
Introduction
Bro is an open-source network security monitor which inspects network traffic looking for suspicious

activity. The Bro framework provides an extensible scripting language that allows an analysis of

application to protocol level traffic. All built-in and user added bro scripts output data to log files which

can be further analyzed to detect malicious activities.

Logstash is an open-source log management tool which collects and normalizes log data, such as the

logs output by Bro. The Logstash tool is combined with Elastic Search for storage and Kibana is used as a

web interface to search and visualize the collected log data. Logstash filtering allows complex log data

to be normalized and enhanced.

Both Logstash and Bro allow users to customize the inspection of consumed data. Commercial Threat

Intelligence providers can be integrated automatically or with a bit of scripting to provide additional

context around the vast amounts of data collected. This paper will describe how these technologies can

be integrated to identify current and emerging threats in real-time, allowing infected systems to be

identified quickly.

Background
Cyber-attacks are continually increasing in scope and complexity. Advanced persistent threats are

becoming more difficult to detect. This is leading to what the 2015 Verizon Data Breach Report calls a

detection deficit. While sixty percent of attackers are able to gain access within minutes, Mandiant has

found that the average detection time of attacks is 205 days. The core of this detection deficit is the fact

that the cost, complexity, and volume of data needing to be analyzed increases with the maturity of the

security organization.

Most organizations are collecting log data from systems, applications, and network devices to generate

operational statistics and/or alerts to abnormal behavior. Valuable security data is typically hidden from

view in these massive log data files. Software engineers write the code that determines what gets

logged within their applications. Unfortunately, a lot of valuable data is not written to logs, making it

improbable for log management systems administrators to detect attacks quickly. The best method to

detect attacks is to analyze the session, packet string, and full packet capture data within the

environment. The sheer volume of packet capture data that traverses a typical enterprise network

makes it infeasible to store for forensic purposes.

Mechanisms such as intrusion detection systems can analyze packet level data in real-time, but a major

disadvantage with this approach is that they need to know which threats to look for at the time of

analysis. To make packet level inspection detect a cyberattack in real-time as well as provide historical

analysis, a network security monitoring application should be used. One such option is the Bro Network

Security Monitor. Bro can inspect network traffic in real-time or look into a packet capture file that was

previously recorded. As part of the analysis, Bro looks for known attacks in the same way a typical

intrusion detection system would. The benefit of Bro is that all connections, sessions, and application

level data are written to an extensive set of log files for later review.

To collect and review the log files output by Bro, consumers can choose from a wide array of

commercial and open-source log management tools. This paper will take a deep look into the Logstash

product, an open-source log management tool. Logstash has over forty inputs to collect data, 40

filtering options to perform on the collected data, and over fifty output destinations to store the log

data. Logstash can input the Bro logs, apply filters to highlight and enhance critical data, and output the

data into an Elastic Search data store. Once the data is in Elastic Search, the Kibana web interface allows

users to visualize the data.

Solutions

Bro Network Security Monitor
Bro is an open-source network security monitor that has been in development since 1995. The power of

Bro is in the extensible scripting engine that analyzes the packet data. There are a wide array of out-of-

th- box, pre-written scripts that ship with Bro that analyze network traffic. These local scripts write to six

different categories of logs; network protocols, files, detection, network observations, miscellaneous,

and diagnostics. A full list and description of log files can be found in Appendix A.

By default, all Bro logs are written to <BroInstallDir>/logs/current and are rotated on a daily

basis. If the Bro utility is launched manually, to analyze a packet capture for example, then log files are

written to the current working directory. This is important to note when specifying which log files to

collect when running Logstash later.

Elastic Search/Logstash/Kibana
Elastic Search, Logstash, and Kibana (ELK Stack) are all open-source products that allow the collection,

normalization, storage, and visualization of log data. When combined with Bro, these tools can collect

and install the ELK stack on the same system to collect local files, or ELK can be run on a separate server

and the logs can be forwarded via syslog. Logstash has over forty input methods available to ingest logs,

including local file, syslog, stdin, and the Logstash Forwarder (Lumberjack).

For simplicity, everything can be installed on the same server and the local log files can be collected

there. For troubleshooting normalization and other Logstash configurations, it is useful to have two

working versions of the Logstash configuration file. The first file will accept stdin input and use stdout as

an output to display the results. The second configuration file will accept a file input and output to

Elastic Search for long term storage. Both configuration files will share the same filter code to normalize

and enhance the log data as necessary.

Figure 1: Logstash Temporary Configuration

Figure 2: Logstash Permanent Configuration

Figure 1 and Figure 2 show sample configurations for the temporary and permanent configuration files

for Logstash. Next, the filters will need to be added to normalize the data in order to extract the

metadata that matters. The filter plugin to do this is the grok plugin. The way this plugin is used is to

match a message to a set of Onigimura regular expression strings. Logstash ships with a set of

expressions that can be used, however a set of custom expressions will need to be created for the Bro

logs.

input {
 stdin { }
}
filter {…}
output {
 stdout {
 codec => rudydebug
 }
}

input {
 file {
 path =>
"/opt/bro/logs/current/*.log"
 }
}
filter {…}
output {
 elasticsearch {
 host => localhost
 cluster => "elasticsearch "
 }
}

Figure 3: Basic Grok Matching

To put metadata into a specific field, the correct syntax will be (?<column>regex). Each message

match line can contain as many patterns as necessary to get a match. Alternatively, to leverage the

built-in patterns, the syntax would look like %{PATTERNNAME:columnname}. While this is a quick and

easy way to normalize a handful of messages, this approach involves a lot of management overhead and

does not scale, especially when adding in custom regular expressions to match the Bro messages.

To solve the management scalability problem, all of the regular expressions will be stored in a custom

patterns directory and referenced in the grok plugin code. A method that I have found to be workable is

to create a rule file for each device that is being normalized by the Logstash instance. For example, the

custom patterns directory will contain linux.rule, bro.rule, apache.rule, etc. Doing this simplifies the

configuration file, moves the complex regular expression to another location, and will allow us to

optimize Logstash normalization.

Figure 4: Logstash Custom Patterns

Figure 4 shows that the configuration will look like when utilizing the custom patterns feature. The

regular expression used in Figure 3 would be moved to the rule files in the /path/to/patterns directory

referenced in Figure 4.

filter {
 grok {
 match => {
 "message" => "<RegEx Goes Here>"
 }
 }
}

filter {
 grok {
 match => {
 patterns_dir => "/path/to/patterns"
 "message" => "%{291001}"
 "message" => "%{291002}"
 "message" => "%{291003}"
 "message" => "%{291004}"
 }
 }
}

Figure 5: Sample Logstash Rule File

This simple change allows Logstash to normalize the Bro logs and pull out the valuable metadata such as

IP addresses, file names, ports, etc. In order to improve performance Logstash normalization and

enhance the data with action, status, object, and device type data users can split the grok patterns into

their own code blocks for each normalization rule. To do this, IF/ELSE statements will be used against

the message in order to match it against the known Bro log patterns. A quick way to get the match code

for the IF statements is to use the regular expression code from the rule files and remove the column

data from the code. For example, if the code match was (?<column>regex)(?<column2>regex2),

the code match would be (regex)(regex2). It is possible to have the IF statements look at the name

of the log file being used to collect data. However, if the input is from something such as syslog, this will

not work properly. To allow the configuration to be plugged into as many environments as possible, it’s

easier to choose to go with the regular expression matching of the message.

Figure 6: Logstash IF Statements

Figure 6 shows an example of how to utilize the IF statements in Logstash. It is important to remember

to use the ELSE IF for additional message matching so the message is not matched multiple times by

accident. While this may look like unnecessary processing, it is required to use the add_field function in

the grok plugin. The add_field allows each log message to have additional key value pairs added to the

message stored in the Elastic Search database. For each message, users should assign a device type,

291001 <RegEx Goes Here>
291002 <RegEx Goes Here>
291003 <RegEx Goes Here>
291004 <RegEx Goes Here>

filter {
 if [message] =~ /^((regex)(regex2))/ {
 grok {
 match => {
 patterns_dir => "/path/to/patterns"
 "message" => "%{291001}"
 }
 }
 }
 else if [message] =~ /^((regex3)(regex4))/ {
 grok {
 match => {
 patterns_dir => "/path/to/patterns"
 "message" => "%{291002}"
 }
 }
 }
}

object, action, status, and rule ID. The device type, object, action, and status are part of the Common

Event Expression tags to help identify similar events across multiple devices. These will help when

comparing Bro log data with firewall logs, system logs, or other IDS logs which may not use the same

naming conventions. The rule ID is what will help performance tune Logstash going forward. Each

normalized message will now be tagged with the rule ID which was used for normalization. Since

Logstash is using a top down approach with the IF statements, we can report on the most commonly

used rule ID’s found in the environment and place those near the top of the filter plugin for

normalization. This will bypass the processor intensive regular expression matching for messages which

are rarely seen.

While Bro can leverage the LibGeoIP library for geolocating IP addresses, I recommend moving this

functionality to Logstash. This allows Logstash to geolocate IP addresses from devices other than Bro as

well. The geoip plugin will be placed after all the IF statements in the filter plugin. The requirements for

geoip are a source column, a destination column, location of the GeoIP database, and fields to be added

from the GeoIP database. Logstash ships with a built-in GeoLiteCity database, but it may be useful to

provide a separate one that can be updated on demand if needed. For the built-in GeoLiteCity

database, the following are available: city_name, continent_code, country_code2, country_code3,

country_name, dma_code, ip, latitude, longitude, postal_code, region_name and timezone. For

Kibana to be able to plot coordinates on the map, only the longitude and latitude are required, the

others are optional for additional contextual information.

Figure 7: Logstash GeoIP Configuration

The Elastic Search template that stores the Logstash data has a built-in mapping for the geoip column

which was used as the target in Figure 7. This takes the geoip field and sets it as a geo_point object

type. When geolocating multiple IP fields, multiple targets will need to be used. As such, the template

will need to be modified to provide mappings for the new geoip fields. To get the current Elastic Search

template for logstash, enter the “curl -XGET localhost:9200/_template/logstash”

command. Appendix D shows a sample of the default template that is shipped with Elastic Search. The

geoip mapping will need to be modified or copied to add additional geoip fields. Appendix D also shows

a sample template that can be used with two geoip mappings. To update the template, enter the “curl

-XPUT localhost:9200/_template/logstash -d ‘<template>’” command , where

<template > is the text of the template. Once this is done, multiple geoip plugins can be used with

Logstash, changing the target from "geoip" to "geoip_dst" and "geoip_src".

The final optional piece of configuration for Logstash will be modifying the timestamp of the collected

logs. When collecting Bro logs in real-time, this will not be an issue. However, if the user wants to

analyze packet capture files, Bro will use the timestamp from the packet capture file as the timestamp in

the logs. When Logstash collects the log file, it will use the collect time as the timestamp for the log

filter {
 geoip {
 source => "evt_dstip"
 target => "geoip"
 database => "/path/to/GeoLiteCity.dat"
 add_field => ["[geoip][coordinates]",
"%{[geoip][longitude]}"]
 add_field => ["[geoip][coordinates]",
"%{[geoip][latitude]}"]
 add_field => ["[geoip][coordinates]",
"%{[geoip][city_name]}"]
 add_field => ["[geoip][coordinates]",
"%{[geoip][continent_code]}"]
 add_field => ["[geoip][coordinates]",
"%{[geoip][country_code2]}"]
 add_field => ["[geoip][coordinates]",
"%{[geoip][country_code3]}"]
 add_field => ["[geoip][coordinates]",
"%{[geoip][country_name]}"]
 add_field => ["[geoip][coordinates]",
"%{[geoip][dma_code]}"]
 add_field => ["[geoip][coordinates]",
"%{[geoip][postal_code]}"]
 add_field => ["[geoip][coordinates]",
"%{[geoip][region_name]}"]
 }
}

messages. If any forensics analysis is going to be done, the timestamp should be preserved for

posterity. This date plugin will need to go after the IF statements in order to use the appropriate time

column from the log message.

Figure 8: Logstash Time Preservation

Figure 8 demonstrates taking the start_time column and matching it to the UNIX epoch time function

and uses that for the timestamp of the log.

Threat Intelligence Integrations
Threat intelligence feeds are shared indicators of compromise, generally shared across industry verticals

such as finance, healthcare, industrial, retail, etc. Combining threat intelligence with log data adds a

form of predictive modeling to defensive tools by collecting known attackers, attack vectors, and attack

tools and sharing this information with peers. When company A detects an attack on their network,

that information can be shared with company B immediately. Company B can then update their

signatures to detect the attack before it occurs. Both Bro and Logstash allow for integrations with threat

intelligence providers.

One such provider for Bro is Critical Stack Intel. The Critical Stack agent is installed on the Bro system

and is configured to pull feeds from the server. Critical Stack maintains a list of more than 98 threat

feeds, including malicious IP addresses, known phishing email addresses, malicious file hashes, and

domains known to host malware. These feeds contain over 800,000 indicators of compromise. A free

account needs to be created on the Critical Stack website (https://intel.criticalstack.com/) to obtain an

API key for the agent to use to pull data. On the website, lists of feeds are displayed, requiring only a

click to add them to the agent’s list of feeds to pull. On the agent system, the feeds are pulled and

converted into Bro scripts. To integrate these scripts into Bro, just reference the target directory at the

end of the Bro command. For example: ./bro –r file.pcap local

/path/to/criticalstack/feeds. When malicious activity is detected by the Critical Stack scripts,

logs will be written to the intel.log file in the Bro log directory. From within Kibana, reports and

dashboards can be created using data found in this intel log file for further analysis.

Logstash does not have a direct integration with threat intelligence providers like Critical Stack.

However, the filter plugin has a translation plugin that allows users to perform similar lookups. Just as

Critical Stack has 98 threat feeds, there are many other publicly available alternatives which we can

utilize for Logstash translations. A simply python script can pull the data and transform the information

into a usable format for Logstash.

filter {
 date {
 match => ["start_time", "UNIX"]
 }
}

https://intel.criticalstack.com/

The transform plugin takes a normalized field as a source, a destination field to populate, and a

dictionary path to perform the lookup. The dictionary file is a YAML formatted file that contains two

columns. The first column is the value that is compared to the source field from the translation. If there

is a match, the second column in the YAML file is placed into the destination column from the

translation. If there is no match, the column will not be created or populated for that log file.

Figure 9: Logstation Threat Intel Translation

The example in Figure 9 shows a lookup of the evt_dstip column. When a match is found it will populate

the tor_exit_ip column with the corresponding data. For reporting purposes, I have been using

"IP_Address": "YES" as the format for the YAML file. This allows reports and dashboards containing the

translated fields with a value of YES to be displayed.

Conclusion
Even without trying to add packet capture level data for analysis organizations are bombarded with data

from system logs. By leveraging network security monitoring tools such as Bro, the packet data can be

analyzed and stored in real-time, or saved in packet captures for future analysis. The ELK stack provides

a wide array of functionality that can ingest the Bro log data into normalized fields for more efficient

analysis. All of the data collected by both Bro and Logstash can then be enhanced with Threat

Intelligence provider feeds to predict and detect attacks more quickly, lowering the detection deficit and

allowing organizations to detect cyberattacks before valuable data is exfiltrated. Using these tools,

organizations can observe, orient, decide, and act quickly to the advanced threats facing them today.

filter {
 translate {
 field => "evt_dstip"
 destination => "tor_exit_ip"
 dictionary_path => "/path/to/yaml"
 }
}

Appendix A: Bro Log Files

Network Protocols

Log File Description

conn.log TCP/UDP/ICMP connections

dhcp.log DHCP leases

dnp3.log DNP3 requests and replies

dns.log DNS activity

ftp.log FTP activity

http.log HTTP requests and replies

irc.log IRC commands and responses

kerberos.log Kerberos

modbus.log Modbus commands and responses

modbus_register_change.log Tracks changes to Modbus holding registers

mysql.log MySQL

radius.log RADIUS authentication attempts

rdp.log RDP

sip.log SIP

smtp.log SMTP transactions

snmp.log SNMP messages

socks.log SOCKS proxy requests

ssh.log SSH connections

ssl.log SSL/TLS handshake info

syslog.log Syslog messages

tunnel.log Tunneling protocol events

Files

Log File Description

files.log File analysis results

pe.log Portable Executable (PE)

x509.log X.509 certificate info

Detection

Log File Description

intel.log Intelligence data matches

notice.log Bro notices

notice_alarm.log The alarm stream

signatures.log Signature matches

traceroute.log Traceroute detection

Network Observations

Log File Description

app_stats.log Web app usage statistics

known_certs.log SSL certificates

known_devices.log MAC addresses of devices on the network

known_hosts.log Hosts that have completed TCP handshakes

known_modbus.log Modbus masters and slaves

known_services.log Services running on hosts

software.log Software being used on the network

Miscellaneous

Log File Description

barnyard2.log Alerts received from Barnyard2

dpd.log Dynamic protocol detection failures

unified2.log Interprets Snort’s unified output

weird.log Unexpected network-level activity

Bro Diagnostics

Log File Description

capture_loss.log Packet loss rate

cluster.log Bro cluster messages

communication.log Communication events between Bro or Broccoli instances

loaded_scripts.log Shows all scripts loaded by Bro

packet_filter.log List packet filters that were applied

prof.log
Profiling statistics (to create this log, load
policy/misc/profiling.bro)

reporter.log Internal error/warning/info messages

stats.log Memory/event/packet/lag statistics

stderr.log Captures standard error when Bro is started from BroControl

stdout.log Captures standard output when Bro is started from BroControl

Appendix B: Useful Links
Notes on creating new templates for Elastic Search
 http://spuder.github.io/elasticsearch,/logstash/elasticsearch-default-shards/

Access to GeoLite City Database
 http://dev.maxmind.com/geoip/legacy/geolite/

PCAP Files for Analysis
 https://github.com/LiamRandall/BroMalware-Exercise/blob/master/README.md
 http://www.netresec.com/?page=PcapFiles
 https://www.mediafire.com/?a49l965nlayad

Product Documentation
 https://www.bro.org/documentation/index.html
 https://www.bro.org/sphinx/script-reference/log-files.html
 https://www.elastic.co/guide/en/elasticsearch/reference/current/index.html
 https://www.elastic.co/guide/en/logstash/current/index.html
 https://www.elastic.co/guide/en/kibana/current/index.html

http://spuder.github.io/elasticsearch,/logstash/elasticsearch-default-shards/
http://dev.maxmind.com/geoip/legacy/geolite/
https://github.com/LiamRandall/BroMalware-Exercise/blob/master/README.md
http://www.netresec.com/?page=PcapFiles
https://www.mediafire.com/?a49l965nlayad
https://www.bro.org/documentation/index.html
https://www.bro.org/sphinx/script-reference/log-files.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/index.html
https://www.elastic.co/guide/en/logstash/current/index.html
https://www.elastic.co/guide/en/kibana/current/index.html

Appendix C: Useful Commands
Elastic Search:
 List All Templates
 curl -XGET localhost:9200/_template/logstash
 Insert/Update Template
 curl -XPUT localhost:9200/_template/logstash -d '_____'
 List All Indexes
 curl 'localhost:9200/_cat/indices?v'
 Delete Indexes
 curl -XDELETE 'localhost:9200/logstash*?pretty'

Logstash:
 Verify Config File Before Normalizing Logs
 ./logstash -f logstash.conf –configtest

Bro:
 Read Packet Capture File
 ./bro –r file.pacp

Appendix D: Elastic Search Templates

Default Template
{
 "logstash" : {
 "order" : 0,
 "template" : "logstash-*",
 "settings" : {
 "index.refresh_interval" : "5s"
 },
 "mappings" : {
 "_default_" : {
 "dynamic_templates" : [{
 "message_field" : {
 "mapping" : {
 "index" : "analyzed",
 "omit_norms" : true,
 "type" : "string"
 },
 "match" : "message",
 "match_mapping_type" : "string"
 }
 }, {
 "string_fields" : {
 "mapping" : {
 "index" : "analyzed",
 "omit_norms" : true,
 "type" : "string",
 "fields" : {
 "raw" : {
 "index" : "not_analyzed",
 "ignore_above" : 256,
 "type" : "string"
 }
 }
 },
 "match" : "*",
 "match_mapping_type" : "string"
 }
 }],
 "properties" : {
 "geoip" : {
 "dynamic" : true,
 "properties" : {
 "location" : {
 "type" : "geo_point"

 }
 },
 "type" : "object"
 },
 "@version" : {
 "index" : "not_analyzed",
 "type" : "string"
 }
 },
 "_all" : {
 "enabled" : true,
 "omit_norms" : true
 }
 }
 },
 "aliases" : { }
 }
}

Updated Template
{
 "logstash" : {
 "order" : 0,
 "template" : "logstash-*",
 "settings" : {
 "index.refresh_interval" : "5s"
 },
 "mappings" : {
 "_default_" : {
 "dynamic_templates" : [{
 "message_field" : {
 "mapping" : {
 "index" : "analyzed",
 "omit_norms" : true,
 "type" : "string"
 },
 "match" : "message",
 "match_mapping_type" : "string"
 }
 }, {
 "string_fields" : {
 "mapping" : {
 "index" : "analyzed",
 "omit_norms" : true,
 "type" : "string",
 "fields" : {
 "raw" : {

 "index" : "not_analyzed",
 "ignore_above" : 256,
 "type" : "string"
 }
 }
 },
 "match" : "*",
 "match_mapping_type" : "string"
 }
 }],
 "properties" : {
 "geoip_dst" : {
 "dynamic" : true,
 "properties" : {
 "location" : {
 "type" : "geo_point"
 }
 },
 "type" : "object"
 },
 "geoip_src" : {
 "dynamic" : true,
 "properties" : {
 "location" : {
 "type" : "geo_point"
 }
 },
 "type" : "object"
 },
 "@version" : {
 "index" : "not_analyzed",
 "type" : "string"
 }
 },
 "_all" : {
 "enabled" : true,
 "omit_norms" : true
 }
 }
 },
 "aliases" : { }
 }
}

