
Repurposing OnionDuke:
A Single Case Study Around Reusing Nation State

Malware

Josh Pitts
the.midnite.runr@gmail.com

Black Hat USA 2015

 Abstract- Nation State malware and tools are not magical.
However, they are effective because they are developed in
private, have a budget, and maybe teams of engineers. Whenever
one of these digital weapons is released to the public, discovered
via forensics or an information leak, it allows all interested
parties to learn and improve either their defensive or offensive
capabilities. This paper inspects the OnionDuke packer
discovered by the author in October 2014; with the result of
repurposing it in the author’s own tool set.

I. INTRODUCTION

 Repurposing is what we do as humans. As Picasso said,
“Good artists copy, great artists steal.” This is why we have
trademarks, patents, and copyrights. When it comes to digital
weapons developed by nation states and criminals, there is
little risk in terms of legal retribution (outside of criminal
prosecution and other forums of retaliation) for researching
and reusing ideas or components.

Repurposing by nation states and criminals
 The Sony attack reported in 2014 [1] featured a destructive
malware named Destover. Destover’s main feature was
delayed hard drive erasing. North Korea was ultimately
blamed for this attack because Sony’s comedy movie The
Interview apparently told an insulting story of the Democratic
People’s Republic of Korea’s leader. The Destover malware
shared similar command and control servers as Volgmer
against South Korea in 2014, also linked to North Korea.
Destover had similar file names as Jokra also used against
South Korea in 2013 and again linked to North Korea. In
addition, Destover had the same non-malicious drivers as
those used in the Shamoon attacks, reported on August 16,
2012, against energy and oil companies by the group named
Cutting Sword of Justice [2].
 According to documents dated June 2012, the NSA
developed their own hard drive data destruction malware
labeled PITIEDFOOL [3]. However, the idea of destructive
malware is not new, the most famous probably being the
Michelangelo virus [4], first discovered in early 1991.
 The host based security firm, Kaspersky, documented the
activities of the EQUATION Group in February 2015 [5].
While the report does not mention the NSA directly, there are
instances where they are similar. In 2009, Google asked the

NSA for help with the Aurora intrusion [6]. In the report
released by Kaspersky, the 2009 Aurora exploit was used in
Afghanistan by the EQUATION Group (CVE-2013-3918).
Meaning the EQUATION Group recovered and repurposed
the exploit from the Aurora intrusion. In addition, two Stuxnet
exploits were used by the EQUATION Group, MS09-025 and
CVE-2010-2568.
 Through leaked documents by Edward Snowden, Der
Spiegel [7][8] reported that in 2012 the NSA used and
repurposed South Korean implants on North Korean networks.
The NSA leveraged existing botnets and command and control
networks to deploy implants and collect information.
Additionally, the NSA captured zero day exploits in passive
collection, possibly for reuse.
 Criminals have a different motive than nation states, as their
primary purpose of activity is the creation of revenue [9].
Criminals will usually take the quickest route to achieve that
goal while reusing openly available tools and exploits. From a
CyActive report titled Cyber Security’s “Infamous Five” of
2014 [10], five types of malware are discussed with specifics
around the number of reused components. Of the five, the
least amount of reused components used was four; with the
greatest amount of reused components used were 12.
 On July 6th 2015, HackingTeam Remote Control System and
associated source code, zero day exploits, emails, and internal
documents were dumped via bittorrent and made available on
the Internet [11]. Within days a HackingTeam zero day flash
exploit was included in the Angler Exploit Kit [12].

II. OnionDuke Discovery

Searching for the Kraken
 During the author’s 2014 DerbyCon Talk, A Year in the
Backdoor Factory [13], it was stated that he believed that
binaries were being patched during download on the Internet.
Tor Proxy and Exitmap were used to find a malicious Tor exit
node MITM patching binaries during download and the details
were outlined in the blog post The Case of the Modified
Binaries [14]. F-Secure named the deployed malware
OnionDuke because of its relation to CosmicDuke and
MiniDuke and its suspected links to the Russian Government
[15].

III. OnionDuke Packer

Understanding the Packer
 From the author’s background in developing The Backdoor
Factory (BDF) and BDFProxy [16], the most interesting part
of OnionDuke is the packer, not the dropped malware itself.
The OnionDuke packer was surprisingly simple. Fig 1,
originally from F-secure, outlines the steps that are taken from
initial download to infection. Step one and two; the user

downloads a PE binary over HTTP through a Malicious Tor
exit node, or any node on the Internet. As the binary moves
through the malicious exit node (step three), it is
wrapped/patched with the unpacking stub and malware. Next
the user executes (step four) the binary. Upon execution, the
OnionDuke unpacking stub drops a batch file, original binary
(originalname.exe.org), and malware (file.exe) in the user’s
%temp% directory and executes the batch file (step 5). Next
the malware is executed (step 6). After the malware has
infected the machine, the batch file overwrites the packed file
with the original binary (step 7). Then the batch file executes
the original binary (step 8) and deletes the original file and
itself in the %temp% directory. This approach is advantageous
if the user believes that something is incorrect with the
downloaded file and chooses to look for an expected signature
or hash of the file after the initial execution – as the
downloaded file will be restored to the expected original
binary.

Static Analysis
 The author captured nine samples over over five days.
During that time, he periodically re-downloaded the same
binaries through the malicious exit node to determine if there
were changes in the packing/wrapping method. There were no
noted differences from binary to binary. All patched/wrapped
binaries deployed malware as a PE executable and not a DLL.
 Upon manual inspection of the section hashes from
VirusTotal [17][18][19], it is noted that the text, rdata, and

reloc sections each share the same section hashes between
samples collected. The data sections are the same size but
have different hashes. By cutting out the data sections between
different OnionDuke files and comparing them, the
differences were found between offsets 0xfb20 and 0xfd6c.
The first main difference between data sections was the
storage of original file name formatted as
originalfilename.exe.org, located at offset 0xfb20. There is
extraneous data included at the end of an OnionDuke binary,
as the physical size is greater than the virtual size that is
loaded into memory. This appended data is associated with
offset 0xfc28, which is a four-byte pointer to the beginning of
the original file located on disk. The next four bytes is the size
of the original file. It should be noted that by comparing the
appended size to the original file size that the appended file is
compressed. At file offset 0xfd3c is the four-byte pointer to
the location on disk of the appended OnionDuke Malware
(file.exe named at offset 0xfc34) also in a compressed format
with the size denoted by the next four bytes.

Figure 1: OnionDuke Unpack Order

Stealing Resources
 Felix Grobet, et al, presented a MITM patching system
named cyanid and calcium in 2008 [20] where a noted
drawback was that the associated file icons would not be what
the user would be potentially expecting and thus warning the
user that something was suspicious. However, OnionDuke
solves this issue by taking the original binary’s resource
section (rsrc), removing excess padding, and updating the
RVA of the pointers to each resource so that the PE loads
correctly and looks the same on disk. The author’s tool BDF,
never had this issue as code/payloads are patched into the host
binary and resources stay intact.

Stub Details
 The OnionDuke packer format is noted in Fig 2. The packer
stub includes text, data, rdata, and reloc sections.

Figure 2: OnionDuke Packer Layout

Modifications are made to the data section based on size and
location of the original binary and malware. The rsrc section is
taken from the original binary and modified. The original
binary is compressed and XOR’ed. The stub appears to be
written in C++, compiled with Visual Studio with the Buffer
Security Check (security cookie), supports both ANSI and
Unicode file and path names, and captures command line
arguments to pass back to the original program at execution.

XOR and Compression
 Before decompressing the appended compressed binaries to
disk, the data blobs are each XOR’ed with the same four-byte
key. The XOR key is located in two locations in the text
section at offsets 0x413 and 0x429 respectively.
 The compression algorithm applied can be recognized by its
magic number AP32, which is for the aPLib compression
library written by Jørgen Ibsen [21]. aPLib libraries can easily
be imported into C/C++ for only x86/x64 projects.

Malware Deployment
 All of the nine samples downloaded by the author deployed
PE binaries. However, there existed two ways to deploy a
DLL: Via rundll32 either by calling the DLL export of
printMessage or by ordinal number. F-secure found one
OnionDuke associated DLL, however, the packer was not
recovered [22]. The author believes that the called export of
printMessage or the ordinal values could be customized as

needed based on the campaign by the authors. To denote if the
deployed malware is a DLL, the byte at offset 0xfd38 is set to
0x01 and if an ordinal is used, the ordinal value will be set
beginning at offset 0xfd48.

III. Repurposing the OnionDuke Packer

What to Keep?
 While the detection rate for the associated packer is high at
41/55 AVs for one particular sample [23], the author believes
all of the features and capabilities should be reused for an
exercise to show how easy it is to repurpose nation state
code/malware. Therefore the author will save the OnionDuke
stub itself and make modifications to the stub to support BDF
user provided binaries and malware.

Implementing in BDF/BDFProxy
 BDF/BDFProxy includes a static PE parser and the
framework in place to patch PE files. Therefore minimal
changes were needed to implement this into the existing
framework. The most difficult part of the process was
building a resource section parser to fix up the original
binary’s rsrc section RVA values (Example: icon pointers)
according to the OnionDuke Stub RVA offsets. Overall ~250
lines of code were added to BDF to support the OnionDuke
patching/wrapping method.
 As the anti-virus (AV) detection is high for the original
packer, variability was added in a couple ways: Randomize
the name of dropped binaries, randomize the XOR key used
for the appended binaries, and add a random four byte number
to each section to randomize the section hash.

Usage
 Within ‘the-backdoor-factory’ directory execute the
following command:

./backdoor.py –f filetopatch.exe –m onionduke –b malware.exe

 BDF supports both win x86/x64 PE executable binaries and
DLLs for the OnionDuke patching/wrapping method. The
only caveat for DLLs, the DLL should export printMessage,
use ordinal 0x01, or like a meterpreter DLL - execute no
matter what ordinal or export is called.

IV. Mitigations

 The best AV evasion that was achieved, without modifying
large swaths of the text section, was 21/55 on VirusTotal [24].
This does not include the deployed malware that is written to
disk during execution. However, many popular AVs missed
this including Sophos, Microsoft, McAfee, Malwarebytes,
Symantec, and Trendmicro. Greater AV evasion can be
achieved by re-writing the packer in C/C++, however, that
was not the purpose of this paper.
 To prevent MITM patching of binaries software vendors and
distribution sites should implement TLS with HTTP Strict
Transport Security (HSTS). For host-based security, large

enterprises should implement whitelisting and restrict the
downloading of binaries. For individuals, check signatures if
the binary is signed and verify that hashes match on download.

ACKNOWLEDGMENT

 Special thanks to Travis Morrow, Matt Graeber, Jason
Butterfield, Chris Truncer, Will Schroeder, and the crew at
Leviathan Security.

REFERENCES

[1] Symantec, Destover Destructive malware has links to attacks on South

Korea. http://www.symantec.com/connect/blogs/destover-destructive-
malware-has-links-attacks-south-korea

[2] Wikipedia, Shamoon Malware. https://en.wikipedia.org/wiki/Shamoon
[3] PC World, Report: NSA not only creates, but also hijacks, malware.

http://www.pcworld.idg.com.au/article/564189/report-nsa-only-creates-
also-hijacks-malware/

[4] Wikipedia, Michelangelo Virus,
https://en.wikipedia.org/wiki/Michelangelo_(computer_virus)

[5] Kaspersky, EQUATION GROUP: QUESTIONS AND ANSWERS.
https://securelist.com/files/2015/02/Equation_group_questions_and_ans
wers.pdf

[6] Wired, Google Asks NSA to Help Secure its network.
http://www.wired.com/2010/02/google-seeks-nsa-help/

[7] Ars Technica, NSA Secretly hijacked existing malware to spy on N.
Korea, others http://arstechnica.com/information-
technology/2015/01/nsa-secretly-hijacked-existing-malware-to-spy-on-
n-korea-others/

[8] Der Spiegel, http://www.spiegel.de/international/world/new-snowden-
docs-indicate-scope-of-nsa-preparations-for-cyber-battle-a-
1013409.html

[9] Kaspersky, What Motivates Cybercriminals? Money, Of Course.
https://blog.kaspersky.com/what-motivates-cybercriminals-money-of-
course/

[10] CyActive, Cyber Security’s Infamous Five of 2014.
http://www.cyactive.com/infamous-five-of-2014/

[11] Hacking Team documents, https://ht.transparencytoolkit.org/
[12] Malware Don’t Need Coffee, CVE-2015-5119 (HackingTeam 0d - Flash

up to 18.0.0.194) and Exploit Kits.
http://malware.dontneedcoffee.com/2015/07/hackingteam-flash-0d-cve-
2015-xxxx-and.html

[13] Joshua Pitts, A Year in the Backdoor Factory.
https://www.youtube.com/watch?v=LjUN9MACaTs

[14] Joshua Pitts, The Case of the Modified Binaries.
http://www.leviathansecurity.com/blog/the-case-of-the-modified-
binaries

[15] The Guardian, Evidence implicates government-backed hackers in Tor
malware attacks.
http://www.theguardian.com/technology/2014/nov/14/government-
hackers-tor-malware-attacks-onionduke-miniduke

[16] Joshua Pitts, The Backdoor Factory and BDFProxy.
https://github.com/secretsquirrel/the-backdoor-factory

[17] VirusTotal, An OnionDuke sample.
https://www.virustotal.com/en/file/de1a78b4a65d76d26f04db0c1fd5eefd
b9361f434925df88e45d6cd511f3c013/analysis/

[18] VirusTotal, An OnionDuke sample.
https://www.virustotal.com/en/file/4910e4a5e2eed444810c62a0e9a32aff
b8a41693b2fcff49aabd9c125fa796d1/analysis/

[19] VirusTotal, An OnionDuke sample.
https://www.virustotal.com/en/file/a3e5b92ce574397000825dc646e1a77
63b7f817bb8ac8d446a31c3252c1076eb/analysis/

[20] Felix Grobet, et al. Software Distribution Malware Infection Vector.
https://dl.packetstormsecurity.net/papers/general/Software.Distribution.
Malware.Infection.Vector.pdf

[21] Jørgen Ibsen, aPLib compression library.
http://ibsensoftware.com/products_aPLib.html

[22] VirusTotal via F-Secure, OnionDuke DLL Dropper.
https://www.virustotal.com/en/file/0102777ec0357655c4313419be3a15c
4ca17c4f9cb4a440bfb16195239905ade/analysis/

[23] VirusTotal, OnionDuke wrapper with procexp.exe.
https://www.virustotal.com/en/file/4910e4a5e2eed444810c62a0e9a32aff
b8a41693b2fcff49aabd9c125fa796d1/analysis/

[24] VirusTotal, BDF using OnionDuke method.
https://www.virustotal.com/en/file/4ca772598eb65b915c65a928fe84fd3
3fa22fe3796572969259141293a7ec35f/analysis/1437012262/

