Timing Attacks Made Practical

Timothy D. Morgan Blindspot Security Jason W. Morgan Ohio State

Timothy D. Morgan

Founder & Chief Pwner Blindspot Security

Jason W. Morgan, Ph.D.

Post-Doctoral Researcher The Ohio State University

Timing Side-Channel Attacks

- Security-critical decisions
- Returns result to user, but how it decides is secret
- Computation time exposes decision details

Examples of Timing Attacks

Numerous crypto examples:

- Cache-Timing Attacks on AES DJB, 2005
- Cache Missing for Fun and Profit. Percival, 2005
- Lucky Thirteen AlFardan et. al., 2013

What about web apps?

Web Application Timing and KBA

Knowledge-Based Authentication could be ripe for abuse

Motivation

In theory there is no difference between theory and practice. In practice there is. – Yogi Berra

Theory vs. Practice

Most past research is:

- Limited to specific vulnerabilities
- Only tested under synthetic network conditions
- Very few tools available (namely Time Trial)
- Lack of thorough statistical analysis to establish scope conditions

Goals

- Improve on statistical methods
- Be able to answer the question:
 "is this timing flaw I just found practically exploitable?"
- Investigate TCP Timestamps

Paired Sampling

- Two or more "test cases" are defined
- Each "sample" is a tuple of probes
- Probes in a sample are collected at the same time

What are TCP Timestamps?

- Added to TCP to improve efficiency
- A host timestamp added to every header
- FMI: RFC 1323

Getting at TCP Timestamps

- A sniffer is basically required
- TSval clock frequency estimation is also tricky
- Down-side: Complex packet analysis
- Up-side: More accurate RTT measurement

TSval Precision Issues

- No specific clock frequency/precision required by RFC
- Different OSes/hardware use different frequencies
- Starting point for TSvals can be different for each TCP connection
- Typically tied to a RTC (with skew)

TSval Precision Estimation

- Trickle HTTP request slowly to host (this forces many ACK responses)
- Sniff TSvals, apply least-squares regression
- Wash, rinse, repeat. Average results

A Simple HTTP Request

Packet Sniffing Yields RTT Measurement Bonus

Statistical Analysis

Robust Statistics Required

- Network data is really noisy
- Basic measures, such as the mean, break down quickly
- "Robust statistics" or ways to filter noise are needed

The Venerable Box Test

- A type of *L*-statistic apparently pioneered by Crosby, et.al.
- Two parameters: "low" and "high" percentiles define the "box"
- Compare two distributions to see if boxes overlap

Box Test - Classified as Different

Box Test - Classified as the Same

Box Test - Training

- No official training algorithm
- We train 2 parameters: box location and width
- 4-step iterative algorithm to avoid $O(N^2)$
- Bootstrap and measure error rates at each stage

Problem with Independent Distributions

Why Not Use the Distribution Pair-Wise of Differences?

L-Estimators

- Order statistics: the median, the 37th percentile, midhinge, ...
- L-estimators: linear combinations of order statistics
- Very simple to calculate and robust, but not "efficient" in a statistical sense

midsummary

quadsummary

septasummary

L-estimator Training

- \blacksquare Train two parameters: w and threshold
- Threshold starts at 1/2 the estimate
- 4-step bootstrap similar to box test's

TCP TSval Mean

- If your watch ticks once per second, can you measure a 1ms event?
- Yes, if you can gather lots of samples
- Out of 10000 samples, how many should have a 1sec reading?
- No luck with this yet though :-(

Nanown

- Identify timing leaks
- Quantify risk
- Exploit
- As with all open source, a work in progress...

Nanown Work-flow

Nanown Train/Test Process

- Trains all classifiers on ~19 sample sizes
- Tests each candidate parameters
- Zeros in on minimum sample size needed for 95% confidence

Monte Carlo Analysis

Test Scenarios

Table : Network Scenarios

Name	Туре	OS	Network Hops	Approx. Latency (ms)	TSval Precision (ms)
Inx	physical	Linux 3.16	1	0.25	4.00
vm	Qemu VM	Linux 3.16	2	12.00	4.00
vps	Linode VM	Linux 4.0	12	31.00	3.33
bsd	physical	FreeBSD 10.1	13	84.00	1.00

Sampling

- 5 Timings each (except one scenario): 40ns, 200ns, 1000ns, 5000ns, 25000ns
- Samples: 250,000 each (500,000 individual probes)
- Separate train & test data
- 1000 iterations for each observation size in final test runs

Results

			Delta (ns)						
	Classifier	25000	5000	1000	200	40			
Inx	midsummary quadsummary septasummary boxtest	29 obs 26 obs 15 obs 146 obs	894 obs 894 obs 894 obs 20.80% err	17147 obs 16289 obs 17147 obs 36.30% err	16.60% err 20.55% err 22.35% err 47.55% err	38.60% err 47.30% err 45.20% err 49.85% err			
vm	midsummary quadsummary septasummary boxtest	242 obs 344 obs 356 obs 615 obs	10898 obs 10583 obs 9706 obs 7909 obs	15789 obs 8.30% err 8.30% err 7.50% err	19.45% err 18.40% err 22.40% err 47.00% err	23.05% err 30.05% err 31.10% err 36.00% err			
vps	midsummary quadsummary septasummary boxtest	21.80% err 32.75% err 22.40% err 48.15% err	31.80% err 31.55% err 43.50% err 39.70% err	19.00% err 34.95% err 30.05% err 41.00% err	33.10% err 32.25% err 46.55% err 46.70% err	35.85% err 37.35% err 36.70% err 44.75% err			
bsd	midsummary quadsummary septasummary boxtest	21.30% err 22.35% err 27.65% err 24.35% err	21.80% err 28.65% err 18.00% err 46.80% err						

Table : Number observations if <5% error; percent error otherwise

Intentionally Vulnerable KBA

- Implemented KBA registration form
- Timing difference between most fields

Our Contributions

- Less noise through packet-based RTT collection
- More resilient classification method
- A tool that assists in risk evaluation and exploitation

Avoidance

- Implement time-constant logic where possible
- Add CAPTCHAs to forms with user interaction
- Test for timing differences in critical operations

Take Aways

- Remote timing attack techniques are still in their infancy
- Except for string comparision, most timing differences are exploitable on the LAN
- Exploitation over the Internet is harder

Questions?

TCP Timestamps - Partitioning on Inx

TCP Timestamps - Partitioning on bsd

