
ROPInjector: Using Return-
Oriented Programming for
Polymorphism and AV Evasion

G. Poulios, C. Ntantogian, C. Xenakis
{gpoulios, dadoyan, xenakis}@unipi.gr

Overview

• Return Oriented Programming (ROP) has been used in
the past explicitly for DEP evasion in software
exploitation scenarios.

• We propose a completely different use of ROP!
• We propose ROP as a polymorphic alternative to

achieve AV evasion!

+ 

1 PE 1 shellcode M different variations

ROPInjector

• Local infection of benign PE executables with well-known
alarming malicious code (i.e., shellcode)

Benign PE Malware shellcode

\xfc\xe8\x89\x00\x00\...

ROPInjector

Carrier PE

ROP’ed shellcode

Presenter
Presentation Notes
We have implemented a tool named ROPInjector.

Why ROP for AV evasion?

• Does not raise suspicious  Borrowed code (i.e., rop
gadgets) is of course benign. The only possible
detection footprint is the instructions (i.e., typically
push) that insert the addresses of the ROP gadgets
into the stack.

• Generic  ROP can be used to transform any given
malware shellcode to a ROP-based equivalent.

• Polymorphism  Use different ROP gadgets or use
same ROP gadgets found in different address

Presenter
Presentation Notes
nothing suspicious about pushing values on the stack

Challenges

1. The new resulting PE should evade antivirus detection

2. The benign PE should not be corrupted/damaged

3. The tool should be generic and completely automated

4. Should not require a writeable code section to mutate (i.e.,

execute ROP chain)

Challenges Accepted!

A quick historical overview

plain malware code string signatures
\x59\xE8\xFF\x6B\x5F\xFF\x6A\x0F\x59\xE8\xFF \x6B\x5F\xFF\x6A\x0F

A quick historical overview

plain malware code string signatures

simple obfuscation
(NOPs/dead-code in-between) regex signatures

\x59\xE8\xFF\x6B\x5F\x90\xFF\x90\x6A\x0F\x59\xE8 \x6B\x5F{\x90}*\xFF{\x90}*\x6A\x0F

variability

A quick historical overview

plain malware code string signatures

simple obfuscation
(NOPs/dead-code in-between) regex signatures

oligomorphism static analysis
(disassembly, CFGs)

\x6A\x0F\x59\xE8\0xFF \x6B\x5F**************

decoder encoded
payload

. . . PC PC if RWX and performs
then alarm

A quick historical overview

plain malware code string signatures

simple obfuscation
(NOPs/dead-code in-between) regex signatures

oligomorphism static analysis
(disassembly, CFGs)

self-modifying code
metamorphism

dynamic analysis
(emulation, sandboxing,
behavior-based signatures)

push eax
mov [esp-4],eax
sub esp,4

Presenter
Presentation Notes
Oligomorphism
requires a writeable code section in memory (W⊕X rule)
marked a priori as writable (very suspicious)
or at runtime, VirtualProtectEx() etc, (subj. to behavioral profiling)
encoding methods are simplistic and reversible
multiple passes to increase evasion rate
decoding routine is still subject to signature generation
Dynamic analysis and behavioral profiling
the most promising approach
time consuming
tricky to perform exhaustively for all the possible control flow paths

ROPInjector Steps

1. Shellcode analysis

2. Find ROP gadgets in PE

3. Transform shellcode to an equivalent ROP chain

4. Inject in PE missing ROP gadgets (if required)

5. Assemble ROP chain building code in PE

6. Patch the chain building code into the PE

STEP 1: Shellcode Analysis (1/3)

• The analysis of the shellcode aims to obtain various
information so that it can safely replace shellcode
instructions with gadgets

• In particular, for each instruction, ROPInjector likes to
know:
– what registers it reads, writes or sets
– what registers are free to modify
– its bitness (a mov al,X or a mov eax,X ?)
– whether it is a branch (jmp, conditional, ret, call)
– and if so, where it lands
– whether it is a privileged instruction (e.g. sysenter, iret)
– whether it contains a VA reference
– whether it uses indirect addressing mode (e.g. mov [edi+4],
esi)

STEP 1: Shellcode analysis (2/3)

• Scaled Index Byte (SIB) enables complex indirect
addressing modes
– e.g. mov [eax+8*edi+10], ecx

• We want to avoid SIBs in the shellcode because
they are:

– long: >3 bytes  unlikely to be found in gadgets
– rarely reusable
– reserve at least 2 registers

STEP 1: Shellcode analysis (3/3)

• ROPInjector performs a technique that we call
it Unrolling of SIBs to transform them into
simpler instructions

• With this technique we achieve
– increased chances of finding suitable gadgets
– less gadgets being injected

 mov eax, [ebx+ecx*2]

 mov eax, ecx
 sal eax, 1
 add eax, ebx
 mov eax, [eax]

• ecx is freed at this point
• shorter instructions
• reusable gadgets

(either found or injected)

STEP 2: Find ROP Gadgets in PE (1/2)

1. First find returns of type:
– ret(n) or

– pop regX
jmp regX or

– jmp regX
• used only if a “loader” gadget of the following form is also found:
 pop regX
 [any of the first 2 endings above]

2. Then search backwards for more candidate gadgets

Presenter
Presentation Notes
possible question:
Q: what do you do with stack-modifying instructions & un/conditional branches?
A: There are two options:
	a) encode unconditionals into “add/sub esp imm” and conditionals using “cmov”…
	b) or don’t encode them to ROP, and have them jump around ROP code (i.e. chain building instructions)
We did (b) in this version.

STEP 2: Find ROP Gadgets in PE (2/2)

• ROPInjector automatically resolves redundant
instructions in ROP gadgets, in order to avoid
errors during execution of ROP code

• Maximize reusability of ROP gadgets
• Avoid injecting unsafe ROP gadgets

– modify non-free registers
– are branches
– write to the stack or modify esp
– are privileged
– use indirect addressing mode

STEP 3: Transform shellcode to ROP chain

• First, we translate shellcode instructions to an
Intermediate Representation (IR).

• Next we translate ROP gadgets found in PE to
an IR.

• Finally, a mapping is performed between the
two IRs
– 1 to 1
– 1 to many

STEP 3: Intermediate Representation

 IR Type (20 in total) Semantics Eligible instructions

ADD_IMM regA += imm add r8/16/32, imm8/16/32
add (e)ax/al, imm8/16/32
xor r8/16/32, 0
cmp r8/16/32, 0
inc r8/16/32
test ra32, rb32 (with ra == rb)
test r8/16/32, 0xFF/FFFF/FFFFFFFF
test (e)ax/al, 0xFF/FFFF/FFFFFFFF
or ra32, rb32 (with ra == rb)

MOV_REG_IMM
.
.
.

mov regA, imm mov r8/16/32, imm8/16/32
imul r16/32, r16/32, 0
xor ra8/16/32, ra8/16/32
and r8/16/32, 0
and (e)ax/al, 0
or r8/16/32, 0xFF/FFFF/FFFFFFFF
or (e)ax/al, 0xFF/FFFF/FFFFFFFF

STEP 3: Mapping examples

• 1-1 mapping example
– Shellcode:

mov eax, 0

– Gadget in PE:
and eax, 0
ret

• 1-many mapping example
– Shellcode:

add eax, 2

– Gadget in PE:
inc eax
ret

 MOV_REG_IMM(eax, 0)

 MOV_REG_IMM(eax, 0)

 1 to 1
 IR
mapping

 ADD_IMM(eax, 2)

 ADD_IMM(eax, 1)

 1 to 2
 IR
mapping

STEP 4: Gadget Injection

• In some cases PE does not include the required ROP gadgets

• Simply injecting ROP gadgets would raise alarms using statistics
– Presence of successive ret instructions

• To this end, ROPInjector inserts ROP gadgets scattered, and in a

benign looking way to avoid alarms
– 0xCC caves in .text section of PEs (padding space left by the linker)
– Often preceded by a RET (due to function epilogue)

STEP 4: Gadget Injection

• Assuming missing gadget is mov ecx, eax and we find the following
0xCC cave:

 <other instructions>

epilogue:
 mov esp, ebp
 pop ebp
return:
 ret(n)
 CCCCCCCCCCCCCCCCCCCCCC

STEP 4: Gadget Injection

• Assuming missing gadget is mov ecx, eax and we find the following
0xCC cave:

 <other instructions>
 jmp epilogue
 mov ecx, eax
 jmp return
epilogue:
 mov esp, ebp
 pop ebp
return:
 ret(n)
 CCCCCCCC

STEP 4: Gadget Injection

• Assuming missing gadget is mov ecx, eax and we find the following
0xCC cave:

 <other instructions>
 jmp epilogue
 mov ecx, eax
 jmp return
epilogue:
 mov esp, ebp
 pop ebp
return:
 ret(n)
 CCCCCCCC

N
orm

al flow

STEP 4: Gadget Injection

• Assuming missing gadget is mov ecx, eax and we find the following
0xCC cave:

 <other instructions>
 jmp epilogue
 mov ecx, eax
 jmp return
epilogue:
 mov esp, ebp
 pop ebp
return:
 ret(n)
 CCCCCCCC

RO
P flow

N
orm

al flow

STEP 5 and 6: Assemble and patch the
ROP chain into PE

• In step 5 we insert the code that loads the ROP
chain onto the stack (mainly PUSH instructions)

• In step 6 we patch the new PE  ROPInjector
extends the .text section (instead of adding a new
one that would raise alarm) and then goes on to
repair all RVAs and relocations in the PE.

• ROPInjector includes two different methods to
pass control to the ROPed shellcode
– Run first
– Run last

Presenter
Presentation Notes
Step 6 is the process of correcting all references/pointers automatically by ROP INJECTOR

STEP 6: PE Patching (1/2)

.text

Before
injection

After
Injection

Section Header
(.text)

Section Header
(.data)

Section Header
(.rsrc)

NT Header

.data

.rsrc

.text

Section Header
(.text)

Section Header
(.data)

Section Header
(.rsrc)

NT Header

.data

.rsrc

NT header
checksum
recalculated

Presenter
Presentation Notes
And many more corrections	

STEP 6: PE Patching (2/2)

Section .text

[malware code]

jmp-back

jmp-to-malware

[replaced code]

NT Header

AddressOfEntryPoint

. . . (1)

(2)

(3)

Run first:

Section .text

[malware code]

jmp-to-malware

ExitProcess()

jmp-to-malware

Previous calls to
ExitProcess()

/ exit()

(very good anti-emulation results)

Run last:

Presenter
Presentation Notes
2 options to give control to malware

for option (1), we don’t modify addressOfEntryPoint to point directly to malware as we found that it is considered suspicious by some AVs.

Evaluation

• Implemented in native Win32 C
• 9 32bit executables

– firefox.exe, java.exe, AcroRd32.exe, cmd.exe, notepad++.exe and more
• Various combinations

– No patching at all
– ROP’ed shellcode and run last
– Intact shellcode passed control during exit (run last)
– ROP’ed shellcode and delayed execution (20 secs via Win32 Sleep())
– Intact shellcode

• 2 of the most popular payloads of MSF
– reverse TCP shell
– meterpreter reverse TCP

• VirusTotal
– at the time it employed 57 AVs

Evasion rate: reverse TCP shell

40%

50%

60%

70%

80%

90%

100%

AcroRd32.exe Acrobat.exe cmd.exe Rainmeter.exe firefox.exe java.exe wmplayer.exe nam.exe notepad++.exe

Ev
as

io
n

ra
tio

Original file ROP-Exit Exit ROP-d20 Shellcode

Evasion rate: meterpreter reverse TCP

40%

50%

60%

70%

80%

90%

100%

AcroRd32.exe Acrobat.exe cmd.exe Rainmeter.exe firefox.exe java.exe wmplayer.exe nam.exe notepad++.exe

Ev
as

io
n

ra
tio

Original file ROP-Exit Exit ROP-d20 Shellcode

Overall evasion results

• 100% most of the times
• 99.31% on average

10
0%

99
,3

1%

88
,9

9%

83
,7

1%

74
,3

3%

40%

50%

60%

70%

80%

90%

100%

Average evasion ratio

Ev
as

io
n

ra
tio

Original file ROP-Exit Exit ROP-d20 Shellcode

Presenter
Presentation Notes
Interesting to note that “Exit” case (i.e. without ROP) has also very good results

Black Hat Sound Bytes

• Current signature-based detection methods are no longer

effective
– we shown that by using ROP we can reduce the footprint to benign

stack modifying instructions

• Behavioral analysis is tough to perform exhaustively
– we shown how to easily bypass it by running right before process exit

• “Default distrust all” policy
– Checksums and certificates is the poor user’s last line of defense at the

moment

Presenter
Presentation Notes
Behavioral analysis is performed mostly during entry
best evasion rates come from “Exit” cases
impressive how easy to bypass

Delaying execution via Sleep() had absolutely no impact to behavioral analysis
probably being traced and cancelled during emulation (possibly to speed it up)

If added randomization/encryption capability, it will be too hard to detect
checksum/certify all PEs and “default distrust all” policy

	Slide Number 1
	Overview
	ROPInjector
	Why ROP for AV evasion?
	Challenges
	A quick historical overview
	A quick historical overview
	A quick historical overview
	A quick historical overview
	ROPInjector Steps
	STEP 1: Shellcode Analysis (1/3)
	STEP 1: Shellcode analysis (2/3)
	STEP 1: Shellcode analysis (3/3)
	STEP 2: Find ROP Gadgets in PE (1/2)
	STEP 2: Find ROP Gadgets in PE (2/2)
	STEP 3: Transform shellcode to ROP chain
	STEP 3: Intermediate Representation
	STEP 3: Mapping examples
	STEP 4: Gadget Injection
	STEP 4: Gadget Injection
	STEP 4: Gadget Injection
	STEP 4: Gadget Injection
	STEP 4: Gadget Injection
	STEP 5 and 6: Assemble and patch the ROP chain into PE
	STEP 6: PE Patching (1/2)
	STEP 6: PE Patching (2/2)
	Evaluation
	Evasion rate: reverse TCP shell
	Evasion rate: meterpreter reverse TCP
	Overall evasion results
	Black Hat Sound Bytes

