
Attacking ECMAScript Engines
with Redefinition
Natalie Silvanovich
@natashenka

About me

● Security Engineer on
Project Zero
● Flash Enthusiast

● ECMAScript allows anything to be redefined as anything*
● Redefinition can allow unexpected scripts to be executed

during native functions
● Leads to some interesting bugs

Redefinition Vulnerabilities

* Your VM may vary

<script>
 function f(mystring){

 document.write(mystring);
 }
 alert = f;
 alert(“hello”);
</script>

Example (in JavaScript)

What happens?

(mostly)

(sometimes) (sometimes)

● Sometimes called ‘re-entrance vulnerabilities’
○ But re-entrance isn’t always required!

● Flash seems especially susceptible to these issues
○ We’ve found 24 in the past 6 months

● AS2 has the most problems as more can be redefined
● There’s also been a few bugs in AS3

Redefinition Vulnerabilities

● Rootkits for JavaScript Environments -- Ben Adida, Adam Barth
and Collin Jackson (WOOT 2009)

● CVE-2013-0756 -- ProxyObject UAF in FireFox (regenrecht)
● CVE-2014-1705 -- OOB read/write in Chrome(geohot)
● CVE-2014-8636 -- JS Privilege Escalation (Bobby Holley, Joe

Vennix)
● Four issues found in HackingTeam leak (CVE-2015-5119, CVE-

2015-5122, CVE-2015-5123, CVE-2015-0349)

Previous Redefinition Vulnerabilities

How to Redefine a Method

● In AS2, everything can be redefined with the equality operator
○ Might not compile
○ Read-only properties can be ‘fixed’ with ASSetProps

● AS3 is much more restricted

Equality Operator

● CVE-2015-3077

Equality Operator Bug

var blur = new flash.filters.BlurFilter(100, 15, 5555);
this.filters = [blur]; //this is a Button
flash.filters.BlurFilter =
 flash.filters.ConvolutionFilter;
var f = this.filters;
var conv = f[0];
conv.matrix = [0,1,1,1,1,1,1,1,1,1,1,1,1,1];

● The filters property of the Button is set to a BlurFilter, which is
stored natively

● The BlurFilter constructor is redefined
● The filters property is read and the VM calls the constructor to

create the AS object which is a ConvolutionFilter
● It creates the native object based on the BlurFilter
● A ConvolutionFilter in script is backed by a native BlurFilter

Equality Operator Bug

● Type confusion
● Not Real Code

Equality Operator Bug

BlurFilter* b = new BlurFilter()
…
ConvolutionFilter c = (ConvolutuionFilter*) b;
c.doConvolutionFilterStuff();

● Adobe Flash CVE-2015-0305

Another Equality Operator Bug

var b = flash.net;
b.FileReference = q;
function q(){
 this.f = flash.display.BitmapData
 var c = new this.f(1000, 1000, true, 1000)
}
var file = new FileReferenceList();
…
file.browse();

● The FileReference constructor is overwritten with a method
that calls the BitmapData constructor

● The VM assumes the object created is a FileReference
● The ActionScript won’t compile

○ Use an assembler

Another Equality Operator Bug

● Proxy objects allow methods that handle every variable access
to be defined

● Can sometimes replace objects with properties that can’t be
overwritten

● Has caused a few bugs in Firefox

Proxy Objects

● Adobe Flash CVE-2015-0327 (Ian Beer)
Stringify (VM!) code:

Proxy Object Bug

while (index != 0) {
 ownDynPropCount++;
 index = value->nextNameIndex(index);
}

AutoDestructingAtomArray propNames(m_fixedmalloc, ownDynPropCount);
…

while (index != 0) {
 Atom name = value->nextName(index);
 propNames.m_atoms[propNamesIdx] = name;
 propNamesIdx++;
 index = value->nextNameIndex(index);
}

ActionScript Code:
Proxy Object Bug

 override flash_proxy function nextNameIndex(index:int):int {
 if (first_time) {
 if (index < 0x10) {
 return index + 1;
 }
 first_time = false;
 return 0;
 } else {
 if (index < 0x10000){
 return index + 1;
 }
 return 0;}}

● Buffer overflow
● The Proxy object returns a small number of items when they

are counted
● Returns a larger number when they are written

Proxy Object Bug

● Flash calls valueOf and toString on function parameters often
○ valueOf is called on most Number parameters
○ toString is called on most String parameters

● These can be overwritten to include any code

Conversion Operators

myFunc(a:Number, b:String);
// a.valueOf gets called if it is not a Number
// b.toString gets called if it is not a String
// for realz

● CVE-2015-3039

Conversion Operators

var filter = new ConvolutionFilter(...);
var n = {};
n.valueOf = ts;
var a = [];
for(var k = 0; k < 1; k++){

a[k] = n;
}
filter.matrix = a;
function ts(){

filter.matrix = a;
}

● Re-entrance bug
● When ConvolutionFilter.matrix is set, it calls valueOf on each

int parameter
● valueOf is redefined to set matrix again
● matrix deletes and reallocates a buffer each time it is called
● Calling matrix inside itself is a use-after-free

Conversion Operators

● CVE-2015-5119 (HT dump)

Conversion Operators

var b = new ByteArray();
b.length = 12;
var n = new myba(b);
b[0] = n;

In the myba class definition:

prototype.valueOf = function()
{

b.length = 1000;
}

● AVM Source

● AvmCore::integer calls valueOf
● valueOf can realloc m_byteArray by changing ByteArray length

Conversion Operators

void ByteArrayObject::
setUintProperty(uint32_t i, Atom value)

{
m_byteArray[i] = uint8_t(AvmCore::integer(value));

}

● Many objects support ‘watches’ on properties
● Can be used to interfere when a property is set

watches

● CVE-2015-3120

watches

var fileRef:FileReferenceList = new FileReferenceList();
fileRef.addListener(listener);
fileRef["fileList"] = "asdf";
fileRef.watch("fileList", func);
fileRef.browse(allTypes);

function func(){

return 7777777;
}

watches

● FileReferenceList.browse creates AS variable fileList and sets
it to an Object value

● Setting it triggers the watch, which intercepts the call and sets
the property to a Number value

● As the browse function continues to execute, it calls methods
on fileList assuming it is still an Object

watches
● CVE-2015-3119

this.uri = "test";
var n = new NetConnection();
this.watch("uri", func);
this["__proto__"] = n;
this.connect();
var b = new BitmapData(10, 10, true, 10);
b.setPixel.call(this, 10, 10, 10);

function func(a, b, c){
this.__proto__ = {};
this.__proto__.__constructor__ =

 flash.display.BitmapData;
super(10, 10, false, 10);

watches
● A watch is set on the NetConnection which triggers when uri is

set by the connect function
● The watch calls redefines the object constructor and calls the

super constructor to turn the object into a String
● The connect function expects it to be a NetConnection, leading

to type confusion
● The watch is necessary, because a type check occurs before

the watch
● This bug redefines twice! With a watch and then with equality

Other Methods

● Properties of a class can sometimes be overwritten by
extending the class

● Usually non-final properties can be replaced with getters and
setters in a subclass

Subclassing

● Setting the __resolve property of an object causes every
undefined property to go to a function
○ Great for figuring out when a native jumps into script to find bugs

● JavaScript supports a similar property __lookupGetter__

__resolve, __lookupGetter__

● Getters and Setters can execute script when they are called by
native functions

● addProperty in AS2
● Function declaration in AS3
● __defineGetter__ /__defineSetter__ in JavaScript

○ Caused CVE-2014-1705 in Chrome
● Native use of getters and setters uncommon in Flash

getters and setters

Finding Redefinition Issues

Finding Redefinition Issues

● Code review
● Reverse engineering

○ Many bugs are found with IDA

● API docs
● Specialized fuzzers

Conclusion

● ECMAScript is largely too dynamic for its own good
● We looked at ActionScript, but other ECMAScript engines have

similar issues
● Go forth and find bugs!

Conclusion

Questions
Natalie Silvanovich
@natashenka
natalie@natashenka.ca

http://googleprojectzero.blogspot.ca/

mailto:natalie@natashenka.ca
mailto:natalie@natashenka.ca
http://googleprojectzero.blogspot.ca/
http://googleprojectzero.blogspot.ca/

