architecture.

1. INTRODUCTION
The approach stressed in this paper is a common sense

application of best practices combined with optimized tech-
nological applications. One of the fundamental principles
we advocate for accelerating defense at scale is the use of a
Lambda Architecture [1], [2] to distribute the load of foren-
sics/analytics jobs and to have a constantly running secu-
rity oracle that gets better the more it is used by operators.
The other major paradigm we advocate is a system engi-
neering approach to mapping the threat surface to behav-
ioral/classical IOC’s and more importantly "quantifying" the
tractable security uses cases in order to maximize the hu-
man/technological interaction.

How do you model an adversary with asymmetric access
to resources and with tactics and techniques that apply to a
continuously evolving threat surface? We answer this ques-
tion by mixing analytics with traditional SOC technologies
to achieve operational efficiencies in workflows and person-
nel utilization. A primary challenge faced in the design of
such a system is engineering it to stay current with the evolv-
ing threat surface. Not only that but the early use of machine
learning and the limitations first generation SIEMs brought
on large security operations has compounded the frustration
and skepticism surrounding nextgen solutions (for instance
see [3], [4]). In a nutshell defense has matured at a slow
pace when it comes to intrusion detection and continues to
trail with the agility and sophistication of the current threat
landscape.

One aspect of this asymmetry was pointed out by Mudge
in his Blackhat keynote of 2011 [5]. In the keynote Mudge
highlights some deep aspects of defense compared to offense
by using several key metrics. One metric he notes involves

lines of code comparing malware samples to defensive soft-
ware (on average one malware sample was 160 lines of code
whereas a defensive product like AV or FW was potentially
millions of lines of code). A takeaway from this analysis is
that lines of code are a proxy for work or more importantly
money. This observation in terms of workflows means that
for each unit of resources on offense it requires 10X-1000X
more resources on the defensive side. How do we reconcile
such an asymmetry especially given his additional observa-
tions on incentive structures and the complex threat surface
inherent in modern software?

1.1 Central Nervous System
Enabling the SOC with tools that are agile and respon-

sive to a rapidly changing threat starts with getting maxi-
mum value from every piece of evidence available in an en-
terprise. The streams of information that represent various
logging sources are the core sensory input for a computa-
tional platform designed to help SOC personnel. Not only
the logs but the behaviors of the users and devices provide
key patterns with which to extract all sorts of rich security-
centric information: user behavior can be used to automati-
cally determine different types of devices on a network, build
a statistical whitelist of most popular internal/external hosts
etc. These type of behavioral patterns are unique to each
enterprise and can in the cases of large networks represent
very valuable telemetry data that should be prioritized and
correlated with traditional intelligence signals.

Looking at the threat surface there are a large number of
isolated use cases that we can reduce to tangible algorithms
and workflows potentially if the use case is not already cov-
ered by point solutions. This roadmap approach of using
custom analytics in collaboration with the existing signal
from known technologies is the core idea we try to stress in
this paper. From the authors perspective point solutions can
in fact provide a stable source of signal for the complex at-
tack surface. For example host information along with email
logs, DNS logs and outbound web traffic can enable an ac-
tive response workflow [6]..

Components to a successful Central Nervous System:

1. General data processing framework

2. Immutable append only logging

1

Figure 1: Lambda Architecture Example

3. Machine learning based ETL (Extract/Transform/Load)

4. Distributed crawlers

5. Automated identity/session resolution and fingerprint-
ing

6. Formal evidence collection protocol for automated la-
beling of incident response data

7. Analytics Metrics and establishing benchmarks for in-
tel/analytic data

The above list touches on a range of diverse and inter-
dispinar technical topics. The focus of this whitepaper cen-
ters around the data processing framework design and why
it is important to isolate parrlele paths of real time and his-
torical computation to properly decouple specfic bottlenecks
in the paths of security data. We have seen limitations from
a SOC standpoint when defending against complex sets of
behaviors up and down the "Pyramid of Pain" [7] The fo-
cus on research to mitigate such challenges in defense has
prompted DARPA for instance to create programs such as
ADAMS [8]. A properly designed security central nervous
system can function as a key tool in scaling technology to
remain flexible in the face of evolving threats.

2. LAMBDA ARCHITECTURE
This section gives a brief overview of the Lambda Archi-

tecture and why it is such a useful methodology for intru-
sion detection. The term was originally coined by Nathan
Marz to describe a generic problem solving approach that
scales to extremely large data processing tasks. For a more
comprehensive picture of the principles outlined in this sec-
tion we recommend the excellent book "Big Data: Principles
and best practices of scalable real-time data systems [1]" by
Nathan Marz and James Warren. During remarks on how
Twitter leveraged this type of platform at the 2011 Cassandra
conference Nathan observed why such a system is valuable
[9]:

"We have our batch layer constantly override
the real time layer so that if anything ever goes
wrong its automatically corrected within a cou-
ple hours. That batch/real time approach is re-
ally general. It works for pretty much any prob-
lem. Its something I really recommend its really
a deep topic but that is the approach we use . . . "

What the quote does not capture quite well is the ideas be-
hind how traditional databases and similar technology have
been baked on a set of standards that mix the querying of
data with the storage of data. This mixture leads to all sorts
of complexity and scale issues and can be avoided to a large
extent by abstracting the different components of transac-
tional databases such as Read, Write, Update Delete and
managing them over different layers of an overall architec-
ture. A properly designed immutable and distributed system
with the right paths for different computations such as batch
and real time can optimize common security workflows (see
figure 2).

2.1 Building Blocks
The overall architecture is broken down into three layers:

real-time, batch and a serving layer. The batch layer can
be though of as maintaining an immutable master copy of
all the original data (possibly over a distributed file system).
The main principles that are advocated in the Lambda Ar-
chitecture can be expressed in three simple equations that
represent the break down of the different layer operations
[1], [10]:

• batch view = function(all data)

• realtime view = function(realtime view, new data)

• query = function(batch view, realtime view)

In terms of the open source community the batch layer
can be built using Hadoop [11] or Spark [12] for instance
and the realtime view has Apache Storm [13]. From a com-
mercial perspective specialized vendors like Splunk offer the
capability of maintaining a scalable distributed Lambda ar-
chitecture without the complexity of designing the system
from scratch.

2.2 Immutable Logging
The keys to a lambda architecture start with a data model

that is append-only and immutable. This means your master
data set has certain beneficial optimization properties com-
pared to a traditional transactional database for instance. A
great practical reason why immutability is important for to
security logging can be found in [5] by Peter (Mudge) Zatko:

"A lot of folks don’t realize this and I try to
point it out when people are doing defense. Just
having good logging in a separate system that is
immutable. So the equivalent of a line printer in

2

your data center that is spewing out syslog stuff
is a big deterrent - a write only media device. For
many nation states or industrial intelligence com-
munities for industrial espionage or clandestine
activities you would rather fail at your mission
and go unnoticed than actually succeed and draw
attention to yourself."

2.3 In Defense of Defense
Machine Learning as a toolset in our problem space has

significant limitations. Adversarial drift implies algorithms
will constantly have to adapt [14]. Furthermore designing
intelligent software will be limited by the sub-problems that
admit tractable solutions via machine learning. Thats why
on modern hardware at best we can use tools from artificial
intelligence and expert systems to augment manual security
workflows.

Accuracy is synonymous with consistency of labeled data
as well as consistency of the overall digital evidence col-
lection processes. In cybersecurity the issue with malicious
attacks is that they are often times new patterns (0-days) that
have never been observed before in the data and such new
behaviors mean any supervised learning algorithm will most
likely misclassify the attack behavior. The lack of labels has
a theoretical explanation for why the algorithms suffer called
"No Free Lunch Theorems" [15], [16]. With that in mind a
catch all mechanism should be a first priority when it comes
to building perimeter open source technologies.

The issue to isolate here is the importance of baking in
fall throughs naturally into all defensive systems that secu-
rity teams build. Also and possibly more importantly find-
ing a normalized way to store incident response data to use
to benchmark vendor solutions who claim they can catch
certain behaviors and to build internal systems if desired.
Spending effort on establishing the proper workflow for ev-
idence collection and labelling will pay dividends in the fu-
ture thanks to current trends in automated feature learning
and deep architectures for classification. For instance see
[18], [19] and [20]. Combining the power of cutting edge
applications in automated feature learning with a security
minded workflow like outlined in [21] is a great example of
blending the best of human performance with algorithms.

Particularly from an automation standpoint we can use
some of the latest neural network research to design an ac-
tive batch and real time workflow. We can back-propagate
the learning process dervied from security investigations au-
tomatically using a deep neural networks to extract meaning-
ful patterns across SOC evidence collection results. These
features then can automatically be fed into an updated be-
havioral IOC layer that will deploy the latest patterns in a
sandbox and be tested against benchmark data that has been
manually labeled before being reviewed for production.

2.4 Reactive Defense: Commodity Crawlers
The main premise here is that with distributed architec-

tures we can not only use a multi-threaded parallel computa-

Figure 2: Model Value vs. Cost of Validation

tional engine to constantly be collecting, cataloging and cor-
relating evidence but we can also spawn worker processes
for specific forensic tasks. Two key augmentations in this re-
gard are distributed crawlers for analyzing both internal/external
data. For example watering hole detection, custom foren-
sic crawling of internal systems and automating key forensic
tasks that require scraping intel repos and related evidence
collection [22].

3. SECURITY ANALYTICS ROI
How do you rank order the value of a cybersecurity ana-

lytic? How do the models we build add value to a customers
existing operation and point solution coverage? Due to the
fact that the threat surface changes rapidly it is important to
create expressive analytics to capture key properties of pat-
terns that are useful for forensics and similar security centric
processes at the same not overlapping with pre-existing tech-
nologies.

In the distributed instance this modeling approach becomes
extremely important because we might have individual ana-
lytics distributed across a multi node-cluster. Such paral-
lelism comes with limitations though especially in the stream-
ing path and that is why it is so important to map use cases
to optimized strategies leveraging individual components in
the Lambda architecture. We advocate a way to quantify and
assess the value of blending behavior based analytics with
point solution and existing defensive technologies. We start
with a simple breakdown of the motivations for our strategy:

1. Maximizing personnel efficiency can be achieved by
first breaking down the threat surface into actionable
use cases

2. Once top use cases are identified ranking them by ROI
for automation with ML/Data driven security will give

3

a roadmap for automating SOC workflows and map-
ping automated workflows to the the threat surface

3.1 Analytic Value
We seek a way to compare security analytics via a sim-

ple metric that is constantly updated by natural SOC work-
flows. A simple example helps illustrate our purposes. Our
total value for two different models can be compared as fol-
lows. Lets say we have built an analytic to detect anomalies
in VPN logins which we find on average takes our internal
security team 5 hours of investigation and produces 20 indi-
vidual events on average to investigate per week.

Assume we also have custom active directory analytic feed-
ing into our SOC based that looks for anomalies in AD tree
structure and macro properties of the social network in LDAP
data but the output of this model takes on average 20 hours
of investigation per alarm and produces 15 events on average
a week. One final aspect of this ROI exercise is we need to
take into account the impact risk or the cost to the organiza-
tion if the particular attack vector goes undiscovered as well
other more complex variables.

$ Model Value = $ Impact Risk− ($ Development + $ Validation)

https://www.youtube.com/watch?v=Rr8-SPS62js An exam-
ple of a way to use this type of intuition to rank the value of
models we described above (plus many more) can be found
in 2. The main takeaway for the SOC from the above discus-
sion is to consider the cost of validation for all security solu-
tions when compared to how much risk is mitigated. When
the SOC is faced with the additional need to rank order mul-
tiple analytics solutions a simple breakdown of value versus
"security cost" is a great way to help roadmap an analytics
priority list and find sweet spots for best return on invest-
ment. Be warned assigning dollar cost to future cyber secu-
rity events at best is a dark art on its own but in combination
with other more ephemeral variables should be thought of as
a way to motivate a more broader search for quantifying and
describing value among cybersecurity analytics.

4. CYBERSECURITY ANALYTICS
In this section we try to illustrate hands on examples of

analytic models and how they are best realized across the
multiple layers of the Lambda architecture. The word ana-
lytic can mean a lot of different things depending on context
and industry. In the authors experience we use it to describe
a set of algorithms in combination with the deployment and
operationalization of such algorithms through a distributed
architecture. We focus primarily on a couple of key problem
areas in cybersecurity analytics:

1. Combining point solutions data and IOC’s with behav-
ioral signals in a workflow that automatically corre-
lates intel in real time with historical calculations

2. Theoretical example involving random walks to model
user behavior

4.1 Blending Traditional IOC’s with Behav-
ioral IOC’s

Part of the power of using an immutable and distributed
architecture is we can process large amounts of heterogenous
information and correlate to pre-commuted security views in
real time. A first application of blending such information
is developing a scoring routine for isolating strange traffic
patterns and providing as much automated attribution and
risk classification as possible. To model the situation we run
two processes in parallel:

1. Periodically we run a batch graph cut/label propaga-
tion step.

2. Simultaneously we run a real time scoring workflow
for consuming the output of process 1 along with new
IOC’s generated from points solutions. To model risk
for a heterogeneous set of features we build a scoring
function g to automatically determine risk for a given
input cluster of nodes

Simple examples of such a scoring function g are heuris-
tics, bayesian scoring methods and more exotic forms of
believe fusion such as Dempster-Schafer theory [23], [24],
[25]. For completeness we mention specific implementa-
tions designed to blend evidence given security context like
[26] and [27]. For our example we will assume a simple rule
for fusing distinct pieces of evidence based off Naive Bayes
model (an illustration of such evidence fusion is found in
figure 4).

The use of graph based techniques at resolutions of the
file system level all the way up to the social graph structure
of an entire corporate intranet lend themselves very well to
batch layer computations for example see [28], [29], [30].
By segmenting different computations to different paths we
can isolate complexity and stay agile in terms of providing
up to date intelligence for behaviors that are naturally se-
quential in nature and best computed in the real time path
(for example exploit chain detection is a behavior that is
tractable in a real time path because it is highly sequential
in nature [31]).

Real time streams of IOC’s can also be included in the
path for example AV alarms from a host, critical alerts from
Palo Altos or Proxy devices, FireEye/Sandbox hits etc. Once
these alarms are fed continuously into our system we can be-
gin running batch graph analytics [32] in combination with
a lightweight scoring method (implementation of g) to com-
bine the distinct point solution signals with any additional
behavioral characteristics that are local or global to a spe-
cific graph segment.

Finally we list one possible implementation for modeling
behavioral IOC’s based off standard the Bayes rule:

Behavioral Indicator of Compromise (IOC) Let W be
any sequential data representing for instance an incoming
stream of bytes or content types from proxy logs. For exam-
ple let W1 = text/html,

4

Figure 3: Example of calculating a risk score for a cluster
of traffic where g is a heuristic or a function classifier trained
via a supervised learning algorithm

W2 = application/java-archive,W3 = application/octet-stream.
Apply the Bayes "chain rule" to get

P(Wn|Wn−1, . . . ,W1) =

P(W1, . . . ,Wn)

P(W1)P(W2|W1)P(W3|W2,W1) . . .P(Wn−1|Wn−2, . . . ,W1)

Rearranging formula 1.1 gives a method for approximat-
ing the probability of the sequence occurring:

P(W1, . . . ,Wn) = P(W1)

n∏
i=2

P(Wi|Wi−1, . . . ,W1)

We then train a model on the probability of each of the
sequences of events occurring in order. For instance if we
are creating a model for exploit chain detection we can use
as training input all the content sequences of small length
occurring in outbound proxy data for the last year.

4.2 Modeling Users as Processes
This section is intended to show some more advanced ex-

amples of ways to capture specific behaviors from both a real
time and batch perspective. We propose a simple prototype
for modeling individuals via a probabilistic process called
Fractional Brownian motion.

4.2.1 Fractional User Behavior
The example we develop focuses on a specific analytic

tracking user behaviors through outbound Layer-4 and Layer-
7 data. We will rely on this model for approximating a single
entities digital footprint by decomposing individual user (or
IP or MAC etc..) patterns into a composition of processes.
Formally what we mean by a process is described below:

(a) Hurst Exponent = 1
2

(b) Hurst Exponent > 1
2

Figure 4: Approximate probabilities for random walks rep-
resented by coin flips Ω = {T,H}

Defintion 1 A (stochastic) process S = {S(t) : t ≥ 0} is a
collection of random values evolving over time. Furthermore
the values of S are not only random but they can occur in
a high dimensional space D. In formal notation we write
S : [0, T] × Ω → D where D is some arbitrary data set (or
meta-data) and Ω can be thought of as the sample space.

The literature on processes has a rich history from finance
to biology to physics. The process important to our model
is called Brownian motion and it has been studied for over
two centuries by biologists, statisticians and even Einstein
[33]. Brownian motion is the canonical example one will
arrive at if we we need a to approximate a random walk on a
computer with the following theoretical properties:

1. The previous history only depends on the last step (the
transition is Markov)

2. The path of the random walk is continuous and fractal
(the process is self-similar)

More formally we say Brownian motion is the continuous
time generalization of a random walk that is Self-Similar
and Markovian. In addition the process can be seen as a
stationary time series with independent and identically dis-
tributed Increments [34]. To further complicate things we
will use a generalization of the above definition called Frac-
tional Brownian motion (fBm). This more complex process
was first studied by the hydrologist Hust [35] as well as Man-
delbrot [36]. For a more comprehensive breakdown of fBm
see Chapter 5. of [37].

5

Figure 5: Single Source Traffic with Periodic C2 Component

The theoretical aspects of Brownian motion are still an
active area of research but thankfully there are good open
source implementations available that abstract away many of
the details. We recommend for instance the R Library fArma
[38] for simulation and experiments of fBm along with com-
plex related time series. The main property of fBm we will
exploit in our model of user behavior is that the process ex-
poses a single parameter (called the Hurst parameter H) to
represent the history of the process. This is very useful in
streaming computations if one seeks to find an alternative to
computing transition probabilities in a multi stage Markov
process but only if the process is self-similar. To see how H
comes into the picture we list one more definition:

Defintion 2 Fractional Brownian motion
A Fractional Brownian motion with Hurst parameter H ∈
(0, 1) is a centered Gaussian process B = {B(t) : t ≥ 0}
with covariance given by Cov(t, s) = 1

2
(|t|2H + |s|2H−|t−

s|2H).

The main benefit of this formulation of fBm is that com-
putationally we can maintain a single parameter H to study
the historical behavior of a sessions traffic pattern. We can
offload complex parts of the computation for updating statis-
tics of H to batch layers and use the real time layer to do
threshold detection and lightweight approximations given new
data about a session. From a historical perspective it is im-
portant to note that a classic paper [39] in network theory
shows ethernet traffic is self similar which is a basic require-
ment to doing certain types of anomaly detection with H but
in general it is not clear that all continuous valued processes
driven by user traffic are self-similar.

4.2.2 Streaming Command and Control Detection with
Hurst Exponents

Let U represent a single users traffic and E a unique ex-

ternal domain or IP. Then a model of user behavior over
time is given by assigning to each session (U,Ei) a process
Si which we assume is fractional Brownian motion. Fur-
thermore we restrict the model to the case when input logs
are from proxies, firewalls or similar perimeter appliances.
Given a user U our model of the log behavior is given as
U = (S1, S2, . . . , SN) where each Si is a fractional Brown-
ian motion possibly representing only a single event or even
continuous stream of constant traffic.

When we build all sessions into a single model we get
a picture of the population that evolves with the individual
users micro behaviors (see figure 6). This representation is
both useful because it parallelizes as well as scales to large
population of users which enables data driven detection of
macro economic trends in the larger population. For a single
external domain we can read in all session Hurst parameters
and explore both supervised and unsupervised approaches to
detecting command and control and other risky traffic pat-
terns.

Algorithm 1 Anomaly Detection on H

while AnomalyCheck(H(tk))! = true do
if k = 0 then
H(t0)← hurstBatch(H)

else
H(tk+1)← hurstRealTime(H(tk))
H← (H, H(tk+t))

end if
if Batch Job == true then

(lofAnomalyCheck||factorAnomalyCheck)
H← hurstBatch(H)

else
heurisitcAnomalyCheck

end if
end while

Fix a session S with a vector of Hurst parameters called
H = (H0(t0), H1(t1), . . . ,Hk(tk), . . .). We want to de-
scribe a general procedure for updating H as well as check-
ing for a state change that works in an embarrassingly par-
allel fashion. In particular each S can be isolated in a single
thread of memory and therefore sharing state across sessions
will best be achieved in a batch or pre-computed view. The
key algorithmic task we want to develop is a sampling based
approach to determining the next update to the memory pa-
rameter for a single session and when to raise an alarm if a
session is determined to be command and control.

The vector of parameters H will be the main object we
perform anomaly detection on and can be thought of as a
lightweight representation of a single sessions history. For
our pseudo implementation we expose methods for comput-
ing anomalies on the vector of Hurst parameters and the typ-
ical batch and real time worker processes. The first method
we implement is called heuristicAnomalyCheck and is
designed as a anomaly detection heuristic based off expert

6

Figure 6: RAT C2 Traffic and Heartbeats [44].

input. For a real time anomaly check we refer to hurstRealtime
as an approximation to the rescaled range analysis in [42]
and for a batch layer computation we will refer to hurstBatch
as the algorithm outlined in [43]. The second historical method
we implement is a basic local outlier factor detection [40] on
the space of all hurst vectors for a single data set:
lofAnomalyCheck. Finally the last method that is impor-
tant is called factorAnomalyCheck where this is an ex-
ample of a supervising learning technique and will only be
useful if we have an abundant sample of labeled data (the
particular learning methods we leverage are known as fac-
torization machines [41]). The core workflow is highlighted
in Algorithm 1.

5. CONCLUSION
We have described a way to use scalable data principles

in combination with prioritization and mapping of use cases
to analytic problems but this was only an outline for part
of the solution needed in the larger problem of cybersecu-
rity defense. One important technical topic that was omitted
from this paper was about model forgetting, re-training and
general aging within the entire security workflow and there
are a multitude of other such issues that face a large scale
defensive data driven operation.

Whats more, the cost large scale operations have main-
taining twenty four hour defensive programs in the face of
constantly evolving threat tactics means R&D has to step up
and deliver solutions that ease such a massive burden on hu-
man personnel. It is our position that with the use of the right
modeling philosophy in combination with highly adaptable
data systems opportunity exists to build a next generation
security central nervous system that can help balance the
asymmetric nature of offense versus defense.

6. ADDITIONAL AUTHORS

7. REFERENCES
[1] Nathan Marz and James Warren. Big Data: Principles and best

practices of scalable realtime data systems. Manning Publications,
2013.

[2] Nathan Marz. How to beat the CAP theorem.
nathanmarz.com/blog/how-to-beat-the-cap-theorem.html,
December 30 2011.

[3] Anton Chuvakin. 9 Reasons Why Building a Big Data Security
Analytics Tool is Like Building a Flying Car.

blogs.gartner.com/anton-chuvakin/2013/04/15/9-reasons-
why-building-a-big-data-security-analytics-tool-is-like-
building-a-flying-car/, April 15 2013.

[4] R. Sommer and V. Paxson. Outside the closed world: On using
machine learning for network intrusion detection. In Security
and Privacy (SP), 2010 IEEE Symposium on, pages 305–316, May
2010.

[5] Peter (Mudge) Zatko. Black Hat USA: How a Hacker Has
Helped Influence the Government and Vice Versa.
youtu.be/kZk9fsQisI8, 2011.

[6] Monzy Merza. Active response: Automated risk reduction or
manual action?
www.rsaconference.com/events/us15/agenda/sessions/
2012/active-response-automated-risk-reduction-or-manual,
2015.

[7] David Bianco. The Pyramid of Pain. detect-
respond.blogspot.com/2013/03/the-pyramid-of-pain.html,
January 17, 2014.

[8] DARPA. Anomaly detection at multiple scales.
opencatalog.darpa.mil/ADAMS.html, 2014.

[9] Nathan Marz. Cassandra NYC 2011: The storm and cassandra
realtime computation stack. youtu.be/cF8a_FZwULI,
December 30 2011.

[10] Nathan Marz. Apache storm. youtu.be/ucHjyb6jv08, 2013.
[11] Tom White. Hadoop: The Definitive Guide. O’Reilly Media, Inc.,

1st edition, 2009.
[12] Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin,

Scott Shenker, and Ion Stoica. Spark: Cluster computing with
working sets. In Proceedings of the 2Nd USENIX Conference on
Hot Topics in Cloud Computing, HotCloud’10, pages 10–10,
Berkeley, CA, USA, 2010. USENIX Association.

[13] Nathan Marz. Apache storm. storm.apache.org, 2014.
[14] Marius Kloft and Pavel Laskov. Online anomaly detection

under adversarial impact. In I, volume 9 of JMLR Proceedings,
pages 405–412. JMLR.org, 2010.

[15] D. H. Wolpert and W. G. Macready. No free lunch theorems for
optimization. Trans. Evol. Comp, 1(1):67–82, April 1997.

[16] David H. Wolpert. The lack of a priori distinctions between
learning algorithms. Neural Comput., 8(7):1341–1390, October
1996.

[17] Michael I Jordan. Ama: Michael i jordan. www.reddit.com/r/
MachineLearning/comments/2fxi6v/ama_michael_i_jordan,
2014.

[18] Yann Lecun, Léon Bottou, Yoshua Bengio, and Patrick Haffner.
Gradient-based learning applied to document recognition. In
Proceedings of the IEEE, pages 2278–2324, 1998.

[19] Yoshua Bengio. Practical recommendations for gradient-based
training of deep architectures. Technical Report Arxiv report
1206.5533, Université de Montréal, 2012.

[20] Eric J. Humphrey, Juan Pablo Bello, and Yann LeCun. Moving
beyond feature design: Deep architectures and automatic
feature learning in music informatics. In Fabien Gouyon,
Perfecto Herrera, Luis Gustavo Martins, and Meinard Müller,
editors, ISMIR, pages 403–408. FEUP Edições, 2012.

[21] Jack W. Stokes, John C. Platt, Joseph Kravis, and Michael
Shilman. ALADIN: Active Learning of Anomalies to Detect
Intrusions. Technical Report MSR-TR-2008-24, Microsoft,
March 2008.

[22] G. Rush, D.R. Tauritz, and A.D. Kent. Dcafe: A distributed
cyber security automation framework for experiments. In
Computer Software and Applications Conference Workshops
(COMPSACW), 2014 IEEE 38th International, pages 134–139,
July 2014.

[23] Jurg. Kohlas and Paul-Andre Monney. Theory of evidence: A
survey of its mathematical foundations, applications and
computational aspects. Zeitschrift Operations Research,
39(1):35–68, 1994.

[24] Audun Josang, Javier Diaz, and Maria Rifqi. Cumulative and
averaging fusion of beliefs. Information Fusion, 11(2):192 – 200,
2010.

[25] A. P. Dempster. Upper and lower probabilities induced by a
multivalued mapping. Ann. Math. Statist., 38(2):325–339, 04

7

nathanmarz.com/blog/how-to-beat-the-cap-theorem.html
blogs.gartner.com/anton-chuvakin/2013/04/15/9-reasons-why-building-a-big-data-security-analytics-tool-is-like-building-a-flying-car/
blogs.gartner.com/anton-chuvakin/2013/04/15/9-reasons-why-building-a-big-data-security-analytics-tool-is-like-building-a-flying-car/
blogs.gartner.com/anton-chuvakin/2013/04/15/9-reasons-why-building-a-big-data-security-analytics-tool-is-like-building-a-flying-car/
youtu.be/kZk9fsQisI8
www.rsaconference.com/events/us15/agenda/sessions/2012/active-response-automated-risk-reduction-or-manual
www.rsaconference.com/events/us15/agenda/sessions/2012/active-response-automated-risk-reduction-or-manual
detect-respond.blogspot.com/2013/03/the-pyramid-of-pain.html
detect-respond.blogspot.com/2013/03/the-pyramid-of-pain.html
opencatalog.darpa.mil/ADAMS.html
youtu.be/cF8a_FZwULI
youtu.be/ucHjyb6jv08
storm.apache.org
www.reddit.com/r/MachineLearning/comments/2fxi6v/ama_michael_i_jordan
www.reddit.com/r/MachineLearning/comments/2fxi6v/ama_michael_i_jordan

1967.
[26] Romain Fontugne, Pierre Borgnat, Patrice Abry, and Kensuke

Fukuda. MAWILab: Combining Diverse Anomaly Detectors
for Automated Anomaly Labeling and Performance
Benchmarking. In ACM CoNEXT ’10, Philadelphia, PA,
December 2010.

[27] Hoda Eldardiry et. al. Multi-source fusion for anomaly
detection: using across-domain and across-time peer-group
consistency checks. JoWUA, 5(2):39–58, 2014.

[28] Pamela Bhattacharya, Marios Iliofotou, Iulian Neamtiu, and
Michalis Faloutsos. Graph-based analysis and prediction for
software evolution. In International Conference on Software
Engineering (ICSE), Zurich, Switzerland, June 2012.

[29] Yi Yang, Marios Iliofotou, Michalis Faloutsos, and Bin Wu.
Analyzing interaction communication networks in enterprises
and identifying hierarchies. In IEEE International Workshop on
Network Science (NSW), June 2011.

[30] Brian Gallagher, Marios Iliofotou, Tina Eliassi-Rad, and
Michalis Faloutsos. Homophily in application layer and its
usage in traffic classification. In IEEE INFOCOM, San Diego,
CA, USA, March 2010.

[31] Hesham Mekky, Ruben Torres, Zhi-Li Zhang, Sabyasachi Saha,
and Antonio Nucci. Detecting malicious HTTP redirections
using trees of user browsing activity. In Giuseppe Bianchi,
Yuguang M. Fang, and Xuemin S. Shen, editors, INFOCOM
2014, 33rd IEEE International Conference on Computer
Communications, pages 1159–1167, Los Alamitos, CA, USA,
April 2014. IEEE.

[32] Damien Faya Hamed Haddadibi, Steve Uhligc, Liam
Kilmartind, Andrew W. Mooreb Jerome Kunegise, and Marios
Iliofotouf. Discriminating graphs through spectral projections.
Computer Networks, 55:3458–3468, October 2011.

[33] A. Einstein. Über die von der molekularkinetischen Theorie
der Wärme geforderte Bewegung von in ruhenden
Flüssigkeiten suspendierten Teilchen. Annalen der Physik,
322:549–560, 1905.

[34] Patrick Billingsley. Probability and Measure. Wiley-Interscience,
April 1995.

[35] H. Hurst. Long term storage capacity of reservoirs. Transaction
of the American society of civil engineer, 116:770–799, 1951.

[36] B. B. Mandelbrot and J. W. van Ness. Fractional Brownian
motions, fractional noises and applications. SIAM Review,
10:422–437, 1968.

[37] David Nualart. The Malliavin calculus and related topics.
Probability and its applications. Springer, Berlin, Heidelberg,
New-York, 2006.

[38] Diethelm Wuertz et. al. farma: ARMA time series modeling.
cran.r-project.org/web/packages/fArma/index.html, June 24
2013.

[39] Will E. Leland, Murad S. Taqqu, Walter Willinger, and
Daniel V. Wilson. On the self-similar nature of ethernet traffic
(extended version). IEEE/ACM Trans. Netw., 2(1):1–15,
February 1994.

[40] Markus M. Breunig, Hans-Peter Kriegel, Raymond T. Ng, and
Jörg Sander. Lof: Identifying density-based local outliers.
SIGMOD Rec., 29(2):93–104, May 2000.

[41] Steffen Rendle. Factorization machines with libFM. ACM
Trans. Intell. Syst. Technol., 3(3):57:1–57:22, May 2012.

[42] Benoît Mandelbrot and J. R. Wallis. Robustness of the rescaled
range R/S in the measurement of noncyclic long run
statisticaldependence. 5:967–988, 1969.

[43] Alexandra Chronopoulou and Frederi G. Viens. Hurst index
estimation for self-similar processes with long-memory. In
Recent development in stochastic dynamics and stochastic analysis.
Dedicated to Zhi-Yuan Zhang on the occasion of his 75th birthday.,
pages 91–117. Hackensack, NJ: World Scientific, 2010.

[44] Mila Parkour. Contagio malware dump.
contagiodump.blogspot.com/2013/04/collection-of-pcap-
files-from-malware.html, 2015.

8

cran.r-project.org/web/packages/fArma/index.html
contagiodump.blogspot.com/2013/04/collection-of-pcap-files-from-malware.html
contagiodump.blogspot.com/2013/04/collection-of-pcap-files-from-malware.html

	Introduction
	Central Nervous System

	Lambda Architecture
	Building Blocks
	Immutable Logging
	In Defense of Defense
	Reactive Defense: Commodity Crawlers

	Security Analytics ROI
	Analytic Value
	A Roadmap for Security Maturity

	Cybersecurity Analytics
	Blending Traditional IOC's with Behavioral IOC's
	Modeling Users as Processes
	Fractional User Behavior
	Streaming Command and Control Detection with Hurst Exponents

	Conclusion
	Additional Authors
	References

