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Talk Outline

2

1. The Status Quo of Malware Analysis 
2. Hard Problems The Industry is Dealing With 
3. Our Approach 
4. Two Research Experiments

1. Detecting and Visualizing Image-
Sharing Relationships (Live Demo)

2. Automatically Classifying Images by 
Their Semantics



Status Quo of Malware Analysis

Malware analysis treats malware as just a 
set of instructions
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Analysis typically consists of analyzing the disassembled 
code and/or observing the malware’s runtime behavior



Problems Facing Analysts Today

Malware could be packed or use VM 
detection tactics
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Manual analysis of each sample is intractable 
given huge numbers of polymorphic variants



Expanding the Frame
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Malware is not just code,!
it’s also

“CLICK HERE FOR 
FREE PICS”

• natural language !
• documents !
• audio !
• video!
• images



The Setting

Of a collection of 2 million 
malware samples provided 

to us by DARPA,!
over half had at least one 

image embedded.

samples without parseable images

samples with parseable images

0 200 400 600 800

No images 1 to 10 images 11 to 20 images More than 20 images

• Problem: Graphical assets are an untapped resource in the 
malware analysis space; image analysis done manually.!
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number of samples 
(in hundreds of thousands)



How Image Analysis is Useful

A packed Trojan still needs an attractive icon to 
lure a user into executing it

7

Images can hint at the ways in which attackers are 
tricking the user and the purpose of a binary artifact.

Game-related

By exploring the malware’s “social network” through shared rare 
images, you can learn about an otherwise hard-to-reverse sample.

Trojan.Win32.VBKrypt…

Trojan.Win32.Swizzor…



What Automation Makes Possible
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Survey of the threat landscape 
We’re seeing an up-tick in malware masquerading as 
PDFs, let’s alert our employees to be on the lookout  

!

Quick analysis of new samples 
Our system has found a previously analyzed sample 

that shares an image with this email attachment



Why Not Just Compare Hashes?

Images go on a wild ride and by the time they end up in malware, 

they might look a little different

Hash comparison will fail if the image was!
compressed!

copied and pasted!
modified deliberately



Average Hash
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1.  Take an image



Average Hash
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1.  Take an image
2.  Reduce to grayscale



Average Hash
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1.  Take an image
2.  Reduce to grayscale
3.  Stretch/shrink to 32x32



Average Hash
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4.  Convert to high contrast
     a.  Get average value of pixels
     b.  For each pixel, 
           if above average, set to 255  
!       if below average, set to 0

1.  Take an image
2.  Reduce to grayscale
3.  Stretch/shrink to 32x32



Average Hash
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1.  Take an image

4.  Convert to binary vector
     a.  Get average value of pixels
     b.  For each pixel, 
            if above average, set to 255  
!       if below average, set to 0

2.  Reduce to grayscale
3.  Stretch/shrink to 32x32



Average Hash
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Statistics Refresher

Precision: !
What percent of the pairs matched by the 

system actually had similar images?
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Matching 
Pairs

Image Matcher 
ResultsPrecision

Non-
Matching 

Pairs

False positives!
Our system says a pair of images 

are similar that actually are different

Matching 
Pairs

Recall

Non-
Matching 

Pairs

Recall:!
What percent of all matching pairs did 

the system find?

False negatives!
Our system fails to say a pair of images 

are similar when they actually are

Image Matcher 
Results



Average Hash vs MD5
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• 200 hand clustered samples!
!

• MD5 wins out in precision!
!

• Average hash wins in recall!
!

• Humans can easily detect and ignore images that 
don’t match (false positives)!
!

• False negatives invisible to user and lost forever 

• We’d prefer to have more false positives (lower 
precision) in order to have fewer false negatives 
(higher recall)

precision

recall

f1-score

precision

recall

f1-score



Comparing Sets of Images
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= ?



Comparing Sets of Images
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= ?

Sample A Sample B



Comparing Sets of Images
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Number of matching pairs (2)

Number of possible matching pairs (3)

= 0.66 similarity

Sample A Sample B



Demo!
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Live Demo



Automatic Classification of Images
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Browser

Anti-virus

Document

•Reveal purpose 
of malware 

•Survey threat 
landscape 

•Assign risk 
factor



Machine Learning 101: !
K Nearest Neighbors
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1. Plot points on graph 
2. Assign classes to points (e.g. 

house or apartment) 
3. Plot point on graph with 

unknown class 
4. Pick a number K as 

appropriate for your data 
5. Get the top-K nearest 

neighbors (AKA closest 
points) to the point with the 
unknown class 

6. Classify by majority vote  
(e.g. if the 3 nearest points 
are 2 houses and 1 
apartment, unknown class is 
house)

e.g. K = 3



Classification by Color Histogram
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Image with 
unknown class Predicted class K Nearest Neighbors



Conclusion
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Graphical content of malware is a significantly 
under-utilized signal in malware analysis!

!

Automation and visualization make this “human” 
signal accessible at a large scale
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