
On the Impact of Automating the IC Analysis Process

Olivier THOMAS
Texplained SARL

olivier@texplained.com

Dmitry Nedospasov
Technische Universität Berlin
dmitry@sec.t-labs.tu-berlin.de

Abstract
In the security analysis of hardware, invasive analysis
techniques are of particular interest because they are the
only class of attacks capable of defeating all known em-
bedded and software countermeasures. However, inva-
sive analysis techniques are often disregarded because it
is generally assumed that there is a substantial amount of
effort required to perform these attacks. This work in-
troduces and evaluates a new approach for the security
analysis of Integrated Circuits (ICs). These techniques
are based on years of development and experience re-
sulting in a suite of tools known as ARES (Automated
Reverse Engineering Software). Through substantial au-
tomation of the IC analysis process the amount of ef-
fort required can be significantly reduced. Additionally,
this work presents practical results for a modern secure
microcontroller. With ARES it was possible to identify
security-relevant signals across the device and develop
strategies to extract all the memories of the target device.
The amount of time required to conduct the study was re-
duced from several months to just a few days. Moreover,
ARES was capable of reproducing the device’s design
files, making it possible to outsource parts of the extrac-
tion to a professional lab at a low hourly rate.

1 Introduction

The security threats faced in the field by hardware are
very different from those faced by software. While soft-
ware can be readily patched, hardware generally requires
an entirely new revision of the device. As with other
areas of security, hardware security and Integrated Cir-
cuit (IC) security in particular have been defined by
threats that these devices face in the wild. The indus-
tries most famous for facing hardware level exploitation
is PayTV [4]. Since a broadcast medium is used to de-
liver content there is no communication back to broad-
caster. Hence, the security of the broadcaster’s system

is the security of the individual subscriber cards as the
broadcaster has no real way to detect clones that are in
the field. Similarly counterfeit peripherals, such as game
controllers and printer cartridges, threaten the profits of a
manufacturer selling genuine peripherals. In all of these
cases, the IC is a hardware trust anchor, storing the pro-
prietary algorithms and cryptographic secrets used for
authentication. Hence, a device clone that is able to emu-
late the behavior of a genuine device is indistinguishable
from the original.

Hardware security analysis techniques are generally
classified into three categories depending on the amount
of sample preparation required. As a result these classes
of analysis techniques also vary in the amount of effort
required to perform analysis. Depending on the target,
gauging the amount of effort that is actually required to
mount a successful attack in practice can be very diffi-
cult. The actual cost of the attack can be amortized across
many device instances, making the per device cost of the
attack relatively low, as is the case with counterfeit de-
vices. Moreover, the amount of effort required to per-
form the attack can also greatly be reduced through the
automation of the analysis process.

Academic researchers as well as the security certifi-
cation bodies tend to focus on so-called non-invasive
and semi-invasive analysis techniques. Non-invasive
techniques are particularly attractive as they require
no sample preparation and very little equipment be-
yond standard test and measurement equipment that
is readily available in every university electronics lab.
Non-invasive attacks include side-channel analysis tech-
niques, as well as fault injection techniques, such as
clock and voltage glitching [3, 7]. For non-invasive anal-
ysis it is also entirely possible to instrument testing dur-
ing development to make any practical non-invasive at-
tacks infeasible. While non-invasive attacks focus on the
security of the entire system, semi-invasive analysis tech-
niques are substantially more powerful as they offer a
degree of spatial selectivity once the device is opened.

1



This makes it possible to target only particular areas of
the device, which makes it possible to mitigate certain
system-level countermeasures that prevent non-invasive
attacks. Nevertheless, semi-invasive attacks also require
synchronization with the target, which can be difficult to
realize in practice [14].

Certification standards such as Common Criteria de-
fine a considerable suite of non- and semi-invasive tests
that must be performed during the certification process.
As a result, new devices that receive one of the high-
est Evaluation Assurance Levels (EALs) have undergone
extensive testing against non- and semi-invasive attacks
before entering the field. The situation is very different
for fully-invasive attacks. Fully-invasive attacks are con-
sidered to be attacks that physically manipulate the un-
derlying circuit and are particularly difficult to prevent.
These attacks range from attacks where data is manipu-
lated on during runtime on a device’s internal data bus, to
permanent physical modification of the circuit [5, 6]. Be-
cause fully-invasive analysis techniques target the under-
lying circuit, an understanding of the underlying circuit
is required. For this reason Common Criteria defines re-
quirements for trusted parties during manufacturing, as
well as additional requirements pertaining to the confi-
dentiality of designs and design files.

Nevertheless, it is possible to perform black-box fully-
invasive analysis of secure devices as well. Generally,
the first step in this case is to gain an understanding about
the underlying design. For example, if the device uti-
lizes an unencrypted Read Only Memory (ROM) then
the firmware of the device can be directly extracted from
optical images of the ROM. For this reason manufactur-
ers have shifted to storing secrets such as device keys
in other non-volatile memories such as EEPROM and
Flash, requiring attackers to extract secrets at runtime.
Without access to documentation identifying areas of the
device with access to this additional information requires
the attacker to partially or fully reverse-engineer the IC.
However, once elements of the CPU architecture have
been found, the attacker is capable of mounting a suc-
cessful attack by modifying the control flow of the CPU
by manipulating the data directly on the data bus [6].
With the firmware and the contents of the non-volatile
memories it is feasible to produce a counterfeit device
capable of emulating the original.

To prevent such attacks outright, manufacturers be-
gan to introduce something known as Custom Hardware
Functions (CHFs). CHFs implement parts of the manu-
facturer’s proprietary algorithms as a logical circuit at the
transistor level versus at a hardware-level alone. CHFs
are commonly used to implement cryptographic algo-
rithms as coprocessors so that the device firmware no
longer must contain any proprietary data. An attacker
faced with such a device is then forced to fully reverse-

engineer the cryptographic circuit at a transistor level [8].
Moreover, modern process geometries are making such
attacks increasingly inefficient and infeasible in practice.
Optical imaging of the circuit is no longer sufficient to
reliably resolve individual signals on the device. With
insufficient resolution it is impossible to fully resolve the
individual gates, but also near impossible to reliably trace
signals through the circuit [12].

This work introduces the techniques necessary for re-
liably analyzing modern security ICs. The techniques are
not limited by the geometries of modern processes. Fur-
thermore, they are capable of reliably reconstructing the
underlying logical circuit, making it possible to identify,
analyze and emulate circuits containing CHFs.

The main contributions of this work are the following:

1. The deprocessing and imaging techniques neces-
sary for automated extraction of modern chip fea-
tures. Based on approximately 10 years of design-
ing automated IC analysis tools, we present the for-
mula that we have found to be the most effective.

2. The ARES (Automated Reverse Engineering Soft-
ware) analysis suite. ARES is a suite of tools that
were developed over the years to perform IC anal-
ysis in an automated fashion. Although ARES was
used to analyze the target device, any software with
the capabilities of ARES should be able to produce
similar results. Specifically, ARES is capable of ex-
tracting all the relevant features of the circuit, re-
constructing the netlist of the device and tracing
security-relevant signals in automated manner.

3. A study of a secure microcontroller that remains un-
defeated in the field. This microcontroller imple-
ments many modern countermeasures against anal-
ysis. This device employs additional protection lay-
ers (shields), utilizes encrypted embedded memo-
ries and includes CHFs in the design. With ARES
we were able to identify the CPU architecture of the
target, identify the instruction registers for extrac-
tion of the device’s flash and identify the data buses
used for SRAM and ROM as well as the encryp-
tion functions. ARES was also capable of produc-
ing a GDS2 file, which would make it possible to
outsource the process of invasive microprobing to a
professional lab at a low hourly rate.

4. A comparison against state-of-the-art techniques.
We provide an overview of the amount of effort that
would be required to develop ARES as well as how
much effort is required to analyze a target.

The rest of this work is structured as follows: Sec-
tion 2 presents prior research in the area of security anal-
ysis of ICs. Next, the requirements for deprocessing and

2



(a) Polysilicon Layer (b) Metal 1 Layer

(c) Metal 2 Layer (d) Metal 3 Layer

Figure 1: SEM Images of the different layers of the IC stack. The material contrast within the images allows for
reconstruction of the circuit in an automated fashion. The contacts (white), polysilicon transistor gates (grey), as well
as the dopant regions (darker grey), can be clearly differentiated from the silicon substrate (black) in the image of the
polysilicon layer, see Figure 1(a). The vias going down to the polysilcion layer (white) and the removed metal lines
(black) can be clearly differentiated form the surrounding passivation (dark grey) in the image of the metal 1 layer, see
Figure 1(b). The removed metal interconnects (black), vias (white) can be clearly differentiated from the passivation
on the interconnect layers, see Figures 1(c) and 1(d).

an introduction to the ARES analysis suite as well as the
workflow are presented in Section 3. Section 4 presents a
study of a secure microcontroller that implements many
modern countermeasures against invasive analysis. Fi-
nally, a comparison in terms of effort as well as the im-
plications of this research are presented in Section 5.

2 Related Work

As semiconductor technologies evolve, so do the anal-
ysis techniques. The Failure Analysis (FA) industry is
responsible for coping with the challenges posed by the
production of the latest generation of semiconductor de-
vices. Failure analysis equipment is developed in con-
junction with the latest generation of process technolo-
gies to make post-production testing and verification pos-

sible. Similarly, the actual techniques used in failure
analysis were developed as a means of identifying and
diagnosing manufacturing errors in new processes [10].

Security analysis techniques for ICs have evolved over
the years and can be adapted for modern processes.
For invasive analysis destructive delayering and subse-
quent imaging of the device layers is generally necessary.
These steps help an attacker to understand the underly-
ing circuitry, identify the memories and understand the
overall architecture. If the firmware is within the ROM
and the ROM is unencrypted, the firmware can be ex-
tracted directly from the optical images of the device [6].
However, if the secrets are embedded in another mem-
ory or if the cryptographic algorithm is implemented in
the form of a CHF within the device’s logic, then the at-
tacker is forced to study the optical scans of the IC. In

3



(a) Source Image (b) Detected Interconnects

Figure 2: SEM image of the Metal 3 layer that has been corrected for distortion, see Figure 2(a). The features detected
by the ARES analysis suite are visible in the image with the extracted features, see Figure 2(b).

the case of invasive microprobing, identifying the data
path from the program memory to the instruction reg-
isters within the CPU core is sufficient. However, with
proprietary cryptographic functions, reverse-engineering
and reconstructing the logical function from the logical
gates is necessary [8].

Automated reverse-engineering tools have been intro-
duced in the past, the most prominent of which is de-
gate [1]. Most works to date utilize optical images for
performing destructive delayering and imaging of ICs.
However, the smallest geometries within any process are
the transistor gates of the cells. Hence, such tools are not
capable of reliably resolve the cells of the design. Opti-
cal images also lack the material contrast, which means
that such tools are very resource intensive. The material
contrast of SEM images makes it possible to reconstruct
the device as a set of features instead of a pixel matrix,
see Section 3.

One of the most important techniques for fully-
invasive microprobing is known as memory linearization
or Linear Code Extraction (LCE). In this technique the
attacker manipulates the control flow of the execution by
manipulating the opcodes directly on the device’s data
bus. If branching is prevented, the microcontroller’s pro-
gram counter continues to increment the address linearly,
allowing the attacker to observe the entire contents of the
device’s firmware on the data bus [2]. The signals on the
data bus can be set to static values by using a Focused
Ion Beam (FIB) to connect them to one of the supply
rails (VDD or GND). Alternatively the control flow can

be manipulated dynamically, by driving the signal on the
bus using a custom probing needle buffer/driver. Most
importantly, since embedded memories are encrypted on
modern secure microcontrollers, an attacker who suc-
ceeds in isolating the instruction registers will be able
to manipulate the control flow even if the data is en-
crypted [9, 12]. Because CPUs are incapable of execut-
ing encrypted data, the data must first be deciphered be-
fore it reaches the instruction registers [5].

3 Approach

This section describes the criteria that are necessary for
producing SEM images for automated feature detection.
Additionally this describes the ARES analysis suite that
is used in the analysis of the target in Section 4. ARES
was developed over the years to determine what is possi-
ble with automated analysis. However, any software with
the capabilities of ARES should produce similar results.

3.1 Sample Preparation and SEM Imaging
For the reliable automation of the IC analysis process,
high-quality images of the IC are required. To date, the
tool of choice has been optical imagery using confocal
microscopy [6]. Confocal images have the advantage of
preserving depth information and making it possible to
observe multiple layers simultaneously. However, multi-
ple visible layers also make automation more difficult.
Hence, the technology of choice for imaging modern

4



(a) Source Image (b) Detected Interconnects (c) Detected Interconnects

Figure 3: SEM images of the polysilicon and metal 1 layer of a NOR gate, see Figures 3(a) and 3(b). Through a semi-
automated process, the entire cell library of a device can be reconstructed with ARES. The resulting representation of
the gate within the database of ARES is also presented, see Figure 3(c).

planerized processes with small geometries are Scanning
Electron Microscopes (SEMs).

A SEM works by scanning an electron beam across
the device’s surface and measuring the current detected
by backscatter electron detectors. SEMs are commonly
used in material sciences as both topography and ma-
terial contrast are visible in the resulting images. This
also implies that SEMs are capable of imaging differ-
ences in the dopant layers of the IC [11]. In order to
produce SEM images that can be reliably detected in an
automated fashion, particular care has to be taken when
preparing the samples for imaging. Sample preparation
is a mix of mechanical polishing, Reactive Ion Etching
(RIE), and wet chemicals are used to prepare the sam-
ple for the SEM. With modern technology nodes, opti-
cal imaging of cell library is no longer possible. How-
ever, the resolution of a SEM is sufficient for imaging
any CMOS process.

SEM images have inherent distortion, and software
must be used to correct the individual images before re-
constructing the scan of the full chip. For the results
presented in this work, correcting the distortion within
the individual images was handled by ARES, see Sec-
tion 3.2. Modern secure microcontrollers have 6 metal
layers or more depending on the design of their addi-
tional protective layers known as shields. Each metal
layer must imaged individually at a resolution higher
than that, which is possible with optical images. The

three key components of the circuit, i.e., the signal traces
(metal wires), interconnect vias (metal) and passivation
(oxide) of the circuit are all clearly visible and easily dis-
tinguishable from one another based on their contrast in
the resulting SEM images, see Figure 1.

3.2 The ARES Analysis Suite

Throughout this work the proprietary ARES analysis
suite was used for analysis. ARES is based on the lessons
learned from many years of development of automated
tools. The ARES analysis suite automates the analysis
process and performs many common tasks without user
interaction. Although we chose to focus on the tool that
we develop and use professionally, any tool with the ca-
pabilities of ARES should be able to produce similar re-
sults. For an automated IC analysis tool, the feature ex-
traction process can be summarized as: The input format
for the software are SEM images of all relevant layers of
the device. Because of the inherent distortion of SEM
images, the software first transforms and corrects these
images for distortion. Next, the transformed images are
correlated and chip is reconstructed layer by layer. Sub-
sequently, features are detected within every layer. For
this, the material contrast and topography data that can
be extracted from the contrast of the SEM images is used
to identify the three main components on the intercon-
nect layers, i.e., metal lines, vias and passivation, see

5



(a) Optical die shot (b) Extracted interconnect layers (c) Detected cells

Figure 4: Optical die shot of the target secure microcontroller, as well as overlays for the interconnect layers and the
detected standard cells. The target device contains a ROM (purple, top left), an SRAM (green, top right) as well as a
flash memory (blue, right), see Figure 4(a). From the reconstructed interconnect layers the buses and corresponding
encryption functions could be identified, see Figure 4(b). As interconnects are followed and reach the standard cells
of the gate, the standard cells are reconstructed and added to the ARES database. The detected standard cells and their
location on the device are also clearly visible, see Figure 4(c). The overlays are the result of approximately one week
of analysis using the current version of the ARES suite.

Figure 2. Because ARES operates on the detected chip
features, it is not as resource intensive as tools that op-
erate on the pixels of the optical images, such as [1].
This also eliminates the necessity to stitch images prior
to analysis. Following this step, each of the interconnect
layers can be connected to one another within the inter-
nal model of ARES. Finally, the first interconnect layer,
metal 1, is correlated and aligned with the underlying
polysilicon layer.

At this stage the chip is fully aligned and the design
of the IC can be reconstructed within the analysis soft-
ware. Additionally, ARES is capable of automatically
detecting, producing and outputting the design files of
any interconnect layer within the IC stack, see Section 4.
To reconstruct the cell library, a semi-automated process
is employed in the current generation of ARES, although
this can be automated in the future, see Figure 3. Stan-
dard cells are provided as library by the foundry and
are not automatically generated during synthesis. For
this reason, standard cells are currently traced manually
within ARES, after which all gate instances of the cell
across the device can be detected automatically. The typ-
ical size of a standard cell library for a modern secure
microcontroller ranges from approximately 60-100 stan-
dard cells.

The typical workflow for security analysis involves
tracing signals across the device and within the target’s
CPU core. This requires first identifying a signal of inter-
est, for example, an output of a memory. Next, this signal
can be followed in automated fashion until a standard cell
is reached. If the cell instance is part of the reconstructed
standard cell library, it is automatically displayed. If not,

then the user can choose to reconstruct the cell and add
it to the library or simply mark it and follow one of its
inputs or outputs. During the entire process ARES visu-
alizes a netlist representation including the path followed
as well as the interconnects. Rather than simply follow-
ing the outputs, following additional inputs, such as se-
lect lines of multiplexers, can provide important hierar-
chical information about the architecture, see Section 4.

4 Results

This section presents the results of the analysis of a se-
cure microcontroller, which remains undefeated in the
field for over 10 years, see Figure 4. ARES was used
to perform the analysis of the target device. However,
any other suite with the capabilities of ARES should be
able to produce similar results. The secure microcon-
troller analyzed in this work utilizes many modern coun-
termeasures and obfuscation techniques. To protect the
manufacturer, the exact make and model of the device
will not be disclosed in this work. These include encryp-
tion of embedded memories as well as embedded CHFs.
The CPU architecture was not known prior to analysis,
but could be determined by the cell library, which was
shared with general-purpose micrcontrollers. Specifics
related to the instruction set also gave clues about the
overall CPU architecture.

4.1 Target Design and Architecture
A common goal of IC analysis is to extract the device
firmware so that the target device can be emulated. Em-

6



(a) Single flash buffer. (b) Layout of the flash memory.

Figure 5: The layout of the flash memory of the target device. The 16 output buffers of the flash memory are clearly
visible above the flash, see Figure 5(b). The layout of each individual output buffer is identical, see Figure 5(a).

ulation implies either software emulation on a different
platform or a device clone in a similar form-factor. For
the extraction of the firmware and any relevant secrets
stored on the device, the CPU architecture of the device
must first be identified. Subsequently, strategies can be
developed for the extraction of the embedded memories.
The target device contained the following memories:

Two SRAM banks. This type of volatile memory is
used to store values at runtime. These memories can
contain relevant information for entry points to any boot-
loaders implemented in the device’s ROM. Additionally
these memories may contain data that has been deci-
phered by any CHFs on the device.

Flash memory. This type of memory contains the pro-
gram memory of the secure microcontroller. Although
these memories can be distracted directly, using tech-
niques such as Atomic Force Microscopy (AFM), direct
extraction of the flash is a time-consuming process [13].
The most reliable way to extract the program memory
are dynamic microprobing techniques at runtime, such
as LCE.

Read-Only Memory. Such memories can have scram-
bled addressing schemes and contain data encrypted with
a CHF as well as other obfuscation techniques. The en-
cryption algorithms are often proprietary and undocu-
mented. Nevertheless, since the ROM is manufactured
as a physical circuit it can be extracted without powering
up the device. To decipher such memories the encryp-
tion must be studied. To further complicate analysis the

encryption function may be synthesized within the CPU
core.

4.2 Tracing the Flash Outputs

Based on the size of the memories it was safe to as-
sume that the program code was stored in the flash mem-
ory. The 16 outputs buffers of the flash memory were
quickly identified along the perimeter of the flash, see
Figure 5. Subsequently, a single flash output was chosen
as a starting point and traced into the core. Each gate
that was identified along the data path was analyzed, re-
constructed and added to the ARES database. Any sub-
sequent instances of this type of gate are then automat-
ically identified across the device and any additional in-
stances along the data path are automatically added to the
schematic.

One type of gate that is of particular interest for anal-
ysis are the multiplexers. Since multiplexers are com-
monly used to arbiter signals on the data bus, multiplex-
ers on a common bus share control signals. Hence, by
identifying one multiplexer any additional multiplexers
at this stage can be identified by their shared control sig-
nals. The control signals of every multiplexer found on
the data path were followed, identifying all the multi-
plexers at every stage and yielding the width of the data
on the bus. In this fashion it was possible to quickly iden-
tify the width of the instruction set, which was not known
prior to analysis.

By continuing to follow the data path, three sets of
multiplexers could be identified before reaching the first
set of registers within the core. Following the control
signals of a single register confirmed that it was shared

7



Flash Outputs

MUX

MUX

MUX FF

?? FF

Instruction Registers

(a) Data path schematic. (b) ARES graph tracing.

Figure 6: By following the flash outputs into the core it was possible to identify the instruction registers of the device.
Multiple paths existed through the circuit, however by following the outputs of the multiplexers a single set of registers
sharing a common clock as well as control signals could be identified, see Figure 6(a). The graphical visualization of
the tracing engine of the ARES analysis suit is also shown for comparison, see Figure 6(b).

with additional registers corresponding to the bus width
through the multiplexers. At this stage it would be safe
to assume that the identified registers are the instruction
registers of the device. With a FIB workstation it would
be possible to quickly verify this assumption by exposing
the data bus and/or driving values on the bus. However,
to experiment with the capabilities of the ARES analysis
suite, the outputs of the registers were followed instead.

Because the number of possible CPU architectures
could be drastically narrowed down simply by the in-
struction width, it made sense to look deeper into the
core. Unlike with the input of the instruction registers,
the outputs of the instruction registers did not follow a
single path. Following the instruction registers are in-
struction decoders, ALU as well as the logic for imple-
menting all other operations with the CPU architecture.
By following the outputs of the instruction registers, a set
of multiplexers could be identified whose width corre-
sponded to the maximum size of a relative jump instruc-
tion within the assumed CPU architecture. Additionally
a set of latches was identified that corresponded to the
data width of the CPU architecture. Overall it took ap-
proximately one day to isolate the instruction registers
with ARES, a process that would normally take a month
of work or more. Without ARES it would be infeasible
to manually study and trace the outputs of the instruction
registers in a reliable manner, see Figure 6.

4.3 Tracing the ROM and SRAM
The SRAM and ROM were also studied to identify
whether or not these memories were encrypted. Approx-
imately a day was allotted to the study of each one of
these memories. A single output of the ROM was ini-

tially followed and XOR gates could be identified along
the data path. On a data path, XOR gates generally sig-
nify that the data path contains a decryption function.
The width of the data path could be determined from the
amount of ROM outputs, the amount of XORs at each
stage as well as the multiplexers at the output decryption
block. Additional registers could also be identified along
this path. This implies that a state register may be neces-
sary for the decryption meaning that the data is not deci-
phered in a single clock cycle. Although a full study of
the ROM encryption was not completed, parts of the en-
cryption were identified. A full study of the encryption
function would make it possible to extract the contents
of the ROM directly with ARES from the reconstructed
images of the ROM.

The target device contained two SRAM banks. The
outputs of the SRAM were traced into the core in a simi-
lar fashion to the ROM and flash. As expected, the width
of the data path of the SRAM corresponded to the data
width of the CPU architecture. A CHF could also be
identified along the data path. The presence of an encryp-
tion function for the SRAM may imply that the SRAM
is shared with a CHF implemented on the device. How-
ever, due to time constraints, this was not analyzed any
further.

5 Conclusion

To gauge the effectiveness of automated IC analysis, it is
important to understand the amount of effort that would
be required to reproduce the results presented in this
work. With an automated analysis tool, approximately
two weeks would be required for deprocessing, imaging

8



as well as verification of the extracted features. After
these steps, automated analysis can begin with a much
higher degree of confidence than manual tracing. Over-
all, the automated analysis drastically the analysis times
of ICs. Within one week, 22,000 gate instances within
the core had been identified and detected with ARES.
Tracing the flash and identifying the instruction registers
took approximately one day. Several days were allotted
for verifying that the logic that followed the instruction
registers corresponded to the assumed instruction set of
the target. Tracing the SRAM and ROM took approxi-
mately 2 days to identify the data path into the core. It
is difficult to gauge how long a full study of the encryp-
tion functions would take, but it is safe to assume that
it should not take more than a month of effort based on
the overall complexity of the circuit. Most importantly,
extraction of such a cryptographic function, synthesized
within the core, would not otherwise be possible without
an automated IC analysis tool such as ARES. With auto-
mated analysis tools, identifying extraction points within
a design becomes trivial. Should such tools ever become
readily available, a significant increase in piracy can be
expected.

Future Work

The ARES analysis suite also introduces several possi-
bilities that have yet to be investigated. Since ARES is
capable of generating the GDS2 of the analyzed circuit,
any invasive FIB edits could be outsourced to a profes-
sional lab. Since ARES identifies instances of a particu-
lar gate type across the entire device, it would be possible
to use ARES in conjunction with semi-invasive analysis
techniques. For example, it would be possible to per-
form semi-invasive laser attacks just on the registers of
the device, targeting specific elements within the regis-
ter cell. This would dramatically improve scan times by
eliminating the necessity to scan across the entire device.
Finally, ARES provides a basis for performing analysis
of CHFs, something that was previously considered to
be infeasible. In the time required to identify the instruc-
tion registers, automated IC analysis software could in-
stead be used to fully analyze and extract a CHF. Another
important research direction is to develop design rules
and technologies for protecting ICs even if automated IC
analysis is possible.

References

[1] Reverse engineering integrated circuits with degate.
http://www.degate.org. Accessed: 2015-07-
24.

[2] ANDERSON, R. J. Security Engineering. In A
Guide to Building Dependable Distributed Systems.
Wiley, Nov. 2010, pp. 483–521.

[3] BAR-EL, H., CHOUKRI, H., NACCACHE, D.,
TUNSTALL, M., AND WHELAN, C. The Sorcerer’s
Apprentice Guide to Fault Attacks. In Proceedings
of the IEEE (2006), pp. 370–382.

[4] CHENOWETH, N. Murdoch’s Pirates. Before the
phone hacking, there was Rupert’s pay-TV skull-
duggery. Allen & Unwin, Nov. 2012.

[5] HELFMEIER, C., NEDOSPASOV, D.,
TARNOVSKY, C., KRISSLER, J. S., BOIT,
C., AND SEIFERT, J.-P. Breaking and entering
through the silicon. In CCS ’13: Proceedings of
the 2013 ACM SIGSAC conference on Computer
& communications security (Nov. 2013), ACM
Request Permissions.

[6] KÖMMERLING, O., AND KUHN, M. Design
Principles for Tamper-Resistant Security Proces-
sors. USENIX Workshop on Smartcard Technology,
Chicago, IL (10–11 May 1999) http://www. cl. cam.
ac. uk/Research/Security/tamper (1999).

[7] MANGARD, S., OSWALD, E., AND POPP, T.
Power Analysis Attacks - Revealing the Secrets of
Smartcards, 1 ed. Springer, June 2010.

[8] NOHL, K., EVANS, D., STARBUG, AND PLÖTZ,
H. Reverse-engineering a cryptographic RFID tag.
In Proceedings of the 17th USENIX Security Sym-
posium (July 2008), USENIX Association.

[9] RANKL, W., AND EFFING, W. Smart Card Hand-
book, 4th ed. Wiley Publishing, 2010.

[10] ROSS, R. J., Ed. Microelectronic Failure Analysis:
Desk Reference, 6 ed. ASM International, 2011.

[11] SUGAWARA, T., SUZUKI, D., FUJII, R., TAWA,
S., HORI, R., SHIOZAKI, M., AND FUJINO, T.
Reversing Stealthy Dopant-Level Circuits. In Pro-
ceedings of the 16th International Workshop on
Cryptographic Hardware and Embedded Systems
— CHES 2014 (Berlin, Heidelberg, Sept. 2014),
Springer-Verlag New York, Inc, pp. 112–126.

[12] TARNOVSKY, C. Hacking the Smartcard Chip. In
Blackhat DC 2010 (Arlington, VA, Feb. 2010), Fly-
logic Engineering, LLC.

[13] THOMAS, O. Hardware Reverse Engineering
Tools: New Threats and Opportunities. In REC0N
(Montreal, QC, Canada, June 2013), Texplained
SARL.

9



[14] VAN WOUDENBERG, J., WITTEMAN, M., AND
MENARINI, F. Practical Optical Fault Injection on
Secure Microcontrollers. Fault Diagnosis and Tol-
erance in Cryptography, FDTC 2011 (2011), 91–
99.

10


