
Own your Android! Yet Another Universal Root

Wen Xu1 Yubin Fu1

1Keen Team
xuwen.sjtu@gmail.com qoobee1993@gmail.com

Abstract
In recent years, to find a universal root solution for Android
becomes harder and harder due to rare vulnerabilities in the
Linux kernel base and also the exploit mitigations applied
on the devices by various vendors.

In this paper, we will present our universal root solu-
tion. The related vulnerability CVE-2015-3636, a typical
use-after-free bug in Linux kernel is discussed in detail. Ex-
ploiting such a use-after-free in Linux kernel is truly difficult
due to the separated allocation from the kernel allocator. We
will show how we leverage this kernel use-after-free bug to
achieve privilege promotion on most popular Android de-
vices on market which have a version not less than 4.3, in-
cluding the first 64bit root case in the world. In short, we
will present a generic way to exploit use-after-free vulner-
abilities in Linux kernel, which means one exploit applies
to devices of all brands. All the current mitigations in the
kernel like PXN are circumvented by this approach. And
most importantly our unique and undocumented exploita-
tion technique targeting kernel use-after-free bugs features
stability and accuracy.

Bug analysis
The vulnerability is founded by Wen Xu and wushi of Keen
Team with the help of our custom improved Trinity, which is
a syscall fuzzer originally applied on PC Linux. We migrate
it to ARM Linux for Android. The vulnerability is fixed in
the latest Linux kernel source and assigned a CVE number,
CVE-2015-3636.

The vulnerability lies in Linux kernel base part, which
ensures that it can be used to do a general root. When
one tries to call connect through a socket file descriptor,
which is created by socket(AF INET, SOCK DGRAM, IP-
PROTO ICMP) before, the kernel code shown in Figure 1
handles the user’s request.

And if sa family == AF UNSPEC then the kernel calls
the disconnect process specified by the protocol type. For
a PING (ICMP) socket, the disconnect routine is shown in
Figure 2.

We can see that the kernel finally calls sk prot unhash(sk)

Figure 1: inet dgram connect

Figure 2: udp connect

which is ping unhash() in Figure 3 for a PING (ICMP)
socket.

As shown in the source, if sock object (ICMP socket) sk
is hashed, then it will try to delete its sk nulls node stored in
a hlist in the kernel (Figure 4).

We can figure out that after n (sk->sk nulls node) being
deleted, the value of n->pprev becomes LIST POISON2,
which is defined as a constant value. Practically it is
0x200200 both in Android 32bit kernel and 64bit kernel.



Figure 3: ping unhash

Figure 4: hlist nulls del

This virtual address can be mapped by the attacker in the
user space.

However something amazing happens when calling con-
nect a second time. After the socket object is deleted from
hlist, it still remains hashed since whether it is hashed or not
depends on sk->sk node which is not changed during the
first connection.

Hence the kernel goes into that if branch, and then tries to
delete sk->sk nulls node again. When the kernel executes
*pprev = next, it will crash because the current value of
pprev is 0x200200, and if this virtual address is not mapped
in the user space, then a critical page fault will happen in the
kernel which leads to a panic. 0x200200 should be mapped
in the user space before the second ICMP socket connection
to avoid crashes. However, such a local DoS is not the whole
story of this vulnerability.

Taking a brief look at the codes (Figure 5) after
hlist nulls del is called, one could find that sock put(sk) is
really suspicious.

Every time the kernel goes into that if branch, it minuses
the reference count of the sock object in the kernel by one.
And most importantly, it will check whether the reference

Figure 5: sock put

count becomes zero or not. If it is zero, the sock object is
going to be freed. That means if one tries to connect such a
sock object for a second time, the reference count of it will
come to zero, thus the kernel will free it. But the file de-
scriptor handled in the user program is still related with the
corresponding sock object in the kernel, which is a typical
use-after-free vulnerability.

Proof-of-Concept
Here is a piece of PoC of CVE-2015-3636:
int sockfd = socket(AF_INET,

SOCK_DGRAM, IPPROTO_ICMP);
struct sockaddr addr

= { .sa_family = AF_INET };
int ret = connect(sockfd, &addr,

sizeof(addr));
struct sockaddr _addr

= { .sa_family = AF_UNSPEC };
ret = connect(sockfd, &_addr, sizeof(_addr));
ret = connect(sockfd, &_addr, sizeof(_addr));

connect must be called first with a AF INET sa family to
make sk (that vulnerable sock object) hashed in the kernel,
otherwise that if cannot be reached at all.

Notice that this PoC only takes effect on Android devices.
The range of the group id which is permitted to create a
PING socket is set in /proc/sys/net/ipv4/ping group range.
On Android devices, a common user has the privilege to cre-
ate PING sockets by default while on PC Linux, normally
nobody has the privilege to create them.

Exploitation
Goal
Till now we have figured out this typical use-after-free vul-
nerability and a dangling file descriptor in the user space
pointing to the PING sock object in the kernel can be
achieved by the attacker. Next, we will present our approach
to overwrite the sock object and call something to reuse the
PING sock object. After that we are able to execute arbitrary
code in the kernel and finally achieve privilege escalation on
the Android device.

In practical, we use the close function of the socket object.
When close(sockfd) is called, the kernel finally goes into the
codes shown in Figure 6.

The kernel calls inet release to release the socket object
in the kernel related with the sockfd. And at the bottom of
this function, it calls sk->sk prot->close().

In fact, sk prot is a member of struct sk type, which points
to a certain amount of function pointers. What function



Figure 6: inet release

pointers that sk has depends on its protocol type, including
TCP, UDP, PING and so on.

If the content of the freed PING sock object sk is refilled
by the data which is fully controlled by us, then sk->sk prot
is surly under our control. It can be specified as a virtual ad-
dress in the user space. Then the address of function pointer
sk->sk prot->close is under our control. If PAN (Privileged
Access Never) is not applied in the kernel, then we can fi-
nally control the PC register in the kernel context. As a
matter of fact, PAN (Privileged Access Never) has not been
adopted by any current Android device on market, so here
we do not take it into consideration.

Generally speaking, two important factors are considered
in our solution. One factor is that the vulnerable sock object
should be refilled stably and reliably and the other one is that
the re-filling content should be fully controlled by us.

Re-filling
The most difficult thing in this root exploit is to overwrite the
freed sock object with the proper data we want, and also we
should ensure that the whole process is stable and reliable
due to the user experience of a successful root tool for those
Android users. And for sure the unique and undocumented
exploitation technique we used to do a reliable and accurate
re-filling of the freed object is the highlight of our work.

Considering the heap management mechanism adopted
by the Linux kernel, it currently takes the SLAB/SLUB al-
locator for the efficient allocation of the kernel object [3].

Different SLABs created for different objects in the ker-
nel, and there is no doubt that a PING cache is created for
our vulnerable PING sock objects. Such separations can also
be widely seen in user programs, like Isolated Heap for In-
ternet Explorer on Windows and PartitionAlloc for Chrome,

etc. When facing this in the kernel, it is not easy for the at-
tacker to use the object of type A to occupy an area which
was once for the object of a different type B.

Another factor which brings uncertainty comes from the
multi-threading support by the Linux kernel. It is a common
scene that hundreds of tasks run on a single system (An-
droid device) concurrently, and the execution of each task
may cause the allocation or de-allocation of objects in the
kernel, which will finally influence the kernel heap layout.
However, a predictable heap layout is so important in a use-
after-free exploit as known.

Things are not too bad if the system supports the SLUB
allocator, which is true for most Android devices on market.
If the vulnerable object like PING sock has a size of 512
or 1024, then re-filling is much easier. Because the SLUB
allocator tends to put the objects of the same size into one
SLAB cache, which means that if the vulnerable objects size
is 512, then it will be placed into one SLAB with some other
kmalloc-512 objects. Thus the content of the freed vulner-
able object under this circumstance can be fully controlled
by leveraging malloc-512 objects. In fact, the kmalloc-512
object is able to be created in the user program. One way
is to use sendmmsg. During the execution of sendmmsg, the
kernel will use kmalloc to allocate a buffer in the kernel to
store our transfer data packet temporarily. The size of the
transfer data can be specified by us and it should be set to
512 in this situation. And the content of the buffer can also
be fully controlled by us since it is just the data we want to
transfer through sendmmsg. The whole process is shown in
Figure 7.

Figure 7: Content control by sendmmsg

Notice that this solution is an excellent one for re-filling
use-after-free objects in the kernel, but however it has a se-
rious limitation: the vulnerable object should have a size
which a common-use SLAB has. In other words, it must
have a size which can be allocated by kmalloc in the kernel.
For example on some Android devices, the PING sock ob-
ject has a size of 576, which is between 512 and 1024. Then
the solution above is no longer valid.

Theoretically it is possible to use kmalloc-size objects to
re-fill any other objects in the kernel. And it takes advan-
tage of the principal that when a whole SLAB is free then
it may be recycled by the kernel for future use. Based on
this, we can first spray our PING sock objects to occupy
some SLABs where no other kernel objects are stored. Af-
ter that we try to free all of them by triggering the use-after-
free vulnerability. Several completely free SLABs are gen-
erated. Then we allocate a certain amount of transfer buffers
through sendmmsg, which all have a size of 512. Chances
are that these buffers occupy the SLABs once storing PING



sock objects and the re-filling is done (Figure 8). However,
this approach is very hard to control and has huge uncer-
tainty. We do not exactly know which transfer buffer has
been stored in the SLAB where PING sock objects were
stored before, and that makes the whole root exploit not sta-
ble and reliable.

Figure 8: Mis-alignment

Furthermore, the sizes of PING sock objects on different
devices are diverse. If we need a generic applied solution to
all the Android devices, then it should not rely on the sizes
of PING sock objects on these devices.

Here our tricky technique to achieve a stable re-filling on
the freed PING sock objects to exploit this vulnerability will
be presented. Notice that we do not care about the sizes of
PING sock objects on the device. This time, we do not even
use other kernel objects to do the re-filling work, but use
physmap instead.

The physmap in the kernel is once mentioned in [1]. It
is a large piece of memory in the kernel space and directly
maps the memory in the user space into the kernel space for
promoting the performance of the system.

That means we can spray data in the user space by repeat-
edly calling mmap and much of them will be directly appear
in the kernel space. Our intention is to use these user space
data to cover the freed PING sock object and several issues
are needed to be concerned about.

As show in Figure 9, we can see that in kernel space, the
physmap and the SLABs are normally located at different
places. The physmap begins at a relatively high location,
while the SLABs usually locate at a relatively low location.
In order to make them collide in the middle of the kernel
space, the first step we should do is to spray some other ker-
nel objects to push the kernel allocator to begin allocating
kernel objects at a higher place, which improves the possi-
bility of the memory reusing between the SLABs and the
physmap. This step is called lifting. In our root exploit tar-
geting CVE-2015-3636, we just take the PING sock object
itself for lifting, since it is easy to allocate (by calling socket)
and de-allocate (by calling close) in the kernel.

After lifting (Figure 10), a certain amount of PING sock
objects are allocated, but this time they are seen as the vul-
nerable ones. Due to the previous lifting, these PING sock
objects will be located at a higher place in the kernel space.

During the later de-allocation, we normally free these
PING sock objects for lifting but for these targeting vulner-

Figure 9: Physmap

Figure 10: Memory collision with Physmap after lifting up

able ones, we release them by triggering the vulnerability
which means making two connections through one PING
socket.

Then we repeatedly call mmap and fill the mapped area in
the user space with the data we want. The spraying data is
grouped in 8 dwords. Every 8 dwords is the same.

One big problem is that how we can know it is the time to
stop spraying when our targeting vulnerable PING sock ob-
jects have already been covered by the data in the physmap.
To solve this issue, among our 8 dwords, besides some key
values to control the flow and avoid kernel crashes on the
road to the final control, the specific entry is filled with the
predefined magic value.

Every time we finish spraying a certain amount of data,



we call ioctl(sockfd, SIOCGSTAMPNS, (struct timespec*))
on these targeting vulnerable PING sock objects.

Figure 11: Information leak

As seen in Figure 11, it reads out the member sk stamp of
sk. Thus by calling ioctl with the specific arguments, we can
successfully leak out a dword value at a fixed offset inside
the PING sock object. We can compare this value with the
magic value we previously filled in, and then get to know
whether the covering is done or not. This step ensures the
reliability of our root exploit.

When we have already got the exactly covered PING sock
object, we call close on the dangling file descriptor of it. As
described above, the kernel will eventually call sk->sk prot-
>close and now sk prot is already under our control, and
its address is pointing to a fully controlled space in the user
land, thus the function pointer of close is controlled. And
finally we control the value of the PC register in the kernel
context.

Notice that our final re-filling solution does not depend on
any specific configuration or details of kernels on these An-
droid devices, it just leverages an inherent directly mapped
area in the Linux kernel space to achieve our goal.

64bit devices
Our root exploitation mentioned above is also applied to An-
droid 64bit devices. There are mainly two reasons:

A. The value of LIST POISON2 on Android 64bit devices
remains to be 0x200200, which is a mappable virtual ad-
dress in the user space. For PC Linux 64bit, this value is
0xdead000000000000, which has 64bit size long and defi-
nitely cannot be mapped since it is even out of the range of
the virtual address space on 64bit system. And if this value
cannot be mapped, then the crash cannot be avoided when
we connect to the PING socket a second time.

B. The physmap is proved to be able to cover SLABs on
64bit devices in practical. In fact, the physmap in 64bit ker-
nel maps all the user space memory into the kernel so the
spraying also takes effect [1].

And eventually we manage to control the PC register in

the kernel of Android 64bit devices by the approach de-
scribed above.

ROOT
After we control the PC register in the kernel context, we
plan to do code execution and achieve root privilege on the
devices, which is always our final goal. The basic approach
is to rewrite the addr limit of current task to 0 and thus get
arbitrary read/write in the kernel space [2]. After that we
rewrite some credential structures in the kernel to promote
our privilege.

For these devices which do not have PXN on, things are
very easy. We just set the close function pointer to a vir-
tual address in the user space, and place a piece of shellcode
there, which is used to change the addr limit of the current
task to 0.

For these devices which have PXN on, ret2usr attack [4]
is no longer effective. Somehow we have to conduct ROP
[5] to achieve our goal. However in order to design a stable
exploit, we use kernel JOP (Jump-Oriented Programming)
[6] to rewrite the addr limit of the current task to 0 instead
of ROP.

1) Referred registers during JOP
During JOP, many registers may change their original val-

ues. In fact, their original values are probably lost if we do
not care about them. In our root exploit, we call close on
the dangling socket file descriptor and thus go into the JOP
chain placed in the user land. During the whole execution
of our JOP chain, we only corrupt the values of r0, r1, r2,
r3, r4 and r5. Changing the value of any other register will
lead to unexpected kernel crashes later. Some key registers
values are required to remain the same.

2) Keeping the value of SP
The main reason we choose JOP instead ROP is that in

ROP usually we need to do stack pivot, which means pivot-
ing the kernel stack into the user space, and such behaviors
bring uncertainty since the SP value is corrupted for a while
during the exploit. Register SP is truly critical during the ex-
ecution of the whole kernel and it is not an advisable choice
to corrupt its value at anytime.

3) Avoiding data corruption on the stack
We should avoid such gadgets during JOP like

str x2, [sp, 0x20] # 32bit
str x2, [x29, 0x20] # 64bit

Register x29 usually stores the SP value in 64bit Linux
kernel. These gadgets corrupt the data on the stack, and thus
influence the future execution flow of the kernel. Such be-
havior also brings uncertainty and should be avoided.

4) Exploring core gadgets
Our JOP chain mainly has two tasks. The first task is to

leak out the SP value from the kernel, and then we can get
the address of task struct of the current task from the SP
value [2]. The second task is to rewrite the addr limit of the
current task struct, which leads to an arbitrary read/write in



the kernel space. The core gadget we try to find out looks
like:
str x1, [x0, 0x14]
ldr x1, [x2, 0x10]
blr x1

Take this as an example. For leaking, the value of register
x0 should be a virtual address in the user space, then we can
read out the value of register x1, which should be the kernel
SP value. And we can return back from JOP by jumping
to the correct return address pointed by register x2, whose
value should also be an address in the user space.

For rewriting, the value of register x1 is 0, and the value
of x0 should be an address related with the address of
addr limit. And then we return back to the original return
address.

Totally there are two steps, leaking and rewriting. And
we try to find out such gadgets in the boot image of various
devices which have PXN on based on the rules described
above.

5) Leaking tricks
A. On 64bit Android devices, register x29 stores the value

of SP of the kernel as usual. Thus such instructions can be
used to get the kernel stack address:
mov x0, sp # 32bit
mov x0, x29 # 64bit

B. For the 64bit devices, the high 32 bits of a kernel virtual
address remain the same. So to leak out the low 32 bits of
the kernel stack address is enough for our attack.
str w2, [x4, 0x80]

6) Rewriting tricks
When it comes to some ROMs of these Android devices

on market, there exists a gadget in the image and we can
leverage it to achieve arbitrary address write in the kernel,
then things are done.

Otherwise we have two choices.
A. Direct way

mov x1, 0
str x1, [addr_limit]

B. Indirect way
mov x1, [user_space_address]
str x1, [addr_limit]

And sometimes we can also use
str w1, [addr_limit]

and write two times to set addr limit to 0.

Conclusion
In this paper, we present the details of CVE-2015-3636 and
how Keen Team leverages it to achieve universal root on
most popular Android devices (version>=4.3) on market.
We apply our exploitation techniques to root the 64bit de-
vices, which is the first case in the world as known. In
addition, through certain tricks about applying JOP in the
Android kernel, PXN can be fully bypassed reliably.

Acknowledgement
Thanks to wushi, the leader of Keen Team, for his great con-
tribution to CVE-2015-3636. And also thanks to James Fang
of Keen Team for his great contribution to the development
of our root solution. Thanks to Liang Chen, Siji Feng and
Peter Hlavaty of Keen Team for their inspirations on the idea
of this generic root exploit.

References
1. V. P. Kemerlis, M. Polychronakis, and A. D. Keromytis.
ret2dir: Rethinking kernel isolation. USENIX Security
Symposium, 2014.

2. Jon Oberheide, Dan Rosenberg. Stackjacking Your
Way to grsecurity/PaX Bypass. INFILTRATE 2011.

3. https://www.kernel.org/doc/Documentation/vm/slub.txt.
4. Vasileios P. Kemerlis, Georgios Portokalidis, and An-

gelos D. Keromytis. kGuard: Lightweight Kernel Protection
against Return-to-user Attacks. USENIX Security Sympo-
sium, 2012.

5. Marco Prandini and Marco Ramilli. Return-oriented
programming. Security and Privacy, IEEE, 2012.

6. Tyler Bletsch, Xuxian Jiang, Vince W. Freeh, Zhenkai
Liang. Jump-Oriented Programming: A New Class of Code-
Reuse Attack. Proceedings of the 6th ACM Symposium
on Information, Computer and Communications Security.
ACM, 2011.


