
DOM FLOW
UNTANGLING THE DOM FOR EASY BUGS

#whoami

Ahamed Nafeez (@skeptic_fx)

Security Engineer with interest in browsers

Speaker at BlackHat Asia, Hack In The Box, nullc0n,
c0c0n.

Overview
Modern web apps and their problems w.r.t pen tests

Hookish! tool and how it works

Dom Flow and its techniques

Few JavaScript / DOM nuances and how to catch
them

Today’s web apps

Today’s state

Classic XSS is already fading away

Static analysis is becoming harder for client side JS
code

Frameworks are getting more complex (JSX?)

DOM XSS / Javascript injection

XSS triggered due to client side code (Mostly..)

Most generic class of vulnerability on browser.

Sources - Entry point for untrusted data

Sinks - Executes untrusted data

The hello world of DOM XSS
https://damnvulnerable.me/domxss/

location_hash_to_window_eval#firstName

var hash = document.location.hash //source

firstName=hash.slice(1)

document.write(firstName) //sink

https://damnvulnerable.me/domxss/location_hash_to_window_eval#alert(2)

URL Cookie referrer name postMessage WebStorage Total

HTML 1356796 1535299 240341 35466 35103 16387 3219392

JavaScript 22962 359962 511 617743 448311 279383 1728872

URL 3798228 2556709 313617 83218 18919 28052 6798743

Cookie 220300 10227050 25062 1328634 2554 5618 11809218

WebStorage 41739 65772 1586 434 194 105440 215165

postMessage 451170 77202 696 45220 11053 117575 702916

Total 5891195 14821994 581813 2110715 516134 552455 24474306

Common Sources / Sinks

25 Million Flows Later - Large-scale Detection
of DOM-based XSS (2013)

Sebastian Lekies, Ben Stock, Martin Johns

Sinks

Sources

String into Code

Everyone(Frameworks, Developers, . .) use
‘strings’ in a way that directly or indirectly turns

into code

The DOM specification is rich in doing that

Direct

eval()

setTimeout

Function(x)()

execScript(x)

Indirect

jQuery’s - $(x)

document.write

Element.setAttribute(x)

Element.innerHTML=x

jQuery - $(x)

$(‘#id’), $(‘.class’), $(‘a’) - Acts as a query
selector

$(‘’) - Creates a new IMG
element

So why is it hard to pen test them?

Usually they look like this!

Existing tools (DOM XSS)

Dominator Pro - Dynamic taint tracking using
Firefox.

Plethora of static analysis tools - Regex pattern
match, Parse JS code and analyse.

What can we look for?

All cases of DOM Injection
DOM XSS / Javascript injection

DOM based open redirection

Second order DOM injection (XHR, WebSocket)

WebStorage manipulation

Quirky DOM behaviour

Globally exposed variables in the DOM

DOM Clobbering

Usage of certain methods which could have
unforeseen security implications

damnvulnerable.me

DamnVulnerable.me is a webapp that is
deliberately vulnerable to DOM based attacks.

Its goal is to provide a platform to learn, test and
practice DOM based bugs and other exotic cases.

http://damnvulnerable.me

How Hookish works

Inject DomHooks for sources and sinks

Wait for page to load

Track all sources and sinks

Injecting DomHooks

WebApp

DOM

WebApp’s JS

Hookish!

DomHooks

Register hooks

document.write()

Ask questions

Give me all global

variables

domhooks.js

Standalone library which selectively registers
required DOM properties & methods.

https://github.com/skepticfx/hookish/blob/master/
src/js/domHooks.js

Can be used in other tools for performance
analysis, hardening DOM, DOM based IDS etc.

https://github.com/skepticfx/hookish/blob/master/src/js/domHooks.js

DomFlow
SourceData Tainted Data

Add source specific flag.
 location_hash_12321

Filter 1Filter nSink
Look for relevant flags

Transform, SubString,Change App Logic etc

DomFlow- cookie to
innerHTML

Every time a cookie is accessed, the data is
tagged with a unique flag - doc_cookie_12391

This data may go through various transformations.

When a registered innerHTML receives data with
this tag, it marks that as a possible DOM XSS.

Overriding filters
Example: XHR to innerHTML

XHR responses are usually JSON content

JSON.parse({‘data1’: ‘value1’, ‘data2’: ‘value2’})

Object.Stringify({‘data1’: ‘value1Flag’, ‘data2’:
‘value2Flag’})

Boxing strings in JS

var str = “hello”

typeof str; // string

str.flag = true;

// JS propagates this string flag in most cases

Navigating across the flows

Dynamically throw the error and filter to remove
Hookish! specific stacks

Easily integrates with Chrome’s dev tools and
helps analyse vulnerable lines of code

Getting the stack trace in
V8 Engine

Dynamically throw the error and filter to remove
Hookish! specific stacks

Easily integrates with Chrome’s dev tools and
helps analyse vulnerable lines of code

Tracking status of all hooks

domstorm.skepticfx.com

Hooking Storage objects,  
http://domstorm.skepticfx.com/modules?

id=529d4f84090faf0000000002

http://domstorm.skepticfx.com
http://domstorm.skepticfx.com/modules?id=529d4f84090faf0000000002

Second order DOM injection
DOM injection where the sources doesn’t flow

directly.

Rather, they are fetched from a persistent storage
at some point.

XHR/WS response flowing in to sinks

Four Scenarios

The following 4 scenarios talks about bugs/special
cases that are often missed while security testing

a web app.

Hookish! tool is built to easily find / analyse such
bugs

1. Do you check how XHR responses
are handled in your application?

Most common issue which pen testers miss /
scanners usually ignore.

The choke point is how you treat these data before
populating into the DOM (regardless of how you

store untrusted input)

XHR response - innerHTML

var response = JSON.parse(xhr.responseText);

var description = response.description;

var div = document.getElementById('vulnerableDiv');

div.innerHTML = description;

2. DOM Clobbering using
Global Variables

Consider an IFrame sandbox which executes
arbitrary code.

Exposed global variables can change logic in
parent window.

Classic Iframe sandboxing

<iframe sandbox=“allow-scripts”></iframe>

Trusted Parent window

Untrusted but sandboxed IFrame child

Defaults to origin ‘null’

About this sandbox
IFrame sandboxes have ‘null’ origin.

The JS in sandboxed IFrame should not interact
with the parent Window’s DOM.

http://www.html5rocks.com/en/tutorials/security/
sandboxed-iframes/

http://www.html5rocks.com/en/tutorials/security/sandboxed-iframes/

Spot the bug and break out
of this sandbox

https://damnvulnerable.me/misc/
insecure_global_variable

https://damnvulnerable.me/misc/insecure_global_variable

Setting global variables
using window.name

<iframe sandbox=“allow-scripts”></iframe>

Trusted Parent window

Untrusted but sandboxed IFrame child

<script>
name=‘SECURE_FLAG’
</script>

No window namewindow name is SECURE_FLAG

DOM sets the name of iframe windows to the window object (DOM CLOBBERING)

This sets the global variable SECURE_FLAG in the
parent window’s DOM and bypassese the security

check

3. Redirect parent window
while opening links in new tab

https://hackerone.com/reports/23386

Works on Chrome and Firefox.

https://hackerone.com/reports/23386

Opening links in new tab

Parent window

New tab (Can be malicious)

window.opener.location.reload(‘phishing-page.com’)

http://phishing-page.com

window.opener should be null always and should
not be accessible by another Cross-Domain

window

Finding anchor tags with
target=_blank

Easy to find on static HTML pages.

In modern apps, usually anchor tags are
dynamically inserted in to the DOM.

Hookish! finds these after the DOM is rendered
and all anchor tags are populated.

Not a serious issue most of the times, but
depends on where you have these new links.

4. Custom templating
engines

var data = {‘name’: ‘mark’, ‘age’: ‘23’}

Welcome to this page, <%- data.mark %>

How would some one write a
templating engine using JavaScript?

1. Load the template data object and encode it.

2. Find the template pattern

3. Use string.replace(pattern, matching_data)

A simple templating code
var inputHTML = "";

function doTemplating(){

 var input = document.getElementById('id_input').value;

 input = filterInput(input);

 var finalHTML = inputHTML.replace("PLACEHOLDER", input);

 console.log(finalHTML);

 document.write('Your input: </br>' + input);

 document.write(finalHTML);

}

The bypass

$` onerror=alert(1);//

String.prototype.replace
ECMAScript’s String.replace is the culprit

http://www.ecma-international.org/ecma-262/5.1/#sec-15.5.4.11

http://www.ecma-international.org/ecma-262/5.1/#sec-15.5.4.11

Work in progress

Patching chromium to have V8 level tainting and
enable overriding of Objects that are not possible

now.

Thanks

More questions

@skeptic_fx

