

Defeating Pass-the-Hash
Separation of Powers

Credential Theft

• At the heart of many high-profile
attacks.

• Fueled by Single Sign-On
• A feature nobody wants to live

without.

Pass-the-Hash: A Windows Primer

Alice’s Laptop

Local Security Authority (LSASS)

NTLM

Kerberos

NTOWF: C9DF4E56A2…

Ticket Granting

Ticket Key

Service

Ticket
Service

Ticket
Service

Ticket
Service

Ticket Key

Password

• LSASS on Alice’s laptop hosts the
authentication protocols

• Administrator-level attackers may
access:

• NTLM Hash
• Kerberos Keys
• Alice’s password

• Attackers steal and replay these
legacy protocol artifacts

The Chain Reaction

We Have the Technology

• Multi-Factor Authentication
• Stealing one credential isn’t enough.

• Strong Credentials
• Smart cards, FIDO key, etc

• Token Binding
• Make stolen tokens useless.

Businesses Like Making Money

• Legacy components keep working
• “My printer works with NTLM.”

• NAS, Printers, Software, etc.

• Business depends on these

• Legacy protocols include replayable
artifacts

How to keep a secret?

Separation of Powers

• Balance of powers prevents abuse
• Ensures accountability

• Legislation passes the laws.
• Executive branch carries out the tasks.
• Judicial system make sure everyone is playing by the rules.

• OS and real governments aren’t that different.
• Administrators  The Legislative Power
• Kernel / System Services / Drivers  Executive Power
• Trusted Computing Base (TCB)  Judicial Power

(makes sure everyone obeys the constitution)

Admin == Kernel == TCB: Risky business

• Admins are human, humans err
• Data shows: > 90% (!!) of Windows users run as some sort of

administrator
• Total loss of system when a malicious attachment is run

• What if the administrator is malicious?
• Admins should not have total control on the machine
• E.g. games, multi-tenant scenarios

• We can’t simply trust the kernel, either.
• Attack surface too big: Thousands of system calls, IOCTLs
• Diverse ecosystem: Many 3rd party drivers with different

quality assurance standards

This is not a new problem…

• Authenticode / Kernel Mode Code Signing
• Principle: Putting reputation of an authenticated identity on the line
• Cost + traceability negatively impacts exploit economics
• Problem: Strong verification of publishers by CAs is questionable at best and recalls are hard and slow.

• Protected Process – PP / Protected Process Light – PPL
• Principle: Isolate sensitive processes from others by preventing injection of threads, memory access, etc.
• Problem: Not enough, still vulnerable to kernel mode, which is not TCB.

• Patch-guard
• Principle: Limit what code in kernel mode can do
• Problem: Heuristic based, not failsafe

• They are all software based…

• Can the security be rooted on something.. harder?

Layers of protection via Hardware

• X86/X64 systems have had a single physical address
space in kernel

• Ring 0 could access any physical memory address.
• Ring 0  God Mode

• “Hypervisor” provided another abstraction layer
• AKA Ring (-1)
• Roots its promises on HW

• Just like rings…
• But hypervisor is small.. very small. Easier to verify, easier to secure.

• Hypervisor is the true TCB

• We need hypervisor kind of isolation without cluttering
hypervisor.

Introducing
Virtual Trust Levels - VTL
• Using virtualization technologies and Second Level Address

Translation (SLAT), sections of memory can be access-protected in a
cascading fashion

• Guest virtual  Guest physical  System physical

Introducing
Virtual Trust Levels - VTL

ring 3 User Address Space

ring 0
Kernel Address

Space

ring -1 Hypervisor

Less accessible

Le
ss accessib

le

Introducing
Virtual Trust Levels - VTL

VTLs bring a
new
dimension
with new
properties

VTL 0

ring 3 User Address Space

ring 0
Kernel Address

Space

ring -1 Hypervisor

Less accessible

Less accessib
le

Introducing
Virtual Trust Levels - VTL

VTL 0 VTL1

ring 3 User Address Space
User Address Space

(inaccessible to VTL0)

ring 0 Kernel Address Space
Kernel Address Space
(inaccessible to VTL0)

ring -1 Hypervisor

Less accessible

Less accessib
le

• Regular Windows, “Normal
world”, runs in VTL0

• “Secure world”, new in
Windows 10 is selectively
inaccessible to normal
world, even normal NTOS.

• Code can be safely shared /
reused

• Data can be shared so that
VTL0 / 1 can pass data back
and forth as needed

Introducing
Virtual Trust Levels - VTL

VTL 0 VTL1 VTL (N)

ring 3 User Address Space
User Address Space

(inaccessible to VTL0)
TBD

ring 0 Kernel Address Space
Kernel Address Space
(inaccessible to VTL0)

TBD

ring -1 Hypervisor

Less accessible

Less accessib
le

• Unlike rings, VTLs
are extensible

Normal World – Pretty much as always
N

o
rm

al
 W

o
rl

d
 (

V
TL

 0
)

Normal User
System services
Apps

Normal Kernel
NTOS
Drivers

Hypervisor & UEFI/TPM & HW

Threads

System Calls
NT Services

Memory
Manager

Drivers

Introducing Secure World
N

o
rm

al
 W

o
rl

d
 (

V
TL

 0
)

Normal User Secure User
(a.k.a. Isolated User Mode)

Se
cu

re
 W

o
rl

d
 (

V
TL

 1
)

Normal Kernel
NTOS
Drivers

Secure Kernel
Proxy kernel

Hypervisor & UEFI/TPM & HW

Threads

System Calls
NT Services

Secure Kernel
System Calls /

Services

Threads

Memory
Manager

System services
Apps

Trustlets

Drivers

Introducing Secure World
N

o
rm

al
 W

o
rl

d
 (

V
TL

 0
)

Normal User Secure User
(a.k.a. Isolated User Mode)

Se
cu

re
 W

o
rl

d
 (

V
TL

 1
)

Normal Kernel
NTOS
Drivers

Secure Kernel
Proxy kernel

Hypervisor & UEFI/TPM & HW

Threads

System Calls
NT Services

Marshaller /
Unmarshaller

Hardener

Secure Kernel
System Calls /

Services

Threads

Memory
Manager

Memory
Manager

RPC

System services
Apps

Trustlets

Drivers

Secure World

• Invisible
• No user interaction / UI
• Minimal impact on perf (< 5%)

• Tighter control
• No 3rd party code in the secure kernel
• Trustlets are isolated from each other
• Trustlets are limited in number, purpose built - much smaller, easier to protect

• World is small.. Secure world is smaller.
• If no secure mode, a trustlet can run as a normal mode process
• Secure world relies on enlightened normal world / NTOS for many things

(scheduling, most of memory management, synchronization etc.)
• Secure kernel only does the bare minimum

(configuring SLAT as applicable, encrypting pages before paging out, etc.)
• VTL0 is not trusted  Secure kernel hardens its NTOS interfaces

Using VSM to Mitigate PtH
You can’t pass the hash if you don’t have it

Credential Strength

• Weak credentials are easily stolen by
• Cookie Theft
• Phishing
• Key Logging

• Strong credentials are theft resistant
• Smart card
• Two factor authentication

• Users with weak credentials are
vulnerable.

Windows Smart Card Primer

PIN

File
Server

1. Prove identity and receive a
Ticket Granting Ticket

2. Present TGT to gain a service
ticket

3. Present service ticket to
access service.

But wait! There’s more…
4. The service ticket reply

contains an NTOWF for
NTLM compatibility

KDC

Isolation Architecture

Normal User

Hypervisor

Secure User (IUM)

LSASS

Protocol Encrypted
secrets

Cred Guard

Protocol
support

Clear
secrets

• LSASS continues to run in normal world
• Core protocol logic stays in LSASS

• Cred Guard provides isolation services to
LSASS

• All use of secrets happens here

• LSASS talks to Cred Guard over RPC

• Secure-mode keys encrypt data
• No clear secrets in normal world

Artifact Isolation

PIN

LSASS

NTLM

Kerberos

TGT TGT Key

NTOWF: C9DF4E56…

Cred Guard

NTLM Support

Kerberos Support

TGT Key

NTOWF: C9DF4E56…

• Old: Everything in LSASS
• Bad admin owns you

• New: All “passable” secrets protected by
Cred Guard

• Secrets are now hidden
• Attackers cannot steal secrets from

memory they cannot read.

• However… Attackers still have oracle
access to the user’s credential.

• We’re not there yet.

Ensuring Secrets are Isolated

• An attacker with oracle access to your cred can PtH

• Isolation is only good if we can guarantee it.
• Client trickery is never enough.

• Solution: Kerberos FAST (RFC 6113)
• Compound authentication: What machine is a user coming from.

• Provides the promise of truly hidden artifacts

Foundation: Strong Machine Credentials

• Like users, systems have credentials.
• Traditionally passwords
• Key pairs are supported as of 2012 R2

• Cred Guard owns the system private key.
• Attackers cannot access this credential.

• We combine this with compounding (FAST)
• 2012 R2 allows binding of users to machines

• Authentication policies

Cred Guard

Kerberos Support
Machine

ID Key

Compound Authentication

Cred Guard

Kerberos Support
Machine ID

Key

Machine

TGT Key

• Machine authentication uses an Cred Guard-
protected ID Key.

• The machine uses this to get a TGT

• A derived, armor key is created.
• Alice combines her credential with the proof.
• The KDC checks the proof and grants a TGT.

• Attackers have zero access to the machine ID key,
preventing illicit authentication attempts.

Origin

Proof Key

User

TGT Key

PIN

Alice’s Laptop

The Path to Secure Users

• Secured users only use strong authenticators
• Attackers cannot steal this authenticator.

• Secured systems authenticate with an ID key
• Attackers have zero access to the machine ID

key

• Secured users may authenticate only from
designated systems

• This policy is validated at the KDC.

PIN

Cred Guard

Kerberos Support
Machine

ID Key

KDC

What if I Turn it Off?

• What happens if the bad guy turns off Cred
Guard?

• Alice, and the attacker, can still use the smartcard

• Without the proof of origin, the KDC denies the
request for a TGT.

Alice’s Laptop

Cred Guard

Kerberos Support
Machine

ID Key

PIN

KDC

Demo Time

Steps to Mitigating PtH

• Eliminate weak protocols – MSCHAPv2, NTLMv1

• Migrate users to strong credentials

• Update hardware refresh specs to IUM-compatible devices

• Enable Win10 IUM support

• Get educated on other Credential Theft mitigations
• http://www.microsoft.com/pth

BACKUP

VSM platform requirements

• Virtualization Extensions (Intel VT-x)

• Second Level Address Translation, SLAT
(Intel Extended Page Tables, EPT)

• IOMMU (Intel VT-d)

• UEFI 2.3.1

• TPM 2.0

• Optional Performance Enhancement - Mode Based Execution Control
(MBEC)

• Optimal performance for CI enforcement
• Fall-back to S/W based implementation

