
Exploiting Trustzone on Android
Di Shen(@returnsme)
 retme7@gmail.com

1 Introduction

This paper tells a real story about exploiting TrustZone step by step. I target an
implementation of Trusted Execution Environment(TEE) used by Huawei HiSilicon.
Firstly I find a vulnerability to gain kernel-level privileges in normal world. Then I find
another one for arbitrarily code execution in TEE. It’s a proof-of-concept that any local
application is able to execute shellcode in HiSilicon's TEE.

These vulnerabilities affected all Huawei devices with Huawei HiSilicon SoC chipset.

2 Background

“ARM® TrustZone® technology is a system-wide approach to security for a wide array
of client and server computing platforms, including handsets, tablets, wearable
devices and enterprise systems.” Devices developed with TrustZone technology can
support a full Trusted Execution Environment. TEE runs in a special CPU mode called
“secure mode”, so memory for secure mode and security functions can be hidden to
“normal world”. In this way, Android vendors can supply many secure features such as
fingerprint scanning, DRM, kernel protection, secure boot and so on.You can find more
information on TrustZone’s website[1] and an exploration on genode.org[2].

Huawei HiSilicon's TEE is compliant with the recent Global Platform TEE specifications.
But its implementation is totally undocumented. By reversing the firmware of its TEE,
some log strings let me understand its’ architecture:

TZDriver “/dev/tc_ns_client” is a kernel driver which provides an interface to user
space clients for communication with TEE OS. Just like “/dev/qseecom” in QSEE.The
only diffirent is every local Android application can access TZDriver on mate 7,
qseecom only can be accessed by some system process.

mailto:retme7@gmail.com

TA is short for Trusted Application. TAs are elf files. Each of them provide a secure-
related service, such as secure storage(TA_SecStorage), secure boot, keystone,
fingerprint scanning(TA_FingerPrints) and so on.

“TEEGlobalTask” is the first TA of TEE’s user mode. It can load elf modules, dispatched
call from outside to sub-service provided by other TAs.

“RTOSck” is the kernel of TEE, it’s a Real-Time OS developed by HUAWEI, being similar
to uC/OS-II.A fingerprint driver also includes in RTOSck. The driver only can be
accessed by TA_FingerPrints , it help TA read finger print image from sensor.

3. Vulnerability in /dev/tc_ns_client (CVE-2015-4421)

A Secure Monitor Call (SMC) is used to enter the Secure Monitor mode and perform a
Secure Monitor kernel service call. This instruction can only be executed in privileged
modes. So if user process want to send malformed SMC to secure world and exploit
TEE, it must gain kernel-level privileges first.

“/dev/tc_ns_client” is a kernel driver which provides an ioctl interface to both user
space clients and other kernel module. Clients use its “TCAPI” to communicate with
secure world. The driver’s file permission is “rw-rw-rw-“ and its SE context is
“u:object_r:device:s0”. Any client in user mode can access this driver.

Clients use TC_NS_ClientParam struct to send a buffer pointer to driver. Then driver
request a SMC to TEE, and copy returned value to pointer in TC_NS_ClientParam.

typedef union {
struct {
 unsigned int buffer; //ptr of buffer
 unsigned int offset; //size of buffer
 unsigned int size_addr;
} memref;
struct {
 unsigned int a_addr; //ptr of a 4-bytes buffer
 unsigned int b_addr; //ptr of a 4-bytes buffer
 } value;
} TC_NS_ClientParam;

The driver made a mistake in bounds-checking. The pseudo-code is as follow:

static int TC_NS_SMC_Call(TC_NS_ClientContext
*client_context,TC_NS_DEV_File *dev_file, bool is_global){

 // build a TC_NS_SMC_CMD struct

 // execute SMC instruction
 TC_NS_SMC(smc_cmd_phys);
 // copy result from smc_cmd.operation_phys to callers'
buffer(client_param.value)
 if(client_operation->params[0].value.a> 0xbfffffff){
 //driver think caller is from kernel space
 *(u32 *)client_param->value.a_addr = operation-
>params[i].value.a;

 }
 else{
 //driver think caller is from user space
 copy_to_user(....);
 }
 if(client_operation->params[0].value.b > 0xbfffffff){
 *(u32 *)client_param->value.b_addr = operation-
>params[i].value.b;
 }
 else{
 copy_to_user(....);
 }

}

What if we send a kernel pointer from user mode? The driver will copy results directly
without using copy_to_user. So we have an opportunity to write a given value to kernel
space. If the value returned by TEE is under 0xc0000000,we may gain root privileges by
“ret2user” trick as follow.

I choose TEE OS’s internal time as a given returned value. The global service in TEE
provide a time query interface with cmd_id = “GLOBAL_CMD_ID_TEE_TIME”.

Here is the pseudo-code in “main_task”.
int get_sys_time()
{
 int result; // r0@1
 tag_TC_NS_Operation *v1; // r3@1
 unsigned int v2; // [sp+0h] [bp-10h]@1
 int v3; // [sp+4h] [bp-Ch]@1
 get_time((int)&v2);
 result = 0;

 v1 = dword_5E2E0->operation_phys;
 v1->params[0].value.a = v2; //second
 v1->params[0].value.b = 1000 * v3; //millisecond,as the given
value
 return result;
}

Millisecond of TEE will be written to ptmx->fops pointer and “ret2user” exploit can be
triggered.

4. Vulnerability in TEE OS (CVE-2015-4422)

When executing SMC instruction, a physical address pointed to TC_NS_SMC_CMD
structure will be sent to TEE. A malformed TC_NS_SMC_CMD give me a chance to write
one byte to almost any physical address.

typedef struct tag_TC_NS_SMC_CMD{
 unsigned int uuid_phys; //physical addr of uuid
 unsigned int cmd_id;
 unsigned int dev_file_id;
 unsigned int context_id;
 unsigned int agent_id;
 unsigned int operation_phys;//physical addr of kernel buffer
 unsigned int login_method;
 unsigned int login_data;
 unsigned int err_origin;
 bool started;
} TC_NS_SMC_CMD;

As there is no bound-checking in “TEEGlobalTask”, we can modify any physical memory
except the memory used by TEE kernel. For example, let’s review the pseudo-code of
get_sys_time() in “TEEGlobalTask”:

int get_sys_time()
{
 int result; // r0@1
 tag_TC_NS_Operation *v1; // r3@1
 unsigned int v2; // [sp+0h] [bp-10h]@1
 int v3; // [sp+4h] [bp-Ch]@1
 get_time((int)&v2);
 result = 0;

 //operation_phys is a physical address in Secure World
 v1 = dword_5E2E0->operation_phys;

 //operation_phys+4 and operation_phys+8 will be modified
 (int)(operation_phys + 4) = v2;
 (int)(operation_phys + 8)= 1000 * v3;
 return result;
}

“Operation_phys+4” and “operation_phys + 8” will be covered by internal time of TEE.
If current internal time of TEE is “0x0000AABB,0xCCDDEEFF”, covered value in memory
must be “BB AA 00 00,FF EE DD CC” in little endian system. The “BB” is the last byte of
second and cycle from 0x00 to 0xFF.

With this vulnerability we can write a specified byte to any physical address at a right
second.

5 Code execution in TEE OS

Based on the above information, a local application can modify physical memory only
accessed by TEE. In this section let’s talk about how to achieve a code execution under
TEEGlobalTask context.

With reversing its firmware and some black-box testing on Hisilicon's TEE,I find some
good news and bad news. The good news is that there’s few vulnerability mitigation
features in TEE, no ASLR, no DEP, no “r-x” .text section, no stack canaries…almost
nothing but a traditional RTOS inside. The bad news is we don’t know patching where
may change the original code flow and jump to our shellcode. In other words we need
to know the base of “TEEGlobalTask”.

Another interface provided by “TEEGlobalTask” has an interesting function named
“ALLOC_EXCEPTION_MEM”.
It’s allows that normal world provide a physical address to “RTOSck”, the kernel of
TEE. RTOSck may write some crash information to this given physical address when task
in TEE crashed. This physical address can be accessed by normal world, of course.

So I request SMC with an invalid physical address and make it crash. Here’s a example
of RTOSck’s crash information:

This info shows that $PC of crash is 0x2E103050.So I suspect the base of
“TEEGlobalTask” is 0x2E100000. Now I can patch some code to “TEEGlobalTask”, make
it jump to my own shellcode in normal world. Then trigger patched code execution
from outside, all done.

6 Get fingerprint image from sensor

Only “TA_Fingerprint” can read fingerprint image from sensor by calling syscall
“__FPC_readImage”.
Unfortunately the code execution exploit is under “TEE_GlobalTask” context,
fingerprints reading request will be denied because of security check made by RTOSck.

So I need to find a vulnerability on RTOSck to bypass the security check.

signed int __fastcall sys_call_overwrite(int a1, int a2)
{
 signed int v2; // r3@2
 int v4; // [sp+0h] [bp-14h]@1
 int v5; // [sp+4h] [bp-10h]@1
 v5 = a1;
 v4 = a2;

 if (*(_DWORD *)a1 == 0x13579BDF)
 {
 // write (*(int*)(arg1 + 0x18C) + 7) >> 3 to arg2
 *(_WORD *)v4 = (unsigned int)(*(_DWORD *)(v5 + 0x18C) + 7)
>> 3;
 v2 = 0;
 }
 return v2;
}
}

This is a syscall in RTOSck without any input check, I can overwrite memory in TEE
kernel to patch the check code.

Now the code execution exploit is able to get fingerprints image by calling
“__FPC_readImage”.

7 Conclusion

With these exploits, a local application is able to get fingerprint images or other
encrypted data, disable signature verification of modem image and TA, load any
module to TEE and modify the efuse data.

Even though TrustZone is designed for solving security problems, an implementation
with security issues is still exploitable.

References

[1] http://www.arm.com/products/processors/technologies/trustzone/index.php
[2] http://genode.org/documentation/articles/trustzone

http://genode.org/documentation/articles/trustzone

Responsible Disclosure

These vulnerabilities were disclosed to Huawei PSIRT in March 2015,a fix was provided
by Huawei in May 2015.CVE IDs were assigned as CVE-2015-4421 and CVE-2015-4422.

