

UNDERSTANDING THE ATTACK SURFACE AND ATTACK RESILIENCE OF

PROJECT SPARTAN'S (EDGE) NEW EDGEHTML RENDERING ENGINE

Mark Vincent Yason

IBM X-Force Advanced Research

yasonm[at]ph[dot]ibm[dot]com

@MarkYason

ABSTRACT

EdgeHTML is the new rendering engine that will power the next generation web browser (codenamed Spartan) to

be introduced in Windows 10. Because EdgeHTML will be widely deployed - from Windows 10 mobile devices to

PCs, it is important that we have understanding of its attack surface and its stance against exploitation.

In this presentation, I'll discuss EdgeHTML's attack surface and the different methods for enumerating it. I'll also

describe a method of comparing EdgeHTML and MSHTML to identify and understand what had changed from the

forking process, and more importantly, identify new features and added internal functionalities that can contribute

to its attack surface. Finally, I'll discuss the exploit mitigations in place, how they help against certain classes of

vulnerabilities, and discuss known bypass techniques that are still applicable.

© 2015 IBM Corporation

[v2]

UNDERSTANDING THE ATTACK SURFACE AND ATTACK RESILIENCE OF PROJECT SPARTAN’S (EDGE)
NEW EDGEHTML RENDERING ENGINE > CONTENTS

IBM Security | ©2015 IBM Corporation

|2

CONTENTS
Contents .. 2

1. Introduction ... 3

2. Overview .. 4

2.1. Attack Surface Map and Exploit Mitigations .. 4

2.2. Initial Recon: Diffing EdgeHTML Against MSHTML .. 6

3. Attack Surface .. 8

3.1. Markup/Style Parsing ... 8

3.2. Image Decoding.. 9

3.3. Audio/Video Decoding ... 9

3.4. Font Rendering ... 10

3.5. DOM API ... 10

3.6. Flash and PDF Renderers .. 14

3.7. Analysis and Summary: Attack Surface .. 15

4. Exploit Mitigations ... 16

4.1. 64-Bit, ASLR, DEP and AppContainer ... 16

4.2. Stack Buffer Security Check (/GS) .. 17

4.3. Control Flow Guard (CFG) .. 18

4.4. Virtual Table Guard (VTGuard) ... 18

4.5. Memory GC (MemGC) .. 19

4.6. Analysis and Summary: Exploit Mitigations ... 21

5. Conclusion ... 23

6. Bibliography ... 24

UNDERSTANDING THE ATTACK SURFACE AND ATTACK RESILIENCE OF PROJECT SPARTAN’S (EDGE)
NEW EDGEHTML RENDERING ENGINE > INTRODUCTION

IBM Security | ©2015 IBM Corporation

|3

1. INTRODUCTION
EdgeHTML [1, 2] is the new rendering engine that will be introduced in Microsoft’s new Edge browser (previously

codenamed Project Spartan) to support modern web standards and at the same time to remove legacy code. This

new rendering engine is a fork of the Trident (MSHTML) rendering engine which is currently being used in Internet

Explorer.

It was estimated [3] that around 220k+ lines of code were removed from the forking process while around 300k+

lines of code were added for interoperability fixes and new features. From a security research standpoint, it is both

interesting and important to understand what are the side-effects of these changes in terms of how the attack

surface of the rendering engine have changed – what are the new attack vectors? are some of the attack vectors

previously used by attackers now removed? Another important matter to understand is the resiliency of this new

rendering engine against attacks – are there changes in the exploit mitigations in place? how difficult is it for

attackers to exploit this new rendering engine compared to its predecessor in a default configuration? Answering

these essential questions is the purpose of this paper.

This paper is divided into three sections. The first section (Overview) gives an overview of the attack surface and

exploit mitigations which are discussed in-depth in the later sections, it contains the “EdgeHTML Attack Surface

Map and Exploit Mitigations” diagram which can serve as a visual reference for the rest of the paper. The first

section also discusses the diffing method I used in the early part of my research for diffing EdgeHTML against

MSHTML. The second section (Attack Surface) is where I discuss in-depth the different attack vectors that

comprises EdgeHTML’s attack surface and point out important attack vector changes from MSHTML to EdgeHTML.

Finally, the last section (Exploit Mitigations) is where I discuss the different exploit mitigations in place that overall

contributes to making the exploitation of EdgeHTML vulnerabilities difficult or costly.

All information in this paper is based on Microsoft Edge running on 64-bit Windows 10 build 10240 (edgehtml.dll

version 11.0.10240.16384).

UNDERSTANDING THE ATTACK SURFACE AND ATTACK RESILIENCE OF PROJECT SPARTAN’S (EDGE)
NEW EDGEHTML RENDERING ENGINE > OVERVIEW

IBM Security | ©2015 IBM Corporation

|4

2. OVERVIEW
Before diving deep into the details of EdgeHTML’s attack surface and applied exploit mitigations, this section will

first give a brief overview. This section will also discuss the method I used for diffing EdgeHTML against MSHTML to

help identify major changes in the code.

2.1. ATTACK SURFACE MAP AND EXPLOIT MITIGATIONS

The EdgeHTML rendering engine DLL (%System32%\edgehtml.dll) is responsible for parsing and rendering

potentially malicious web content. It is hosted in the Edge browser content process (MicrosoftEdgeCP.exe) which is

a 64-bit AppContainer-sandboxed process.

The attack surface map in the next page shows the different input types that EdgeHTML accepts and the

EdgeHTML classes that process them. Note these EdgeHTML classes are the initial entry point for the

parsing/processing; some of those listed may require the use of additional EdgeHTML classes. The library that a

particular EdgeHTML class uses to process the input is also listed.

For processing HTML, EdgeHTML use its internal parser for parsing the markup. While for XML-based markups

(XHTML, SVG, XML), it additionally uses XmlLite for the XML parsing. If the markup is an XML that references a XSL

stylesheet, MSXML6 first performs the XML transformation and the output is then fed into the markup processing.

CSS parsing is performed using an internal parser. For decoding images, EdgeHTML mainly relies on Windows

Imaging Component (WIC). For decoding audio/video content, EdgeHTML mainly relies on Media Foundation (MF).

Timed text tracks files which are used for audio/video captioning are parsed by EdgeHTML using internal parsers

with the help of XmlLite. Font rendering is handled by DirectWrite. The DOM objects which are created when

markup tags are parsed or are dynamically created are exposed via the DOM API, some of these DOM objects may

in turn rely on libraries for their functionality. Also, EdgeHTML by default, can instantiate additional built-in/pre-

installed renderers - the WinRT PDF renderer to handle PDF content, and Adobe Flash Player to handle Flash

content.

Several exploit mitigations are applied to the 64-bit Edge content process where the EdgeHTML rendering engine is

hosted. Namely, ASLR (with high entropy and force ASLR enabled), DEP, and the AppContainer processes isolation

mechanism. EdgeHTML and its dependencies are compiled with stack buffer security check (/GS) and the recently

introduced Control Flow Guard (CFG). Finally, additional exploit mitigations such as Virtual Table Guard (VTGuard)

and the new Memory GC (MemGC) are specifically applied to EdgeHTML.

UNDERSTANDING THE ATTACK SURFACE AND ATTACK RESILIENCE OF PROJECT SPARTAN’S (EDGE)
NEW EDGEHTML RENDERING ENGINE > OVERVIEW

IBM Security | ©2015 IBM Corporation

|5

UNDERSTANDING THE ATTACK SURFACE AND ATTACK RESILIENCE OF PROJECT SPARTAN’S (EDGE)
NEW EDGEHTML RENDERING ENGINE > OVERVIEW

IBM Security | ©2015 IBM Corporation

|6

2.2. INITIAL RECON: DIFFING EDGEHTML AGAINST MSHTML

When I started my research on EdgeHTML, I wanted to find out what are the major code changes from the forking

process of MSHTML to EdgeHTML. Since classes and namespaces suggest group of related code which may in turn

correspond to a program feature, one method I tried was, using IDAPython, enumerate function/variable names

and then extract the namespace part of the function/variable names. Duplicates are removed and the resulting

namespace list is sorted. Then finally, the namespace list of MSHTML and EdgeHTML are diffed using the diff(1)

utility:

One example diff output which suggests a change in the support for WMF and EMF images (discussed in 3.3) are

the following missing classes in EdgeHTML:

-CImgTaskEmf
-CImgTaskWmf

Another example diff output are the new namespaces under the CFastDOM namespace which suggest the new

DOM object types that are exposed via the DOM API (discussed in 3.5):

+CFastDOM::{…more…}
+CFastDOM::CXPathEvaluator
+CFastDOM::CXPathExpression
+CFastDOM::CXPathNSResolver
+CFastDOM::CXPathResult
+CFastDOM::CXSLTProcessor

Finally, another interesting diff output suggests that some code had been ported from the Blink rendering engine

[4, 5] (before most of the namespace were renamed from “WebCore” to “blink”):

UNDERSTANDING THE ATTACK SURFACE AND ATTACK RESILIENCE OF PROJECT SPARTAN’S (EDGE)
NEW EDGEHTML RENDERING ENGINE > OVERVIEW

IBM Security | ©2015 IBM Corporation

|7

+blink::WebThread
+WebCore::AnalyserNode
+WebCore::AudioArray<float>
+WebCore::AudioBasicInspectorNode
+WebCore::Audio{…more…}

A further look at EdgeHTML’s code confirmed that these ported code were for EdgeHTML’s Web Audio [6] support.

In addition to diffing namespaces, this rudimentary diffing method can be applied to function names, class method

names (to identify new/removed class functionalities), strings (which can give telltale signs of what the new

functionalities are – i.e.: log strings), imports (to identify new libraries and the specific APIs used by the binary) and

exports.

Note that a caveat of this method is that the renaming of a namespace will result into an added namespace plus a

deleted namespace; therefore, the results need to be further verified. Additionally, this method requires that the

symbols for the binaries are available. Binary diffing [7] is another option for identifying differences between two

binaries down to the changes at the function level.

UNDERSTANDING THE ATTACK SURFACE AND ATTACK RESILIENCE OF PROJECT SPARTAN’S (EDGE)
NEW EDGEHTML RENDERING ENGINE > ATTACK SURFACE

IBM Security | ©2015 IBM Corporation

|8

3. ATTACK SURFACE
In this section, I’ll enumerate the different types of untrusted input processed by EdgeHTML and the code in

EdgeHTML that processes them. Note that the listed EdgeHTML classes are the initial entry point for the

parsing/processing; some of those listed may use additional EdgeHTML classes for the processing. The purpose of

identifying these EdgeHTML classes is that they can be used for setting breakpoints in the code when

understanding how EdgeHTML handles a particular input type. For example, when understanding how the XML-

based markup pre-parsing works, breakpoints in the CXmlPre methods can be set via:

(WinDbg)> bm edgehtml!CXmlPre::*

If EdgeHTML relies on a library for processing a particular input type, the library and the specific interface used by

EdgeHTML is also listed.

3.1. MARKUP/STYLE PARSING

One of the primary tasks performed by a rendering engine is processing markups and styles. For HTML and CSS,

EdgeHTML relies on its internal classes for the parsing, while for parsing XML-based markups, EdgeHTML

additionally uses XmlLite [8] and MSXML6 [9]:

Markup/Style EdgeHTML Class Library (and Interface) Used

HTML CHtmPre (Pre-parsing)
CHtmPost, CHtml5Parse (Post-parsing)

XML-Based
(XHTML, SVG, XML)

CXmlPre (Pre-parsing)
CHtmPost, CHtmParse (Post-parsing)

XmlLite (IXmlReader)

CSS CssParser

XML w/ XSL CBaseXSLTFilter

XmlLite (IXmlReader)
MSXML6 (IXMLDOMDocument)

VML (Removed in EdgeHTML: No Binary Behaviors)

EdgeHTML processes markups in two phases, the pre-parsing phase which starts at CHtmPre::Exec() or

CXmlPre::Exec() involves the initial parsing of the markup, writing the parsed tags to a tag stream, and starting

download of referenced resources (if applicable - such as images and CSS files). The post-parsing phase which

starts at CHtmPost::Exec() fetches the tags from the tags stream, performs additional parsing of the tags if

necessary, and eventually results to the creation of the DOM objects.

XmlLite’s IXmlReader interface which is instantiated by EdgeHTML via a call to xmllite!CreateXmlReader() is used

by CXmlPre as a parser when pre-parsing XML-based markups, it is also used by CBaseXSLTFilter as an XML parser

when detecting if an XML file references an XSL stylesheet. Additionally, MSXML6’s IXMLDOMDocument interface

is used by CBaseXSLTFilter for transforming an XML file that references an XSL stylesheet.

An important change in EdgeHTML is that support for binary behaviors [10], including the built-in VML binary

behavior was removed. VML-based (VGX.DLL) vulnerabilities [11] are deemed important because, though obsolete,

VML is still available by default even on IE11/MSHTML.

The markup/style processor of rendering engines, especially the CSS and HTML parsers are expected to be updated

overtime as there will be new web standards that will require new HTML tags, HTML attributes, CSS properties,

UNDERSTANDING THE ATTACK SURFACE AND ATTACK RESILIENCE OF PROJECT SPARTAN’S (EDGE)
NEW EDGEHTML RENDERING ENGINE > ATTACK SURFACE

IBM Security | ©2015 IBM Corporation

|9

etc. to be parsed and handled. An example of well-known zero-day vulnerability that relates to markup/style

processing is the MSHTML CSS recursive import vulnerability [12].

3.2. IMAGE DECODING

Image rendering is another basic task performed by a rendering engine. Arbitrary image files can be passed to the

rendering engine via direct link to the image file or via various HTML tags such as and <embed> tags.

Support for image formats can be enumerated by looking at the g_rgMimeInfoImg array which contains

MIMEINFO items that specifies the image mime type and the function that will instantiate the EdgeHTML image

handler class.

Below are the image formats supported by EdgeHTML. In the library field, you’ll notice that Windows Imaging

Component (WIC) [13] is used for all image processing (SVG is processed via markup processing described in 3.1):

Image Format EdgeHTML Class Library (and Interface) Used

PNG CImgTaskWICPng WIC (IWICImagingFactory)

JPG CImgTaskWICJpgTemplate WIC (IWICImagingFactory)

GIF CImgTaskWICGif WIC (IWICImagingFactory)

DDS CImgTaskWICDds WIC (IWICImagingFactory)

TIFF CImgTaskWICTiff WIC (IWICImagingFactory)

BMP CImgTaskWICBmp WIC (IWICImagingFactory)

HDP CImgTaskWICHdp WIC (IWICImagingFactory)

ICO CImgTaskWICIco WIC (IWICImagingFactory)

WMF (Removed in EdgeHTML: Processing Removed)

EMF (Removed in EdgeHTML: Processing Removed)

For processing images, EdgeHTML first instantiates WIC’s IWICImagingFactory interface via

CWicGlobals::GetWicImagingFactory(). IWICImagingFactory::CreateDecoder() is then called to instantiate an

IWICBitmapDecoder interface for a particular image format.

An interesting change in EdgeHTML is that support for processing of WMF and EMF images was removed; this

means that previous dependence to the GDI library for parsing remotely-supplied WMF and EMF files was

removed. The code in GDI that parses WMF and EMF files is historically known for remotely-exploitable

vulnerabilities [14, 15, 16].

3.3. AUDIO/VIDEO DECODING

Through a direct link or via the HTML <audio> and <video> tags, the rendering engine can be passed arbitrary

audio/video content. Mime types for supported audio/video container formats are reflected by the

g_rgMimeInfoAudio and g_rgMimeInfoVideo array. As listed on the table below, the library that EdgeHTML uses to

process audio/video content is Media Foundation (MF) [17]:

Media Container Format EdgeHTML Class Library (and Interface) Used

MP4 CMediaElement MF (IMFMediaEngine)

MP3 CMediaElement MF (IMFMediaEngine)

WAV CMediaElement MF (IMFMediaEngine)

UNDERSTANDING THE ATTACK SURFACE AND ATTACK RESILIENCE OF PROJECT SPARTAN’S (EDGE)
NEW EDGEHTML RENDERING ENGINE > ATTACK SURFACE

IBM Security | ©2015 IBM Corporation

|10

Via MFCreateMediaEngine(), EdgeHTML instantiates MF’s IMFMediaEngine interface which is used for setting up

the media source and controlling playback.

In addition to audio/video file processing, EdgeHTML also processes timed text tracks [18] which can be specified

via the HTML <track> tag. EdgeHTML supports two text track file formats:

Text Track Format EdgeHTML Class Library (and Interface) Used

TTML CTtmlDomParser XmlLite (IXmlReader)

WebVTT CWebVttParser

TTML is XML-based and the EdgeHTML class that processes it use XmlLite’s IXmlReader for the XML parsing.

3.4. FONT RENDERING

Arbitrary fonts can be passed to the rendering engine via the @font-face CSS rule [19]. Vulnerabilities in font

parsing [20], especially if reachable via a browser rendering engine, can be a cause of remote compromise – an

example is CVE-2011-3402 [21, 22], a font parsing vulnerability in GDI (in Win32k.sys) that was initially used in a

zero-day attack and later been used by browser exploit kits.

EdgeHTML uses DirectWrite [23] for rendering fonts and supports the following font formats:

Font Format EdgeHTML Class Library (and Interface) Used

TTF CDXEmbeddedFontFace DirectWrite (IDWriteFactory1, IDWriteFactory2)

OTF CDXEmbeddedFontFace DirectWrite (IDWriteFactory1, IDWriteFactory2)

WOFF CDXEmbeddedFontFace DirectWrite (IDWriteFactory1, IDWriteFactory2)
(after extraction of TTF/OTF via
CDXEmbeddedFontFace::UnpackFontFromWOFFData())

EOT (Removed from EdgeHTML:
Processing Removed)

Instantiation of the required DirectWrite interfaces is performed in CDXResourceDomain::EnsureDXFactories().

EdgeHTML detects the actual format of the font via CDXEmbeddedFontFace::Initialize() and starts performing the

custom private font registration in CDXPrivateFont::Initialize() via a call to IDWriteFactory::

CreateCustomFontFileReference().

Unlike GDI, DirectWrite (DWrite.dll) parses the font file in the user-mode process where it is hosted. Also, a

notable change in EdgeHTML is that EOT font support was removed, this means that dependence to T2EMBED [24]

and GDI for parsing EOT fonts was removed, therefore reducing the number of libraries used in parsing remotely-

supplied fonts.

3.5. DOM API

The Document Object Model (DOM) API [25] is one of the largest attack surfaces in a rendering engine. When

parsing an HTML document, the rendering engine instantiates DOM objects that represents the parsed HTML tags.

The rendering engine will also create core DOM objects such as the DOM ‘document’ object. And finally, JavaScript

code can also dynamically instantiate new DOM objects. The DOM API provides a way to manipulate these DOM

objects.

UNDERSTANDING THE ATTACK SURFACE AND ATTACK RESILIENCE OF PROJECT SPARTAN’S (EDGE)
NEW EDGEHTML RENDERING ENGINE > ATTACK SURFACE

IBM Security | ©2015 IBM Corporation

|11

When DOM object properties are set/retrieved or when DOM object methods are invoked via a script,

corresponding code in the rendering engine is executed:

Because code in the rendering engine that are executed via the DOM API can change the state of the DOM tree,

DOM objects and other internal rendering engine objects, unexpected input, unexpected state change or an

incorrect internal state when a DOM API is called can result into memory corruption vulnerabilities such as use-

after-frees [26] (example below), heap overflows [27], invalid pointer access [28], etc.

Using the diffing method described in section 2.2, we can identify the new DOM object types in EdgeHTML by

looking at the changes under CFastDOM namespace:

+CFastDOM::CAnalyserNode
+CFastDOM::CAriaRequestEvent
+CFastDOM::CAudioBuffer
+CFastDOM::CAudioBufferSourceNode
+CFastDOM::CAudioContext
+CFastDOM::CAudioDestinationNode
+CFastDOM::CAudioListener
+CFastDOM::CAudioNode
+CFastDOM::CAudioParam
+CFastDOM::CAudioProcessingEvent
+CFastDOM::CBiquadFilterNode
+CFastDOM::CClipboardEvent
+CFastDOM::CCommandEvent
+CFastDOM::CConvolverNode
+CFastDOM::CCryptoKey
+CFastDOM::CCryptoKeyPair
+CFastDOM::CCSS

UNDERSTANDING THE ATTACK SURFACE AND ATTACK RESILIENCE OF PROJECT SPARTAN’S (EDGE)
NEW EDGEHTML RENDERING ENGINE > ATTACK SURFACE

IBM Security | ©2015 IBM Corporation

|12

+CFastDOM::CCSSConditionRule
+CFastDOM::CCSSGroupingRule
+CFastDOM::CDataCue
+CFastDOM::CDataTransferItem
+CFastDOM::CDataTransferItemList
+CFastDOM::CDeferredPermissionRequest
+CFastDOM::CDelayNode
+CFastDOM::CDynamicsCompressorNode
+CFastDOM::CEventTarget
+CFastDOM::CGainNode
+CFastDOM::CGamepad
+CFastDOM::CGamepadButton
+CFastDOM::CGamepadEvent
+CFastDOM::CHashChangeEvent
+CFastDOM::CIsolatedGlobalScope
+CFastDOM::CMediaDeviceInfo
+CFastDOM::CMediaDevices
+CFastDOM::CMediaStream
+CFastDOM::CMediaStreamError
+CFastDOM::CMediaStreamErrorEvent
+CFastDOM::CMediaStreamTrack
+CFastDOM::CMediaStreamTrackEvent
+CFastDOM::CMSAppAsyncOperation
+CFastDOM::CMSHeaderFooter
+CFastDOM::CMSPrintManagerTemplatePrinter
+CFastDOM::CMSTemplatePrinter
+CFastDOM::CMSWebViewSettings
+CFastDOM::CNavigationEventWithReferrer
+CFastDOM::COfflineAudioCompletionEvent
+CFastDOM::COfflineAudioContext
+CFastDOM::COscillatorNode
+CFastDOM::COverflowEvent
+CFastDOM::CPannerNode
+CFastDOM::CPermissionRequest
+CFastDOM::CPermissionRequestedEvent
+CFastDOM::CRTCDtlsTransport
+CFastDOM::CRTCDtlsTransportStateChangedEvent
+CFastDOM::CRTCDtmfSender
+CFastDOM::CRTCDTMFToneChangeEvent
+CFastDOM::CRTCIceCandidatePairChangedEvent
+CFastDOM::CRTCIceGatherer
+CFastDOM::CRTCIceGathererEvent
+CFastDOM::CRTCIceTransport
+CFastDOM::CRTCIceTransportStateChangedEvent
+CFastDOM::CRTCRtpListener
+CFastDOM::CRTCRtpReceiver
+CFastDOM::CRTCRtpSender
+CFastDOM::CRTCRtpUnhandledEvent
+CFastDOM::CRTCSrtpSdesTransport
+CFastDOM::CRTCSsrcConflictEvent
+CFastDOM::CScriptProcessorNode
+CFastDOM::CServiceUIFrameContext
+CFastDOM::CStereoPannerNode
+CFastDOM::CSVGForeignObjectElement
+CFastDOM::CVideoTrack

UNDERSTANDING THE ATTACK SURFACE AND ATTACK RESILIENCE OF PROJECT SPARTAN’S (EDGE)
NEW EDGEHTML RENDERING ENGINE > ATTACK SURFACE

IBM Security | ©2015 IBM Corporation

|13

+CFastDOM::CVideoTrackList
+CFastDOM::CWaveShaperNode
+CFastDOM::CXMLHttpRequestUpload
+CFastDOM::CXPathEvaluator
+CFastDOM::CXPathExpression
+CFastDOM::CXPathNSResolver
+CFastDOM::CXPathResult
+CFastDOM::CXSLTProcessor

These new DOM object types represent new code or new code paths in EdgeHTML that are exposed and reachable

via the DOM API.

In terms of enumerating DOM object properties and methods, JavaScript’s for…in statement can be used. The

example below uses the new XSLTProcessor DOM object type:

By diffing the results of the object property enumeration, one can find out the property changes in already-existing

DOM object types. Below is a property diff output snippet for the DOM “document” object:

 […]
+document.evaluate
 document.execCommand
 document.execCommandShowHelp
+document.exitFullscreen
 document.fgColor
-document.fileCreatedDate
 […]

Same with new DOM object types, new DOM object properties/methods represent new code or code paths in

EdgeHTML that are exposed and reachable via the DOM API.

UNDERSTANDING THE ATTACK SURFACE AND ATTACK RESILIENCE OF PROJECT SPARTAN’S (EDGE)
NEW EDGEHTML RENDERING ENGINE > ATTACK SURFACE

IBM Security | ©2015 IBM Corporation

|14

Lastly, another way to identify a DOM object’s properties and methods is by performing a query in IDA’s Names

window:

By following one of the listed functions in the Names window, one can find out the actual EdgeHTML class that

represents the DOM object type:

As new features are added to the Edge browser [29], new DOM objects types will likely be introduced or new

properties/methods will be added to already-existing DOM objects in order to expose the new features to

developers. These new DOM object types, properties, and methods will in turn represent new attacker-reachable

code which increases the rendering engine’s attack surface.

3.6. FLASH AND PDF RENDERERS

Finally, though technically not part of the rendering engine and are performing another set of complex parsing and

rendering themselves; the built-in PDF renderer [30] in Windows (since Windows 8.1) and the pre-installed Adobe

Flash player (since Windows 8) can be considered as just one of the many dependencies that EdgeHTML uses to

render their respective file formats since they are pre-installed [3] and can be instantiated by the EdgeHTML

rendering engine by default:

Content Type EdgeHTML Loader/Helper Class Built-in/Pre-installed Renderer

PDF CPDFHelper Built-in WinRT PDF Renderer in Windows
(%System32%\Windows.Data.Pdf.dll)

Flash CCodeLoad Pre-installed Adobe Flash Player
(%System32%\Macromed\Flash\Flash.ocx)

UNDERSTANDING THE ATTACK SURFACE AND ATTACK RESILIENCE OF PROJECT SPARTAN’S (EDGE)
NEW EDGEHTML RENDERING ENGINE > ATTACK SURFACE

IBM Security | ©2015 IBM Corporation

|15

The PDF renderer is instantiated in CPDFHelper::LoadPdfDoc(), while the Flash renderer instantiation starts at

CCodeLoad::BindToObject().

From an attacker’s standpoint, being able to use additional complex renderers have certain advantages such as: (1)

these complex renderers have another set of attack surface and vulnerabilities that attackers can leverage, and (2)

some of their functionalities can be repurposed to bypass exploit mitigations – an example is when Flash JIT-

generated code was leveraged to bypass Control Flow Guard [31], and another example is when a zero-day exploit

used the well-known Flash Vector object corruption technique [32] to bypass ASLR by leveraging an IE rendering

engine vulnerability to corrupt a Flash Vector object in memory [33]. Though the CFG bypass via the Flash JIT and

the ASLR bypass via the Flash Vector object have been mitigated (see 4.3 and [34]), they showed how software

functionalities can be leveraged for exploitation.

3.7. ANALYSIS AND SUMMARY: ATTACK SURFACE

In the area of image and font rendering, EdgeHTML’s attack surface had been reduced because of the removal of

support for EMF images, WMF images, and EOT fonts. The code in the libraries (GDI and T2EMBED) that processed

these file formats had a history of remotely exploitable vulnerabilities. Removal of support for VML (via binary

behaviors) also further contributes to the attack surface reduction in EdgeHTML.

However, as with any other modern browser, new features are added and these features are exposed via new

DOM object types/properties/methods and updated markup/style specifications. In the case of EdgeHTML, new

attack vectors were found in the DOM API in the form of new DOM objects types and the addition of new

properties and methods in already-existing DOM object types.

Also, the following libraries are identified as being used by EdgeHTML:

 XmlLite for XML parsing

 MSXML6 for XML transformation

 Windows Imaging Component (WIC) for image decoding

 Media Foundation (MF) for audio/video decoding

 DirectWrite for font rendering

 Built-in WinRT PDF Renderer for PDF rendering

 Pre-installed Adobe Flash Player for Flash rendering

By identifying how these libraries are used by EdgeHTML, we can further recognize their importance since we now

have an additional understanding on how they are used by the rendering engine and how attackers might be able

to remotely reach code in these libraries via malicious inputs.

UNDERSTANDING THE ATTACK SURFACE AND ATTACK RESILIENCE OF PROJECT SPARTAN’S (EDGE)
NEW EDGEHTML RENDERING ENGINE > EXPLOIT MITIGATIONS

IBM Security | ©2015 IBM Corporation

|16

4. EXPLOIT MITIGATIONS
Now that we have an understanding of EdgeHTML’s attack surface, let’s now take a look at the exploit mitigations

that an attacker will need to bypass in order to successfully exploit a vulnerability in EdgeHTML or any of its

dependencies. Known/published mitigation bypass or weakness discovered/researched by various security

researchers are also discussed and referenced.

Mitigations applied to the Edge content process where EdgeHTML is hosted are briefly discussed, while a more

detailed discussion on the specific exploit mitigations to EdgeHTML and its dependencies will be made. Mitigations

applied to the Windows heap are thoroughly discussed in various papers/presentations [35, 36, 37, 38, 39, 40] and

will not be discussed here.

4.1. 64-BIT, ASLR, DEP AND APPCONTAINER

In Windows 10 x64, the Edge content process (MicrosoftEdgeCP.exe) that hosts the EdgeHTML rendering engine

(%System32%\edgehtml.dll) is by default running 64-bit, with ASLR (HEASLR, ForceASLR) and DEP enabled, and is

sandboxed using AppContainer:

The content process mitigations in Edge are the same as the content process mitigations in Immersive IE on

Windows 8 and different from the content process mitigations in IE11 on Windows 10, Windows 8 (Desktop IE)

and Windows 7.

UNDERSTANDING THE ATTACK SURFACE AND ATTACK RESILIENCE OF PROJECT SPARTAN’S (EDGE)
NEW EDGEHTML RENDERING ENGINE > EXPLOIT MITIGATIONS

IBM Security | ©2015 IBM Corporation

|17

The table below shows the default mitigations applied to the content process of Edge and IE on different Windows

versions:

 Win10/Edge Win10/IE11 Win8/Immersive IE Win8/IE11 Win7/IE11

64-bit Yes No Yes No No

ASLR Yes
(HEASLR,
ForceASLR)

Yes
(ForceASLR)

Yes
(HEASLR,
ForceASLR)

Yes
(ForceASLR)

Yes
(ForceASLR)

DEP Yes Yes Yes Yes Yes

Process Isolation AppContainer Low Integrity AppContainer Low Integrity Low Integrity

64-bit mitigates traditional heap spraying which involves spraying the heap with attacker-controlled values and the

attacker will be fairly successful in landing the controlled data at a particular address. However, depending on the

vulnerability, a “relative heap spray" [28, 41] may be possible in cases where a vulnerability involves a valid heap

pointer being added an attacker-controlled or erroneous value in a pointer computation.

The content process also has High Entropy ASLR (HEASLR) and Force ASLR (ForceASLR) [42, 43] enabled. HEASLR

gives additional entropy to where memory regions can be relocated, while ForceASLR prevents loading of DLLs that

do not support ASLR from being loaded at a static address. The bypass for ASLR (and consequently, DEP) in a

process in which ForceASLR is enabled is to take advantage of pointers in predictable memory regions or using a

vulnerability to disclose memory contents. Since Microsoft is actively resolving the former [44, 42], more and more

attacks will rely on using a vulnerability to disclose memory contents [45, 32].

AppContainer is a process isolation mechanism first introduced in Windows 8 and was used in IE’s Enhanced

Protected Mode [46] sandbox. Among other things, AppContainer limits a process’s read/write access and

capabilities. There are several ways to bypass the AppContainer sandbox (and other sandboxes), these includes

exploiting kernel vulnerabilities [47, 48], exploiting vulnerabilities in the broker or higher-privileged processes [46,

49, 50], and leveraging writable resources [49].

4.2. STACK BUFFER SECURITY CHECK (/GS)

To detect stack-based buffer overflows that attempt to control the program’s execution flow, EdgeHTML and its

dependencies were compiled with the Buffer Security Check (/GS) [51] compiler option. This mitigation involves

storing a security cookie in the stack just after local buffers and then checking the security cookie before the

function returns to make sure that the return address and saved x64 registers were not overwritten via a buffer

overflow. This mitigation also performs variable reordering so that a copy of the parameters and local variables are

located before the buffers to prevent them from being corrupted in the event of a buffer overflow:

UNDERSTANDING THE ATTACK SURFACE AND ATTACK RESILIENCE OF PROJECT SPARTAN’S (EDGE)
NEW EDGEHTML RENDERING ENGINE > EXPLOIT MITIGATIONS

IBM Security | ©2015 IBM Corporation

|18

This mitigation had been thoroughly discussed in various papers [52, 53] and is continually being updated [42] for

improved coverage. One limitation of this mitigation is that it does not cover cases where an attacker has control

of where in the stack buffer to write data to (such as a controllable stack buffer index/pointer) [54, 20], allowing

the attacker to write beyond the stack cookie.

4.3. CONTROL FLOW GUARD (CFG)

A recently introduced exploit mitigation that is applied to EdgeHTML and its dependencies is Control Flow Guard

(CFG) [55, 56]. When CFG is enabled, the compiler will add checks in the code to ensure that the destination of

indirect calls is valid. This exploit mitigation attempts to detect and prevent abnormal control flow which can occur

if an exploit is trying to redirect execution to ROP gadgets in select executable code addresses.

Internals of this exploit mitigation are well-researched and published in a various papers/presentations [57, 58].

One published bypass technique [31] against CFG is by taking advantage of Flash JIT-generated code, which due to

its dynamic nature, any indirect calls made inside it will not be covered by CFG. This bypass technique, however, is

now mitigated in Flash by additionally JIT-generating code that calls ntdll!LdrpValidateUserCallTarget() whenever

call instructions are generated. Other published ideas to bypass CFG include jumping to valid API addresses (i.e.

LoadLibrary) [41], overwriting stack data (such as a return address) [57, 41], etc.

4.4. VIRTUAL TABLE GUARD (VTGUARD)

An exploit mitigation applied to EdgeHTML but not in its dependencies is Virtual Table Guard (VTGuard) [42].

VTGuard was first introduced in IE10 and its purpose is to detect an invalid virtual function table which can occur if

an exploit is trying to control execution flow via a controlled C++ object in memory. It adds an ASLR-randomized

value (__vtguard) in the virtual function table which is then checked before performing a virtual function call:

UNDERSTANDING THE ATTACK SURFACE AND ATTACK RESILIENCE OF PROJECT SPARTAN’S (EDGE)
NEW EDGEHTML RENDERING ENGINE > EXPLOIT MITIGATIONS

IBM Security | ©2015 IBM Corporation

|19

A shortcoming of this mitigation is that it is applied only to select EdgeHTML classes and it can be trivially bypassed
if the address of __vtguard is leaked via memory content disclosure.

4.5. MEMORY GC (MEMGC)

Memory GC (MemGC) [59] was first introduced in EdgeHTML and in MSHTML on Windows 10. It is the successor to

the Memory Protector [60, 61, 62] exploit mitigation in the aforementioned rendering engines on Windows 10.

Similar to Memory Protector, the purpose of MemGC is to mitigate exploitation of use-after-free [26]

vulnerabilities by preventing the freeing of memory chunks if references to them are found. However, unlike

Memory Protector which only checks the registers and the stack for memory chunk references, MemGC

additionally scans the contents of MemGC-managed chunks for references. This additional check means that

MemGC further decreases the number of usable use-after-free bugs that an attacker can exploit.

CONFIGURATION
MemGC is enabled by default. One way to configure it in both Edge and IE is via the

“OverrideMemoryProtectionSetting” configuration which can be set via the following registry entry:

HKEY_CURRENT_USER\SOFTWARE\Microsoft\Internet Explorer\Main
OverrideMemoryProtectionSetting = %DwordValue%

Where %DwordValue% can be any of the following:

Value Meaning

3 MemGC is enabled (default)

2 Memory Protector is enabled (Force mark-and-reclaim)

1 Memory Protector is enabled

0 MemGC and Memory Protector are disabled

UNDERSTANDING THE ATTACK SURFACE AND ATTACK RESILIENCE OF PROJECT SPARTAN’S (EDGE)
NEW EDGEHTML RENDERING ENGINE > EXPLOIT MITIGATIONS

IBM Security | ©2015 IBM Corporation

|20

MEMGC HEAP
MemGC uses a separate managed heap (MemGC heap) for object allocation and a concurrent garbage collector

that performs a mark-and-sweep operation to identify and reclaim unreferenced chunks in the MemGC heap.

MemGC depends on the Chakra JavaScript engine memory management routines for most of its functionality.

The allocation scheme used by MemGC involves committing chunks of memory called Segments using

VirtualAlloc() and then dividing these Segments into 4096-byte Pages. A group of these Pages are then treated as a

Block which is in turn used in the allocation of similarly-sized objects:

EdgeHTML/MSHTML DOM objects and a large number of internal rendering engine objects are managed by

MemGC. And since MemGC already uses a separate managed heap, the Isolated Heap is unused if MemGC is

enabled.

ALLOCATION
In EdgeHTML’s implementation of MemGC, when a MemGC-managed object needs to be allocated,

edgehtml!MemoryProtection::HeapAlloc<1>() or edgehtml!MemoryProtection::HeapAllocClear<1>() is called

which in turn calls chakra!MemProtectHeapRootAlloc(). Chakra!MemProtectHeapRootAlloc() will then allocate a

chunk from a Block in the appropriate bucket, and then flag the chunk as a “root”. “Root” in garbage collection

parlance means that the object/chunk is directly referenced by the program and therefore should not be garbage

collected. Root objects/chunks are also used by the garbage collector when scanning for chunk references.

UNDERSTANDING THE ATTACK SURFACE AND ATTACK RESILIENCE OF PROJECT SPARTAN’S (EDGE)
NEW EDGEHTML RENDERING ENGINE > EXPLOIT MITIGATIONS

IBM Security | ©2015 IBM Corporation

|21

PROTECTED FREEING
When an object is to be freed, edgehtml!MemoryProtection::HeapFree() is called which in turn calls

chakra!MemProtectHeapUnrootAndZero(). Chakra!MemProtectHeapUnrootAndZero() attempts to locate the

Block where the object’s chunk is located, zero-out the chunk, then clear the “root” flag of the chunk. By clearing

the “root” flag of the chunk, the chunk will become a candidate for garbage collection and will be reclaimed if no

references to the chunk are found by the garbage collector (more on this below).

GARBAGE COLLECTION
Once the total size of the unrooted chunks reaches a dynamically computed threshold value, garbage collection

will be triggered via chakra!MemProtectHeap::Collect(). The garbage collection (a complicated process in which

only the core functions are described here) will perform a mark-and-sweep operation to reclaim unreferenced

unrooted chunks. Some parts of the mark-and-sweep operation are executed in a separate thread

(chakra!Memory::Recycler::ThreadProc) that is notified via chakra!Memory::Recycler::StartConcurrent().

In the marking phase, the mark bit for all chunks are first cleared and then all root chunks are marked (via

chakra!Memory::Recycler::BackgroundResetMarks()). Then, the root chunks (via chakra!Memory::Recycler::

ScanImplicitRoots()), the registers and the stack (via chakra!MemProtectHeap::FindRoots()) are scanned for chunk

pointers, referenced chunks found in the scan are marked. Chunks that are not marked after the marking phase

will eventually be made available for reallocation.

As of this writing, MemGC and Memory Protector still have no known bypass for covered cases, but as with other

exploit mitigations, new bypass techniques may be developed in the future. However, exploits were

demonstrated for cases not covered Memory Protector [61], a technique on bypassing ASLR on 32-bit IE by

leveraging Memory Protector was also published [61], and finally, a timing attack by leveraging Memory Protector

to approximate the address range of bottom-up allocations (which includes heap allocations) on 64-bit IE was also

published [63].

4.6. ANALYSIS AND SUMMARY: EXPLOIT MITIGATIONS

The default applied exploit mitigations to the Edge content process where EdgeHTML is hosted are more

comprehensive compared to the default exploit mitigations applied in IE11’s content process running on Windows

10, Windows 8 (desktop IE) and Windows 7 – it runs 64-bit by default which allowed ASLR to be additionally

operated in HEASLR mode. This makes traditional heap spraying techniques infeasible or very unreliable and

attackers would need to develop more precise techniques in order to write controlled data in a reliable location.

Another major difference is that the more restrictive AppContainer is used for sandboxing the content process

where EdgeHTML is hosted. This greatly limits the access and capabilities of a successful rendering engine exploit

and, unless the remote vulnerability also exists in a privileged process or system component [20], would require

exploitation of a separate vulnerability in order to escape the AppContainer sandbox.

Stack Buffer Security Check (/GS) decreases the number potentially exploitable stack-based vulnerabilities and the

recently introduced Control Flow Guard required the development of new exploitation techniques. Finally,

MemGC, like its predecessor, will further decrease the number of exploitable use-after-free vulnerabilities in

EdgeHTML.

UNDERSTANDING THE ATTACK SURFACE AND ATTACK RESILIENCE OF PROJECT SPARTAN’S (EDGE)
NEW EDGEHTML RENDERING ENGINE > EXPLOIT MITIGATIONS

IBM Security | ©2015 IBM Corporation

|22

Overall, with all these exploit mitigations in place, an attacker would need to invest more in finding exploitable

vulnerabilities in EdgeHTML, and more investment in developing reliable exploits for them. Nonetheless, attackers

will continually find novel ways to bypass these mitigations and we could expect that these exploit mitigations will

evolve over time.

UNDERSTANDING THE ATTACK SURFACE AND ATTACK RESILIENCE OF PROJECT SPARTAN’S (EDGE)
NEW EDGEHTML RENDERING ENGINE > CONCLUSION

IBM Security | ©2015 IBM Corporation

|23

5. CONCLUSION
It is inevitable that the attack surface of EdgeHTML (and other browser rendering engines) will continue to expand

as new web standards are implemented. Most of the increase in its attack surface will come from parsing and

translating new markup/style specifications, and most notably, in the new functionalities that will be exposed to

developers (and attackers alike) via the DOM API.

However, the increase in the attack surface in EdgeHTML is balanced by the comprehensive exploit mitigations

applied to the content process where it is hosted, to the libraries it uses, and to EdgeHTML itself. These applied

exploit mitigations will make a number of EdgeHTML vulnerabilities unexploitable or very costly/difficult to

develop an exploit for.

Also, new or additional research in the following areas related to EdgeHTML will be both important and interesting

as they are libraries/features that are remotely-reachable and widely-used:

 Internals research, code audit and fuzzing of the following Windows components which are used by

EdgeHTML: XmlLite, MSXML6, Windows Imaging Component (WIC), Media Foundation (MF), DirectWrite

and the WinRT PDF Renderer. Some of them may already have published research (such as DirectWrite

[20]) and we need more of them so we have an understanding of the security posture of these critical

components.

 Internals (algorithm details, data structures map, etc.), heap grooming, heap metadata attacks (if

possible), and bypass research for MemGC. Initial research of MemGC was discussed here; further

analysis of its internals, how the MemGC heap can be groomed or attacked, and how MemGC can be

bypassed will be beneficial to the understanding of its weaknesses, and eventually, improvements to it.

Finally, I hope that this paper helped you understand the security aspect of the EdgeHTML rendering engine.

UNDERSTANDING THE ATTACK SURFACE AND ATTACK RESILIENCE OF PROJECT SPARTAN’S (EDGE)
NEW EDGEHTML RENDERING ENGINE > BIBLIOGRAPHY

IBM Security | ©2015 IBM Corporation

|24

6. BIBLIOGRAPHY

[1] C. Morris, "A break from the past: the birth of Microsoft's new web rendering engine," [Online]. Available:

http://blogs.msdn.com/b/ie/archive/2015/02/26/a-break-from-the-past-the-birth-of-microsoft-s-new-web-

rendering-engine.aspx.

[2] J. Rossi, "Inside Microsoft’s New Rendering Engine For The "Project Spartan"," [Online]. Available:

http://www.smashingmagazine.com/blog/2015/01/26/inside-microsofts-new-rendering-engine-project-

spartan/.

[3] C. Morris and J. Rossi, "A break from the past, part 2: Saying goodbye to ActiveX, VBScript, attachEvent,"

[Online]. Available: https://blogs.windows.com/msedgedev/2015/05/06/a-break-from-the-past-part-2-saying-

goodbye-to-activex-vbscript-attachevent/.

[4] "Chromium Git Repository (chromium/chromium/blink/master/./Source/modules/webaudio)," [Online].

Available: https://chromium.googlesource.com/chromium/blink/+/master/Source/modules/webaudio/.

[5] "Chromium Git Repository (chromium/chromium/blink/master/./Source/platform/audio)," [Online].

Available: https://chromium.googlesource.com/chromium/blink/+/master/Source/platform/audio/.

[6] Microsoft, "MSDN - Web Audio," [Online]. Available: https://msdn.microsoft.com/en-

us/library/dn985708.aspx.

[7] J. Oh, "Fight against 1-day exploits: Diffing Binaries vs Anti-diffing Binaries," [Online]. Available:

http://www.blackhat.com/presentations/bh-usa-09/OH/BHUSA09-Oh-DiffingBinaries-PAPER.pdf.

[8] Microsoft, "MSDN - XmlLite," [Online]. Available: https://msdn.microsoft.com/en-us/library/ms752872.aspx.

[9] Microsoft, "MSDN - MSXML," [Online]. Available: https://msdn.microsoft.com/en-us/library/ms763742.aspx.

[10] Microsoft, "MSDN - Security Considerations: Element Behaviors," [Online]. Available:

https://msdn.microsoft.com/en-us/library/aa753685.aspx.

[11] IBM Corporation, "Microsoft Internet Explorer Vector Markup Language Exploit Alert," [Online]. Available:

http://www.iss.net/threats/237.html.

[12] MITRE, "CVE-2010-3971," [Online]. Available: http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-

2010-3971.

[13] Microsoft, "MSDN - Windows Imaging Component," [Online]. Available: https://msdn.microsoft.com/en-

us/library/windows/desktop/ee719902.aspx.

[14] MITRE, "CVE-2005-4560," [Online]. Available: http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-

2005-4560.

UNDERSTANDING THE ATTACK SURFACE AND ATTACK RESILIENCE OF PROJECT SPARTAN’S (EDGE)
NEW EDGEHTML RENDERING ENGINE > BIBLIOGRAPHY

IBM Security | ©2015 IBM Corporation

|25

[15] MITRE, "CVE-2008-2249," [Online]. Available: http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-

2008-2249.

[16] MITRE, "CVE-2008-1083," [Online]. Available: http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-

2008-1083.

[17] Microsoft, "MSDN - Microsoft Media Foundation," [Online]. Available: https://msdn.microsoft.com/en-

us/library/windows/desktop/ms694197.aspx.

[18] Microsoft, "MSDN - Timed text tracks," [Online]. Available: https://msdn.microsoft.com/en-

us/library/bg123962.aspx.

[19] Microsoft, "MSDN - @font-face rule," [Online]. Available: https://msdn.microsoft.com/en-

us/library/ms530757.aspx.

[20] M. Jurczyk, "One font vulnerability to rule them all," [Online]. Available:

http://j00ru.vexillium.org/dump/recon2015.pdf.

[21] MITRE, "CVE-2011-3402," [Online]. Available: https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-

3402.

[22] J. Wolf, "CVE-2011-3402 - Windows Kernel TrueType Font Engine Vulnerability," [Online]. Available:

https://cansecwest.com/slides/2013/Analysis%20of%20a%20Windows%20Kernel%20Vuln.pdf.

[23] Microsoft, "MSDN - DirectWrite," [Online]. Available: https://msdn.microsoft.com/en-

us/library/windows/desktop/dd368038.aspx.

[24] B. Cavenah, "MS09-029: Vulnerabilities in the EOT parsing engine," [Online]. Available:

http://blogs.technet.com/b/srd/archive/2009/07/14/ms09-029-vulnerabilities-in-the-eot-parsing-

engine.aspx.

[25] Microsoft, "MSDN - Basic DOM Reference," [Online]. Available: https://msdn.microsoft.com/en-

us/library/hh771916.aspx.

[26] M. V. Yason, "Use-after-frees: That pointer may be pointing to something bad," [Online]. Available:

http://securityintelligence.com/use-after-frees-that-pointer-may-be-pointing-to-something-bad.

[27] A. Pelletier, "Advanced Exploitation of Internet Explorer Heap Overflow (Pwn2Own 2012 Exploit)," [Online].

Available:

http://www.vupen.com/blog/20120710.Advanced_Exploitation_of_Internet_Explorer_HeapOv_CVE-2012-

1876.php.

[28] I. Fratric, "Exploiting Internet Explorer 11 64-bit on Windows 8.1 Preview," [Online]. Available:

http://ifsec.blogspot.com/2013/11/exploiting-internet-explorer-11-64-bit.html.

[29] Microsoft, "Internet Explorer Web Platform Status and Roadmap - status.modern.IE," [Online]. Available:

UNDERSTANDING THE ATTACK SURFACE AND ATTACK RESILIENCE OF PROJECT SPARTAN’S (EDGE)
NEW EDGEHTML RENDERING ENGINE > BIBLIOGRAPHY

IBM Security | ©2015 IBM Corporation

|26

https://status.modern.ie/.

[30] PDF API Team, "Introduction to PDF APIs in Windows 8.1," [Online]. Available:

http://blogs.technet.com/b/pdf_api_blog/archive/2013/11/11/introduction-to-pdf-apis-in-windows-8-1.aspx.

[31] F. Falcón, "Exploiting CVE-2015-0311, Part II: Bypassing Control Flow Guard on Windows 8.1 Update 3,"

[Online]. Available: https://blog.coresecurity.com/2015/03/25/exploiting-cve-2015-0311-part-ii-bypassing-

control-flow-guard-on-windows-8-1-update-3/.

[32] H. Li , "Smashing the Heap with Vector: Advanced Exploitation Technique in Recent Flash Zero-day Attack,"

[Online]. Available: https://sites.google.com/site/zerodayresearch/smashing_the_heap_with_vector_Li.pdf.

[33] D. Kindlund, X. Chen, M. Scott, D. Caselden and N. Moran, "Operation SnowMan: DeputyDog Actor

Compromises US Veterans of Foreign Wars Website," [Online]. Available:

https://www.fireeye.com/blog/threat-research/2014/02/operation-snowman-deputydog-actor-

compromises-us-veterans-of-foreign-wars-website.html.

[34] M. Brand and C. Evans, "Significant Flash exploit mitigations are live in v18.0.0.209," [Online]. Available:

http://googleprojectzero.blogspot.com/2015/07/significant-flash-exploit-mitigations_16.html.

[35] N. Waisman, "Understanding and bypassing Windows Heap Protection," [Online]. Available:

http://www.immunityinc.com/downloads/Heap_Singapore_Jun_2007.pdf.

[36] B. Moore, "Heaps About Heaps," [Online]. Available:

https://www.insomniasec.com/downloads/publications/Heaps_About_Heaps.ppt.

[37] B. Hawkes, "Attacking the Vista Heap," [Online]. Available: http://www.blackhat.com/presentations/bh-usa-

08/Hawkes/BH_US_08_Hawkes_Attacking_Vista_Heap.pdf.

[38] J. McDonald and C. Valasek, "Practical Windows XP/2003 Heap Exploitation," [Online]. Available:

https://www.blackhat.com/presentations/bh-usa-09/MCDONALD/BHUSA09-McDonald-WindowsHeap-

PAPER.pdf.

[39] C. Valasek, "Understanding the Low Fragmentation Heap," [Online]. Available:

http://illmatics.com/Understanding_the_LFH.pdf.

[40] C. Valasek and T. Mandt, "Windows 8 Heap Internals," [Online]. Available:

http://illmatics.com/Windows%208%20Heap%20Internals.pdf.

[41] Y. Chen, "The Birth of a Complete IE11 Exploit Under the New Exploit Mitigations," [Online]. Available:

https://syscan.org/index.php/download/get/aef11ba81927bf9aa02530bab85e303a/SyScan15%20Yuki%20Ch

en%20-

%20The%20Birth%20of%20a%20Complete%20IE11%20Exploit%20Under%20the%20New%20Exploit%20Mitig

ations.pdf.

[42] K. Johnson and M. Miller, "Exploit Mitigation Improvements in Windows 8," [Online]. Available:

UNDERSTANDING THE ATTACK SURFACE AND ATTACK RESILIENCE OF PROJECT SPARTAN’S (EDGE)
NEW EDGEHTML RENDERING ENGINE > BIBLIOGRAPHY

IBM Security | ©2015 IBM Corporation

|27

http://media.blackhat.com/bh-us-12/Briefings/M_Miller/BH_US_12_Miller_Exploit_Mitigation_Slides.pdf.

[43] M. Miller, "Software defense: mitigating common exploitation techniques," [Online]. Available:

http://blogs.technet.com/b/srd/archive/2013/12/11/software-defense-mitigating-common-exploitation-

techniques.aspx.

[44] M. Miller and W. Peteroy, "Mitigating the LdrHotPatchRoutine DEP/ASLR bypass with MS13-063," [Online].

Available: http://blogs.technet.com/b/srd/archive/2013/08/12/mitigating-the-ldrhotpatchroutine-dep-aslr-

bypass-with-ms13-063.aspx.

[45] F. Serna, "The info leak era on software exploitation," [Online]. Available: https://media.blackhat.com/bh-us-

12/Briefings/Serna/BH_US_12_Serna_Leak_Era_Slides.pdf.

[46] M. V. Yason, "Diving Into IE10's Enhanced Protected Mode Sandbox," [Online]. Available:

https://www.blackhat.com/docs/asia-14/materials/Yason/WP-Asia-14-Yason-Diving-Into-IE10s-Enhanced-

Protected-Mode-Sandbox.pdf.

[47] T. Ormandy and J. Tinnes, "There's a party at ring0 and you're invited," [Online]. Available:

https://www.cr0.org/paper/to-jt-party-at-ring0.pdf.

[48] Nils and J. Butler, "MWR Labs Pwn2Own 2013 Write-up - Kernel Exploit," [Online]. Available:

https://labs.mwrinfosecurity.com/blog/2013/09/06/mwr-labs-pwn2own-2013-write-up---kernel-exploit/.

[49] J. Forshaw, "Digging for Sandbox Escapes - Finding sandbox breakouts in Internet Explorer," [Online].

Available: https://www.blackhat.com/docs/us-14/materials/us-14-Forshaw-Digging-For_IE11-Sandbox-

Escapes.pdf.

[50] P. Sabanal and M. V. Yason, "Digging Deep Into The Flash Sandboxes," [Online]. Available:

https://media.blackhat.com/bh-us-12/Briefings/Sabanal/BH_US_12_Sabanal_Digging_Deep_WP.pdf.

[51] Microsoft, "MSDN - /GS (Buffer Security Check)," [Online]. Available: https://msdn.microsoft.com/en-

us/library/8dbf701c.aspx.

[52] A. Sotirov and M. Dowd, "Bypassing Browser Memory Protections - Setting back browser security by 10

years," [Online]. Available: https://www.blackhat.com/presentations/bh-usa-08/Sotirov_Dowd/bh08-sotirov-

dowd.pdf.

[53] M. Miller, T. Burrell and M. Howard, "Mitigating Software Vulnerabilities," [Online]. Available:

http://blogs.technet.com/b/srd/archive/2011/07/12/mitigating-software-vulnerabilities.aspx.

[54] C. Evans, "What is a "good" memory corruption vulnerability?," [Online]. Available:

http://googleprojectzero.blogspot.com/2015/06/what-is-good-memory-corruption.html.

[55] J. Hogg, "Visual Studio 2015 Preview: Work-in-Progress Security Feature," [Online]. Available:

http://blogs.msdn.com/b/vcblog/archive/2014/12/08/visual-studio-2015-preview-work-in-progress-security-

feature.aspx.

UNDERSTANDING THE ATTACK SURFACE AND ATTACK RESILIENCE OF PROJECT SPARTAN’S (EDGE)
NEW EDGEHTML RENDERING ENGINE > BIBLIOGRAPHY

IBM Security | ©2015 IBM Corporation

|28

[56] Microsoft, "MSDN - /guard (Enable Control Flow Guard)," [Online]. Available: https://msdn.microsoft.com/en-

us/library/dn919635.aspx.

[57] MJ0011, "Windows 10 Control Flow Guard Internals," [Online]. Available:

http://powerofcommunity.net/poc2014/mj0011.pdf.

[58] J. Tang, "Exploring Control Flow Guard in Windows 10," [Online]. Available: http://sjc1-te-

ftp.trendmicro.com/assets/wp/exploring-control-flow-guard-in-windows10.pdf.

[59] C. Cowan, "Microsoft Edge: Building a safer browser," [Online]. Available:

http://blogs.windows.com/msedgedev/2015/05/11/microsoft-edge-building-a-safer-browser/.

[60] M. V. Yason, "Understanding IE’s New Exploit Mitigations: The Memory Protector and the Isolated Heap,"

[Online]. Available: http://securityintelligence.com/understanding-ies-new-exploit-mitigations-the-memory-

protector-and-the-isolated-heap.

[61] A.-A. Hariri, S. Zuckerbraun and B. Gorenc, "Abusing Silent Mitigations: Understanding weaknesses within

Internet Explorer’s Isolated Heap and MemoryProtection," [Online]. Available:

http://h30499.www3.hp.com/hpeb/attachments/hpeb/off-by-on-software-security-blog/599/1/WP-Hariri-

Zuckerbraun-Gorenc-Abusing_Silent_Mitigations.pdf.

[62] @promised_lu, "New Exploit Mitigation In Internet Explorer," [Online]. Available:

http://hitcon.org/2014/downloads/P2_01_Keen%20Team%20-

%20New%20Exploit%20Mitigation%20In%20Internet%20Explorer.pdf.

[63] I. Fratric, "Dude, where’s my heap?," [Online]. Available:

http://googleprojectzero.blogspot.com/2015/06/dude-wheres-my-heap.html.

