Managing and
Understanding
Entropy Usage

blg.(’:k hat

USA =25

Bruce Potter

bpotter@keywcorp.com | |
gdead@shmoo.com

Sasha Wood
swood@keywcorp.com

¥\ s 7
O N

blackhat Who are we? Why areiwe here?

LISAEENS ’ . /

* Bruce—CTO KEYW Corporation,
Founder of The Shmoo Group

 Sasha-—Senior Software Engineer,
KEYW Corporation

. Our research WIH]I[T]E[W/0]O/D

— Funded by Whitewood Encryption ENCRYPTION SYSTEMS. INC.
Systemsin support of ensuring '

the quality of entropy throughout
the enterprise

Riatdadtseliicaiiiiy TAKE THE ENTROPY CHALLENGE!
Rennicks, Jeff Acquaviva s-l-up BV Bl]l]TH 957

— Whitewood is comingout of
stealth at BlackHat. Stop by the
booth and play our entropy
generation game

O

blackhat

USA 2015

* Goal: Better understand and manage entropy and
randomness in the enterprise

 Determine rates of Entropy Production on various
systems

 Determine rates of Entropy Consumption of
common operations

 Determine correlation between entropy demand
and supply of random data

If there’s one theme in the work we did it’s “no one really
understands what’s happening with respect to entropy and
randomness in the enterprise”

O

blackhat Which of these usé m-c)re\,entrqpy?

LUSA 2015

O

blackhat Which of these usé m-c)re\,entrqpy?

LUSA 2015

/bin/1s # openssl genrsa 1024

O

blackhat Which of these usé m-ore\,entrqipy?

LUSA 2015

/bin/ls

openssl genrsa 1024

O

blackhat Which of these usé m-c)re\,entrqpy?

LUSA 2015

openssl genrsa 4096 # openssl genrsa 1024

O

blackhat Which of these usé m-c)re\,entrqpy?

LUSA 2015

openssl genrsa 4MNLEDpenssl genrsa 1024

O

blackhat Which of these usé m-c)re\,entrqpy?

LUSA 2015

openssl genrsa 4096 4096 bit TLS with PFS

O

blackhat Which of these usé m-c)re\,entrqpy?

LUSA 2015

4096 bit TLS with PFS

openssl genrsa 4096

O

blackhat Which of these usé m-c)re\,entrqpy?

LUSA 2015

1024 bit TLS (no PFS) 4096 bit TLS with PFS

O

blackhat Which of these usé m-c)re\,entrqpy?

LUSA 2015

1024 bit TLS (no P&AMEJS bit TLS with PFS

O

blackhat Which of these usé m-c)re\,entrqpy?

LUSA 2015

/bin/1ls 4096 bit TLS with PFS

O

blackhat Which of these usé m-c)re\,entrqpy?

LUSA 2015

@ 4096 bit TLS with PFS

O

blackhat Which of these usé m-c)re\,entrqpy?

LUSA 2015

@ 4096 bit TLS with PFS

O

blackhat

LUSA 2015

/bin/SANYTHING 4096 bit TLS with PFS

More on this later...

b.&khat Entropy vs. Ran 1)

LUSA 2015

* |t's a bit of a state of mind... there are several ways to
think about it

* Entropy is the uncertainty of an outcome.

Randomness is about the quality of that uncertainty
from a historical perspective.

* Full entropy is 100% random.

* There are tests that measure entropy. Randomness
either is or is not.

* Entropy has a quantity. Randomness has a quality.

O

black hat

SA 2015

e Random Number Generators
are non-deterministic... often

Consuming Application

based on specialized "’“““"‘*“T“"‘S“"“g Aditianal
hardware and physical o ——
processes l

* PseudoRandom Number A N 20 TR 2 R B
Generators ARE Istantiae eseed
deterministic.. But that

doesn’t mean they are bad

| |
| |
| |
| |
| |
| |
|
. . | |
— Tons of research in this || Uninstanéae | Internal State Generue |
space, and won'’t bore you I i
| |
|
I :
: :

with it here (and either you
agree with the public
research or you don't) | _DRBGMechaniom !

— Ina nutshell, good PRNG’s
with good seeding, such as
those based on SHA hashes Figure 1: DRBG Functional Model
using a hardware RNG, are Source: NIST 800-90A
good for ~2748 BLOCKS
without reseeding

O

blackhat Entro PY, ad PR.N G’
SA 2015 > ‘» ¥ d

* An analogy is helpful to understand how entropy
relates to PRNG’s. We're in Vegas, so think of a
deck of cards... a REALLY big deck of cards
— Entropy generation is the act of shuffling cards
— The PRNG is the act of dealing the deck
— The deal is clearly deterministic, however...

— The better the shuffling, the more random the deal
will be

* In summary, the better the entropy, the better
the PRNG will perform

blackhat Linux Entropy and\RandomiEcCosystem

LUSA 2015

0 UYL

Interrupts

Disk I/0 Application

/dev/random
Application
/dev/urandom

Mouse/Keyboard Entropy

"CIeanup" =

and tracking

Hardware RNG's

Userland Entropy

blsekhat EntropyProduction

LUSA 2015

Time/Date (VERY low entropy)

Disk |10

nterrupts

|SB from network activity / inter arrival time

Keyboard input
Mouse movements

blgc’zkhat Entropy Productlo‘n. n \HE:

SA 2UIS

Sources of Entropy Implementations

Thermal Noise Ivy Bridge (Thermal Noise) —
Intel integrated hardware into Ivy

Atmospheric Noise _ _ _
Bridge Chipsets (access via

A/D conversion Noise RDRAND)

Beam Splitting Entropy Key (Shot Noise) —
Quantum Simtec’s USB connected entropy
Shot Noise SRS el

BitBabbler et al (Shot Noise)
Whitewood et al (Quantum)

Lava Lamps

Lavarand (Lava Lamp)—
Developed by SGI. Uses images
of Lava Lamp to find entropy

O

LUSA 2015

blackhat Linux Entroj

* Linuxmaintainsanentropy poolwhere entropy is
stored foruse by /dev/random and
/dev/urandom

 Datafrom entropysources may have biasthat’s
removed via whitening

* Noteon entropyestimation...thereisno
absolutely correct measure of entropyin the pool
so the kernel makes an estimation PRNG (Main

— A polynomial analysis is done on incoming events pool)
to see how “surprising” the event is. If it’s REALLY
surprising, you get a good bump in entropy. If it’s entropy
not, you don’t get much. est.

* The /dev/random and/dev/urandom
poolsare generally close to zero. Entropy is fed PRNG (/dev/ |l PRNG (/dev/

from the main pool when necessary. urandom) random)
. . . entropy entropy
* Poolcan be queried foran approximation of how est. est.

much entropy isavailable
(/proc/sys/kernel/random/entropy a
vail). Valuereturnedis fromthe main pool.

* Poolis normally 4096 bits. Can be increased (but
unlikely to be needed)

Whitening

O

black hat

SA 2UIS

Entropy Produ

* Entropy production rates for various use cases in

virtual machine and bare metal systems

— 5 runs @ 300 seconds each

Use Case Entropy Production Rate Entropy Production Rate
(VM) (Bare Metal)

Unloaded

Apache with 10 reqgs/s

Apache with 50 regs/s

Pinged every .1s

Pinged every .001s

Heavy Disk 10

Unloaded with HAVEGED
Pinged every .1s with HAVEGED
Pinged every .0001s with HAVEGED
Heavy Disk IO with HAVEGED
RDRAND

1.94 bits/s
3.85 bits/s
5.56 bits/s
2.2 bits/s
3.77 bits/s
3.26 bits/s
9.08 bits/s
9.17 bits/s
12.6 bits/s
9.09 bits/s
N/A

2.4 bits/s

4.84 bits/s
7.66 bits/s
2.95 bits/s
13.92 bits/s
4.75 bits/s
1.2 bits/s

1.54 bits/s
2.91 bits/s
2.33 bits/s
0.58 bits/s

bngékhat Entropy Product

SA 2015
Use Case Entropy Production Rate Entropy Production Rate
(ViV) (Bare Metal)
Unloaded 1.94 bits/s 2.4 bits/s
Pinged every .001s 3.77 bits/s 13.92 bits/s
Pinged every .0001s with HAVEGED 12.6 bits/s 2.91 bits/s
RDRAND N/A 0.58 bits/s
 Unloaded

— \Very little entropy available any way you cut it

e Virtual Machines
— Not as much entropy available as with bare metal... run HAVEGED if you can

* Bare Metal
— ??? With HAVEGED was far worse than without in our testing
— Tried several different setups with same results. Interested in other’s findings

* RDRAND
— Unavailable (normally) in the VM. However, even on bare metal, kernel entropy
estimation was not helped by RDRAND
— Turns out, due to recent concerns regarding RDRAND, even though RDRAND can be used

to reseed the entropy pool, the entropy estimation is NOT increased by the kernel... on
purpose

O

blackhat Entropy Produ

LUSA 2015

* Entropy production rates for various Android devices

Entropy Production Rate

S3, 10 Load 20.7 bits/s
S3, 10 Load, web browsing 24.4 bits/s
HTC One m$8, 10 Load 38.4 bits/s
HTC One m8, unloaded 32.9 bits/s
Apache (atom based tablet), unloaded 23.7 bits/s
Proprietary phone, unloaded 38.5 bits/s
Proprietary phone, shaken 34.7 bits/s

* Across the board, more entropy productionthan on our
servers and VM’s (even without load)

* We tried to “shake” a phone to see if the accelerometer
would add entropy. No joy.

O

black hat

SA 2015

* /dev/random
— Provides output that is roughly 1:1 bits of entropy to bits of random number
— Access depletes kernel entropy estimation
— Blocks if entropy pool is depleted and waits
« /dev/urandom
— Never blocks

— Will reduce entropy estimation IF sizeof(Srequest) < (Entropy estimation — 128
bits)... and only will reduce estimation down to 128 bits

— Will not reduce entropy estimation from the pool if the pool is less than 192
bits (64bits is minimum amount of entropy to be provided)

— Eachread produces a hash which is immediately fed back in to the pool

— For most (all) purposes /dev/urandom is fine (if used correctly... ie: you
check to see if you actually got entropy)

* get random bytes()

— Call for the kernel to access the entropy pool without going through the
character devices

— Just a wrapper to access the non-blocking pool just like /dev/urandom

O

blackhat

LUSA 2015

* Crand() —A Linear Congruential Generator. The same
seed results in the same output. And if you know two
consecutive outputs, you know all outputs

— https://jazzy.id.au/2010/09/20/cracking random number gen
erators part 1.html

* Python random. py —Implements a Mersenne Twister.
Better than rand () but still not suitable for crypto
(624 consecutive outputs gives up everything)

— https://jazzy.id.au/2010/09/22/cracking random number gen
erators part 3.html

O

black hat

SA 2015

cat /proc/sys/kernel/random/entropy avail
882

cat /proc/sys/kernel/random/entropy avail
177

cat /proc/sys/kernel/random/entropy avail
672

cat /proc/sys/kernel/random/entropy avail
567

This is an unloaded server... almost no activity.
What’s going on here?

O

blackhat

LUSA 2015

...including at process start time. For ASLR, KCMP, and other
aspects of fork/copy process(), the kernel can
consume up to 256 bits of entropy each time you start a
process

* Not consistent, still doing research.

* |n our observation, the pool was never maxed out, and in
general was never above 25% full

 Callsto /dev/urandom were often close enough to the
192 bit cutoff that even though data was returned, no
entropy was removed from the pool

* Even without doing “crypto” there is constant pressure on
the entropy pool due to OS activities

— Makes it even harder to get good seeds for cryptographic
operations.

O

blackhat

LUSA 2015

* OpenSSL maintains its OWN PRNG that is seeded
by data from the kernel

* This PRNG is pulled from for all cryptographic
operations including
— Generating long term keys
— Generating ephemeral/session keys
— Generating nonces

* Draws against this PRNG are not known about by
kernel and are not tracked outside of OpenSSL

blg

LUSA 2015

OpenSSL only seeds its internal
PRNG once per runtime

No problem for things like
openss| genrsa 1024

Different situation for long
running daemons that link to
openssl... like webservers

Our data shows that an Apache
PFS connection requires ~300-
800 bytes of random numbers

— Nonce forSSL handshake (28

bytes)

— EDH key generation (the rest)
If your application doesn’t put
limits on # of connections per
child, these nonces and keys will
be derived from the same PRNG
that is never reseeded

khat Entropyin Open

ensSh Nzl

e ssue #1

md rand.c (openssl):

if (!initialized) {

RAND poll();
initialized = 1;

}

[[initialized is set back
to 0 at exit]]

ssl engine init.c (mod SSL):
ssl rand seed(base server, ptemp,
SSL_RSCTX STARTUP, "Init: ");

O

blackhat

LUSA 2015

* OpenSSL pulls seed from /dev/urandom by default
(and stirs in other data that is basically knowable)

* OpenSSL does NOT check to see the quality of the
entropy when it polls /dev/urandom

— |t asks for 32bytes of random data at init.
/dev/urandom will happily provideit

— If entropy estimate is <384, only a limited amount of
entropy is removed from the pool

— If entropy estimate is <192, no entropy is removed from
the pool

* This affects both command line use and library use of
OpenSSL. It does not discriminate.

O

blackhat Entropym .

USA 2015 > 7

e mod _SSL is the de facto mechanism to implement
SSL/TLS in Apache

e Given that SSL does not reseed in long running
processes, mod_SSL should periodically reseed

— Best practice according to
https://wiki.openssl.org/index.php/Random Numbers

— Programs can defensively call RAND poll (somewhat
dangerous on some platforms), RAND add or
RAND seed (requires you to get a new seed yourself)

* Does NOT call RAND poll() or RAND add()

— Rather, mod_SSL attempts to add entropyitself to the
OpenSSL PRNG

O

black hat | Entropy"in \

LUSA 2015

* mod_SSl’s attempt to generate entropy is not
very sophisticated. On every request, it stirs in

— Date/time (4 bytes)
— PID
— 256 bytes off the stack

* Date/Time is low resolution and guessable
 PIDis alimited search space

e 256 bytes off the stack does not vary from call
to call

blgc’zkhat | mod_SSL Entr

LUSA 2015

* Analysis of the 256 bytes from the stack

— mod_SSLis declaring an unsigned char[256], not zeroizing
it, and then reading the data in that array as part of the
attempt to gather entropy

— Of our ~600k observations of this process, the array
yvielded 4568 unique values (ie: <8% of the time the value
changed)

— Combined with PID (which for server processes will always
be the same) and date (with only 1 second resolution),
there is very little entropy added through mod_SSL

* |n summary, mod_SSL tries really hard but doesn’t do
much better than doing nothing at all

O

blackhat nginx Entrofpy /A n'a}IyS|s

LUSA 2015 ’

* Let’s not let nginx off the hook...

* nginx does does nothing to attempt to stir in
more entropy

— Relies solely on OpenSSL’s built in entropy
decisions

O

blackhat Entropy vs._Rari‘dom Numbers

SA 2015 TR & §
* How much entropy goes in to each random byte you need?
— It dependson whatyou’redoing

* Tested various common actions in OpenSSL

— These are averages. Publickey generation can vary wildly based
on how “lucky” you are when generating pseudo primes.

— Assume OpenSSL was seeded with 32 bytes of entropy. In
practice, the amountof entropy is likely lower

RSA 1024 bit key gen 5721 bytes
RSA 2048 bit key gen 14694 bytes
RSA 4096 bit key gen 139315 bytes
Apache TLS 1024 (no PFS) 498 bytes

Apache TLS 1024 (PFS) 635 bytes

O

blackhat

LUSA 2015

* How much entropy do you really need in
order to be secure

— Depends on yourrisk threshold and types of
attacks you care about

e Attacksagainst PRNG’s come in three major
forms
— Control/Knowledge of “enough” entropy sources
— Knowledge of the internal state of the PRNG
— Analysis of the PRNG through observed traffic

O

black hat

SA 2015

 Controllinginputs
— By default, kernel pulls from a variety of sources to create entropy pool
— Difficult to control all of them, and ~256bits of entropy from any one source CAN
result in cryptographically strong numbers
 Knowledge of state
— Internal state is very complex, but not impossible to understand

— Amount of entropy in pool and amount of entropy in the seed pulled from pool is a
good surrogate to know the “guessability” of the pool

— If you're pulling data without appreciable entropy, you're putting yourself at risk

* Observing output
— According to NIST, you need at least 248 blocks of output
— That’s “blocks of output”.. Not bytes. Some PRNG blocks are 256bits or more

— Apache needs 1,000,000 million bits of randomness per minute on a fully loaded
core
— That’s 10,000 years (give or take) before NIST thinks you need to reseed

* BUT...

— NIST’s guidance assumes correctness. What we’ve described isn’t correct.
Successful crypto requires attention to detail. While we don’t know if the issues
we’ve talked about today are exploitable, they’re certainly not good

— All things being equal, we’d be skeptical of the current system

O

blackhat

LUSA 2015

 We created the WES Entropy Client as a solution to
the wild west of entropy generation and distribution.
— Initial release is for OpenSSL

* The client allows users to:
— Select which entropy sources are used,
— How to use each source; seed or stream,
— Which PRNG to use and at what security strength,
— Provide our own PRNG for use,
— How often to re-seed the PRNG,
— Whether or not to use predictionresistance, and
— View generation and consumption statistics.

SA 2015

blgc’zkhat l[ibWES vs egdvl

* Status quo

— Does not allow insight into the production or consumption of entropy.

— Cannot block OpenSSL from reading from /dev/urandom if no entropy has
been produced (startup on VM clone, etc)

* EGD

— Simply puts entropy into the kernel pool, therefore all the issues above apply

* WES Entropy Client
— Provides it’s own entropy pool and distribution within OpenSSL.
— Allows users to pick which entropy sources are used and how they are used
— Will not distribute entropy until properly seeded if using PRNG.

O

blackhat

USA 2015

e 2011- Linux kernel contained code that said “if you’ve got RDRAND,
use that as sole source of entropy”

e 2012 —TheodoreTs’o (re)took control of that part of the kernel and
added other sources of entropy back in

 Spring 2013 —Snowden

* Fall 2013 — Acall to remove ALL supportfor RDRAND from Linux
random subsystem (including online petitions and the like)

* Fall 2013 — Linussays “Wheredo | start a petition to raise the 1Q
and kernel knowledge of people? Guys, go read
drivers/char/random.c.Then, learn about cryptography. Finally,
come back hereand admit to the world that you were wrong.

 “Short answer:we actually know what we are doing. You don't.”

Given our findings on process forking vs. OpenSSL use, we're not
sure anyone knows what they’re doing. So, we did it ourselves.

O

blackhat

USA 2015

* libWesEntropy—Replaces Entropy Client
OpenSSL random engine
* WES Entropy Daemon — Apache
Interfaces with external
entropy sources and feeds v
entropyinto OpenSSL OpenSSL
directly
— Entropy sources can even 3
be network based. Entropy libWesEntropy
can be provided asa I
service to libWES clients

* Must configure OpenSSLto
use libWES

* Most software doesn’tlook WES Entropy Daemon
at OpenSSL configuration

and just uses “stock” il RN

— To get mod_SSL integration RDRAND libWesQrng /dev/random
with libWES, you have to
recompile mod_SSL to call
OpenSSL so it reads
configuration

USA 2015

biSekhat IibWESC“ntWJ <

Generating a server key and certificate:

dschaadt — dschaadi@qgrng-node2: ~ — ssh — 140x35

dschaadt@qrng-node2 $ cat /etc/wesentropy/client.c|dschaadt@qrng-node2 $./bin/openssl req -x509 -newke
onf rsa:2048 -keyout /opt/devApache/conf/server.key —out /opt/devApache
[DEFAULT] onf/server.crt -days 360
working_dir: /var/run/wesentropy ewes: init
Generating a 2048 bit RSA private key
[daemon]
socket_path: %(working_dir)s/wes.socket ; path to server SOCKeT |i.ccssssessessssessssessasssssssssessssassssssssssasassassasassnsas
©8060000000000000000000000000000000000ascscacacsascssasasasattd
[seed_source] writing new private key to '/opt/devApache/conf/server.key’
seed_sourcel: ('FILE', '/dev/urandom', False) Enter PEM pass phrase:
Verifying - Enter PEM pass phrase:
[stream_source]
stream_sourcel: ('HARDWARE', 'RDRAND', True) You are about to be asked to enter information that will be incorpo
ted
[drbg] into your certificate request.

drbg_spec: Hash_DRBG_SHA256_256 wWhat you are about to enter is what is called a Distinguished Name
reseed_rate: LINESPEED a DN.
dschaadt@qrng-node2 $./scripts/wesentropyd.sh There are quite a few fields but you can leave some blank

For some fields there will be a default value,

If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:US

State or Province Name (full name) [Some-State]:

Locality Name (eg, city) []:

Organization Name (eg, company) [Internet Widgits Pty Ltd]:
Organizational Unit Name (eg, section) []:

Common Name (e.g. server FQDN or YOUR name) []:

Email Address []:

ewes: destroy

dschaadt@qrng-node2

:: 16 Jul 2015

O

blackhat

LUSA 2015

* Currently available through
— http://whitewoodencryption.com/

* Client is under active development, so please
provide feedback and bug reports

e Future plans

— Integration with nginx, OpenSSH, and other large-
scale OpenSSL consumers

— Integration with Whitewood’s QRNG and Entropy
as a Service offering

— Focus on stability and scalability

USA 2015

biSekhat Blackhat S

* Entropy use is not well understood and
managed; Developers and administrators
don’t have complete ownership so issues
persist

* OpenSSL has several weaknessesin how it
handles entropy, particularly when linked in to
long running processes like servers

* Need to think about entropy lifecycle, just like
we think about other crypto lifecycles

O

blackhat

LUSA 2015

