black hat USA 2015

Spread Spectrum Satcom Hacking

Attacking the Globalstar Simplex Data Service

Colby Moore @colbymoore - <u>colby@synack.com</u>

Who am I?

Colby Moore Synack R&D

Motivation

- Rehashes of same talks
- Satellite hacking talks never deliver
- RF world not heavily explored
- So many of these systems are broken
- I want to inspire and collaborate on research in this department

What are we going to learn?

- Basics of RF signals and modulation
- What is spread spectrum
- Selecting a target and reverse engineering
- Exploiting that target

Prerequisites

- Keeping things "understandable"
- High school mathematical knowledge
- Will provide resources

Waves

$y(t) = A * sin(2\pi ft + \phi)$

- A Amplitude
- *f* Frequency (radians/second)
- φ Phase (radians)

Time Domain vs. Frequency Domain

Amplitude Modulated Signal

Analog RF Modulation

Digital RF Modulation

- Amplitude Shift Keying (ASK / OOK)
- Frequency Shift Keying (FSK)
- Phase Shift Keying (PSK)

Phase Shift Keying (PSK)

IQ Modulation

• Makes modulation easy in software!

Spread Spectrum Modulation

- Why is Spread Spectrum Special?
- WiFi, Bluetooth, Basically all modern RF Communications
- Processing Gain
- Jam Resistant
- CDMA

Spread Spectrum

- Frequency Hopping Spread Spectrum (FHSS)
- Direct Sequence Spread Spectrum (DSSS)

DSSS

• Direct Sequence Spread Spectrum (DSSS)

Selecting a Target

Globalstar

- SPOT Consumer grade satellite tracking
- But wait... this tech is used everywhere. Goldmine.
- Voice, data, messaging, etc.

Stuck in the 90s

CHANGE REGION

"Error 100: Database query failed etrieving login information You have an error in your SQL Syntax;..."

User Name:

Password:

Sign Up for Access Here Forgot Your Password?

"The received data is then forwarded to a user defined network interface that may be in the form of an FTP host or HTTP host where the user will interpret the data for further processing."

-Globalstar

Simplex data network

"Simplex Works where infrequent, small packets of data are to be collected"

Coverage

48 satellites 5850 km diameter footprint 1410 km orbit In service since 2000

Ground Stations

Hundreds of ground stations

Command Centers

Where is it used?

Military / Classified Trailers / Containers Air Quality Monitoring Personnel Tracking Fire Detection and Prevention Water Quality Monitoring Tank Level Gauging Perimeter / Border monitoring Asset / Vehicle Tracking **Remote Meters** Buoys Ship Movement Fishing vessel monitoring Power line monitoring **Dispersed sensors**

Bent Pipe

"A bent pipe satellite does not demodulate and decode the signal. A gateway station on the ground is necessary to control the satellite and route traffic to and from the satellite and to the internet."

Beam Pattern

Figure 3-3 L- Band Beams

Frequency Range

Fille: L-Band

RF Channel
Channel A = 1611.25 MHz center frequency
Channel B = 1613.75 MHz center frequency
Channel C = 1616.25 MHz center frequency
Channel D = 1618.75 MHz center frequency

STX-3

Worlds' smallest and lowest power consuming industrial-use satellite transmitter

Intelligence Gathering

- Google
- FCC Database
- Academic Papers
- Integrator Spec Sheets

Intelligence Gathering Continue

- 1.61125 ghz
- 100 bit/second BPSK signal
- Spread using 255 Chip M-Sequence
- 144 bit message

M-Sequences and PN Codes

Hardware and Validation

- USRP B200
- GQRX and GNURADIO

Antennas

• Left Hand Circular Polarized

Decoding Theory

- Simple in practice. More difficult in theory
- Re-Mix signal with PN sequence and the BPSK signal will drop out.
- Signal needs to be aligned with PN code
- Compensate for frequency differential between local and remote oscillators

Decoding / PN Recovery

- Remember that BPSK spread with DSSS == faster BPSK
- PN Sequence is much shorter than bit length (49x)
- Since PN is repeats for each bit
- PN xor Data == PN

Decoding Continued

- Shortcut: Decode DSSS as BPSK
- We receive none of the processing gain, but its perfectly legitimate.

Sampling

- Nyquist Theorem
- Sampling Requirements:
 - > 2x faster than 1.25 mhz
 - Even multiple of 32mhz
 - Even samples / symbol

Code Tracking

Code Tracking Cont.

Despread Signal

Packet Format

Figure 5, Packet On-Air Redundancy

Packet Format Contd.

- There is no signing, no encryption
- We can create packets if we known how to reproduce the checksum
- Reverse engineering the checksum

Message Decoding

Example Message = 0x002B5372BFF12F0A02

 Ox 00
 2B
 53
 72
 BF
 F1
 2F
 0A
 02

 Signed integer (MSB..LSB)
 Lat2
 Lat1
 Lat0
 Long2
 Long1
 Long0

Calculating Latitude

Negative Latitude corresponds to Latitude in the SOUTHERN Hemisphere. Positive Latitude corresponds to Latitude in the NORTHERN Hemisphere.

Degree_per_count_lat =(90.0/223)

Hex Lat = 0X2B5372 ; Conversion to Decimal = 2,839,410

Latitude = Decimal Lat bytes * Degree_per_count_lat = 2,839,410 * (90.0/2²³) = 30.463564 degrees NORTH

Note: If greater than 90 degrees, 180 must be subtracted from result

Calculating Longitude

Negative Longitude corresponds to Longitude in the WESTERN Hemisphere. Positive Longitude corresponds to Longitude in the EASTERN Hemisphere.

Degree_per_count_long =(180.0/223)

Hex Long = 0XBFF12F ; Conversion to Decimal = 12,579,119

Longitude = Decimal Long bytes * Degree_per_count_long = 12,579,119 * (180.0/2²³) = 269.918611 = 269.918611 = 0.081388 degrees = 90.081388 degrees WEST

Message Example = 0xC02B5387BFF129190C

0x C0 2B 53 87 BF F1 29 09 0C

Byte 0 1 2 3 4 5 6 7 8 Latitude Longitude

Byte 0 = C 0 Binary = 1100 0000 (7.0) Byte 7 = 1 9 Binary = 0001 1001 (7.0)

Input Status (3:0)

Byte 8 = 0 C Binary = 0000 1100 (7.0)

Bit (1:0) = 0 Standard message type Bit (2) = 0 Good battery Bit (3) = 0 GPS Data valid Bit (4) = 0 No missed event on input 1 Bit (5) = 0 No missed event on input 2 Bit (7:6) = 3 GPS fail counter.

Bit (0) = 1 Input 1 change triggered message Bit (1) = 0 Input 1 state Closed Bit (2) = 0 Input 2 change did not trigger message Bit (3) = 1 Input 2 state Open Bits (5:0) = Reserved in the SMARTONE Device Bit (5) = 0 Device was At Rest when the message was transmitted Bit (7) = 0 High confidence in GPS fix accuracy

Subtype (7:4) Bits (7:4) = 0 for location message subtype

Note: The following 5 messages have the same message format as the Location Message. The only difference is the sub-type value of Byte 7.	Sub-type Value =1 =2 =3 =4 =5	Message Device Turned On Change of Location alert Input Status Changed Undesired Input State Re-center	
---	--	---	--

Video Demo

But Wait, There's More

Questions?

Images

https://upload.wikimedia.org/wikipedia/commons/9/99/Lfsr.gif

http://www.mccauslandcenter.sc.edu/CRNL/wp-content/ upLoads/nyquist.png

https://awrcorp.com/download/faq/english/questions/images/ iq_mod_dmod.png

http://ironbark.xtelco.com.au/subjects/DC/lectures/7/

http://www.mdpi.com/sensors/sensors-14-03172/ article_deploy/html/images/sensors-14-03172f5-1024.png

https://www.tapr.org/images/ssfig1.gif