
This is DEEPerent:
Tracking App behaviors with
(Nothing changed) phone for
Evasive android malware



What I will talk about..

• Challenges we faced on android malware analysis:

– Fast code analysis (Reversing) <- always challenge 

– Obfuscation

– Various dynamic code loading techniques (file/memory)

– Anti-analysis techniques(advanced android malware, 
protectors)

– Native behavior, obfuscation, packing

– Maintenance

– Environment detection (Emulator/Rooting detection)



• A tool for tracking execution flow of android malware

– Supports tracking the android application with your nothing 
changed phone

– The tool has following features to track behaviors of evasive 
android malwares:

• No platform modification

• Regardless of root privilege

• Selective behavior tracking

• Support tracking extension(plug-in)

• Native layer monitoring (libc, JNI, Binder)

What I will talk about..



• Flow-centric code analysis

– DEX exports a lot of code informations such as method 
arguments, debug symbols, register information, etc.

– DVM supports JDWP(Java Debug Wired Protocol)

– JDWP is excellent tracer for monitoring app’s behaviors 
• Method execution flow

• Symbol information

• Object tracking

• Call stack

• Etc..

– ART(Android Runtime) supports JDWP

What I will talk about..



• Tracking behaviors of evasive android malware

– User-defined method and Third-party libraries monitoring
(Crypto, Network, etc)

– Obfuscated code monitoring
(String, Reflection, AssetEncryption, etc)

– Dynamic loaded code detecting and tracing

– Breaking anti-analysis techniques
(anti-jdwp, anti-gdb, anti-emulator, device detection, etc)

Fast code analysis



• Tracking behaviors of evasive android malware

– This code steals phone number, mac address, ip address, IMEI 
and IMSI

Fast code analysis





• Symbol name obfuscation

Obfuscation



• String encryption

– String obfuscation of DexGuard

Obfuscation

Disassembled code of string obfuscation

Discompiled code of string obfuscation



• String encryption
Obfuscation

Code position

(for static analysis)

Method tracing of String object

Decrypted string

deobfuscated string is

“Hello world!”



• Method invocation hiding

– Method invocation hiding of DexGuard

– Method invocation hiding insist of string encryption and Java 
reflection

Obfuscation



• Method invocation hiding

– Method  invocation hiding of DexGuard
(Most invocation hiding is performed using Java reflection)

Obfuscation

A object of dalvik.system.DexFile created using java reflection

java.lang.reflect.Method->invoke (Method hiding by java reflection)



• Complicated code: TamperDetection of DexGuard

– DexGuard employs multiple obfuscation techniques
(String encryption, Class encryption, method invocation hiding)

Fast code analysis: example



• Complicated code: TamperDetection of DexGuard

Fast code analysis: example

1st loading

2nd loading

Integrity checking routine



• Complicated code: TamperDetection of DexGuard

Fast code analysis: example

Certification checking routine



• Dynamic loading: DEX file

– There are several hooking point to detect dynamic code loading

– You can get the loaded dex file with collaboration between 
JDWP and Injected code

Dynamic code loading

Injected Code

App DEX

Second DEX

file
<App process>

Alarm! and Extraction!

Detect dynamic loading!



• Dynamic loading: memory patch

– To patch code, it needs to call mprotect() to change memory 
privilege writable to patch code

– We hook the mprotect() and rejects request for write privilege

– It will cause access violation (SIGSEGV)

Dynamic code loading

Signal handler

Code area

DEX image

(read-only area)

<App process>
CodePatch.so

- Instruction caused the signal

(Code address in CodePatch.so)

- Accessed memory address

(Encrypted area)

- Thread context
Alarm! and Extraction! Write!



- 727df000-727e3000 rw-p 00000000 b3:1a 918654     /data/dalvik-cache/data@app@google.service-1.apk@classes.dex

- 727e3000-727e4000 r--p 00004000 b3:1a 918654     /data/dalvik-cache/data@app@google.service-1.apk@classes.dex

- 727e4000-727ed000 rw-p 00005000 b3:1a 918654     /data/dalvik-cache/data@app@google.service-1.apk@classes.dex

- 727ed000-727f1000 r-xp 00000000 b3:1a 1179701    /data/app-lib/google.service-1/libAPKProtect.so

- 727f1000-727f2000 -w-p 00003000 b3:1a 1179701    /data/app-lib/google.service-1/libAPKProtect.so

- 727f2000-727f3000 rw-p 00004000 b3:1a 1179701    /data/app-lib/google.service-1/libAPKProtect.so

Link Register: 

x727e203c

Accessed memory: 0x727e203c is in classes.dex

In sigHandler function, we got these information

1) Address of instruction caused segmentation fault: 0x40147370

- Link Register: 0x727ee4a1

2) Accessed memory address: 0x727e203c

3) Thread context (PC: 0x40147370)

- Address 0x40147370 is in memset function

- 0x727ee4a1 is for apkprotect.so

- While loop is unpacking routine

- Scalpel detected the unpacking point

We found

Unpacking routine

of APKProtect easily!

without  reversing 



• Monitoring extension performs using dex injection

• We can inject monitoring extension whenever it needs

• We makes our own process environment to track behaviors of the 
evasive android application using wait-for-debug feature
(Wait-for-debug feature has presented in BlackHat ASIA 2015 )

• With monitoring extension, we can get the various things in 
nothing changed phone such as anti-analysis techniques, file 
extraction, Exploring app private directory, various detection, etc

Monitoring extension



• Malwares conceal their behaviors with using 
Native code

Mixed-environment code with JNI

Java Export table

Encrypted string

Native code

Example(Fake KakaoTalk Security Plug-in)
www.virusbtn.com/virusbulletin/archive/2013/12/vb201312-KakaoTalk

①

② ?

③



• Need 3-layer monitoring

– JNI : calling native, calling Java

– Libc : calling libc

– Binder : communication with other app/service

Tracking Native Behavior



Tracking Native Behavior

Android App,
Service Manager

Binder

Target App

Dalvik VM

Java 
Component

Native
Component Libc

Native
Tracker



• Java → Native

– Hook dvmCallJNIMethod()

• Native → Java

– Change functions table in JNIEnv

Tracking Native Behavior : JNI

jint JNI_xxxxxxx(JNIEnv* env, void *reserved )

void dvmCallJNIMethod(unsigned int const* args, Jvalue *pResult,
Method const* method, void *self)



Tracking Native Behavior : JNI



Tracking Native Behavior : LIBC
• Monitor calling libc with JNI 

Showing libc function and call stack



• NOT hooking ioctl() at binder driver

• Hooking Binder function(related transact) at IPC 
layer

– So we can monitor custom service

– No performance issue

• Can see all Message between targeted App and 
service/app through the binder

Tracking Native Behavior : BINDER



Tracking Native Behavior : BINDER

Service Layer

Binder Driver

foo()

transact()

transact()

talkWithDriver()

BpFooService

BpBinder

IPCThreadState

onTransact()

transact()

executeCommand()

talkWithDriver()

BnFooService

BBinder

IPCThreadState

onTransact()

BnFooService

foo()

Service User

Service Client Service Server

Service Layer

RPC Layer

IPC Layer

Ioctl() Ioctl()



Tracking Native Behavior : BINDER

Target Service Service Code

Service Data dump

Reply Data dump



• In addition to protecting information of analyst

– Camera, MIC, GPS

– Device info(phone number, IMEI, USIM, IMSI, etc)

Tracking Native Behavior : BINDER



DEMO



Thank you
Yeongung Park: santapark5@gmail.com

Junyoung Choi: iamyoung00@gmail.com


