
Breaking Payloads with Runtime Code Stripping and Image

Freezing

Collin Mulliner Matthias Neugschwandtner
collin[at]mulliner.org matthias.neugeschwandtner[at]gmail.com

August 2015

This document is the accompanying white paper for the presentation Breaking Payloads with
Runtime Code Stripping and Image Freezing at Black Hat USA 2015 in Las Vegas, NV, USA.

Fighting off attacks based on memory corruption vulnerabilities is hard and a lot of research
was and is conducted in this area. In our recent work we take a different approach and looked into
breaking the payload of an attack. Current attacks assume that they have access to every piece of
code and the entire platform API. In this talk we present a novel defensive strategy that targets
this assumption. We built CodeFreeze a system that removes unused code from an application
process to prevent attacks from using code and APIs that would otherwise be present in the
process memory but normally are not used by the actual application. Our system is only active
during process creation time, and, therefore, incurs no runtime overhead and thus no performance
degradation. Our system does not modify any executable files or shared libraries as all actions
are executed in memory only. We implemented our system for Windows 8.1 and tested it on real
world applications. Besides presenting our system we also show the results of our investigation into
code overhead present in current applications. CodeFreeze was able to remove %28 of the code
introduced by DLLs loaded by Adobe Reader 9.4.

Material

Website with updated material:
http://www.mulliner.org/security/codefreeze/

1

http://www.mulliner.org/security/codefreeze/

