(intel)‘ Security @

Attacking Interoperability:
An OLE Edition

Haifei Li (haifei.li@intel.com)
Bing Sun (bing.sun@intel.com)

About Us: Halifel

« Security Researcher at Intel Security (formerly McAfee)
* Previously: Microsoft, Fortinet

« Work on several guestions (for good purposes):
1) How to find vulnerabillities
2) How to exploit them
At McAfee my interests have been extended to a 3" question:
3) How to detect the effect by answering the 1t and 2"9,

Work on research-backed projects aiming at detecting the
most stealthy exploits or zero-days (e.g., the Advanced
Exploit Detection System)

* Presented at BlackHat Europe 2010, REcon 2012,
Syscan360 2012, CanSecWest 2011/2014/2015)

About Us: Bing

« Security Research Manager of IPS security research team
at Intel Security Group (formerly McAfee)

* Focus:
1) Advanced vulnerability exploitation and detection
2) Rootkits techniques and detection
3) Firmware security
4) Virtualization security

* Presented at BlackHat EU 2007, Syscan 2007,
CanSecWest 2008, Xcon 2006/2007/2009

Declaration

» Even though we are going to talk about OLE,
for Object Linking and Embedding, we will

cover only Embedding in this presentation.
» Due to the length of our presentation
» This Is a really big area

Agenda

>

>

>

>

What Is OLE?
Historical Zero Days Involving OLE
OLE Internals

Attack Surface

Conclusion

What Is OLE?

Object Linking and Embedding
Based on Component Object Model (COM)

It serves the majority of interoperability on

Office/WordPad
Working with default/third-party applications to
provide rich documentation features to
Office/WordPad users

What Is OLE in Our Lives, Really?

» Embedding a document in another document

To Employees: Benefits Enrollment and Payroll Set-up

ACTION REQUIRED

PAYROLL SETUP

WHAT YOU HAVE

Form.pdf

TO DO
DESCRIPTION HOW YOU GET IT DONE DEADLINE
Read P Il Schedule, Ti
ea ayroft schedute, Tps. Payroll Information N/A
IE;:
A/R Complete and submit Benefits Summary Enrollment Form SummawEnllment 7/01/2015

» By double-clicking on the “Checklist” document readers

will be able to open another document
> Very convenient for Office users

Agenda

>

>

What Is OLE?
Historical Zero Days Involving OLE
OLE Internals

Attack Surface

Conclusion

OLE-related Zero Days Iin History

» Almost all previous critical Office/WordPad zero days
actually involve OLE

» CVE-2014-4114/6352 (a.k.a. “Sandworm” zero day)
» Reported in October 2014. Logic fault, really serious
» 2 OLE objects found in the original sample
> Microsoft failed to fix it in the initial patch

5 Nl == ndworm.ppsx\pptiembeddings

MName

oleObjectl.bin
oleQbjectZ.bin

OLE-related Zero Days Iin History

» CVE-2014-1761
» Reported in March 2014 by Google, highly targeted attack
» RTF format-handling fault, not a vulnerability in OLE object,

but leverages OLE mechanism to load a non-ASLR module,
*‘MSCOMCTL.OCX?, to bypass ASLR

(o lELERY \objclass MSComctlLib. ImageComboCtl. 2jRRSANEL:

J16FC19% 8cCA test eax, eax »|Registers (FPU)
J16FCA97 (., 74 BE je short 316FCAAT EAX B6GFBRCH
J16FC199 8668 mov ecy, dvord ptr [eax] " |Ecy 87941868 ASCIT
316FC19B| 5@ push eax EDX BOCH2CFC

FF51 B4 call dword ptr [ecx+l] MSCOMCTL . 275A4BER EBX GABOABE3
316FC19F| BBBG mou eax, dword ptr [esi] ESP BB1278D8
316FC1A1| BSBED8 mou ecx, dword ptr [eax] EEBP BB1278D8
316FC1A3| 54 push eax ESI BB1278F4
J6FC1AL FF51 148 call duword |]t|" [EEK*" ﬂ] EDI B@geagaa
316FC1A7| 8BCA mov eax, esi]
216FC109| SE pop Bsi EIF 316FC19C wwlib
316FC1AR| 5D pop ebp C 8 ES 0023 32bit
316FCAAB C2 auBa retn L} ¥IP 1 CS 801B 37bit
ds [87941064]=275A48ER (MSCOMCTL .275ALBER) A @ S5 @823 32bit
B7941868(7B 7B B8 BO EB 48 5@ 27 89 64 59 27 EF B8 58 27 {{..%E'ﬁ?'%ﬁﬂ" ﬂﬂ12?ﬂﬂﬂ BGG6FBECH
87041670 [59 59 00 B8 5A 5A BB BB 19 00 A0 00|18 00 00 fA MY 22000, . 0. .. | 881278D4| 325BES2Y4

OLE-related Zero Days Iin History

» CVE-2013-3906

» Detected and reported by us in October 2013

» Microsoft Graphics Component fault, not a vulnerability in
OLE object, but leverages ActiveX/OLE mechanism to
perform a heap spray in Office

v N W/ E-2013-3906.docd\word\activeX

MName Size Packed Size
L rels 11671 7671
ActiveX1.bin 2097 098 5414
% activeX1.xml 349 258
ActiveX2.bin 2097 098 5414
% activex2.xmil 349 258
ActiveX3.bin 2097 098 5414
* activex3.xmil 349 258
ActiveX4.bin 2097 098 5414

% activexd.xmil 349 258

OLE-related Zero Days Iin History

» CVE-2012-0158 / CVE-2010-3333
» Years-old vulnerabilities iIn MSCOMCTL.OCX
» Classic OLE vulnerabilities
» Still see samples in the wild today. :P

\par{\object*-\\\abjocx{*\chjdata
AR 4D 34 36F 6DR3 TA6CACE 96 22E4C0Y T3 74566965743 74T26C2E3)

» Just in: A similar zero-day attack in MSCOMCTL.OCX

(CVE-2015-2424)

» Disclosed on July 15 by iISIGHT Partners
» http://www.isightpartners.com/2015/07/microsoft-office-zero-
day-cve-2015-2424-leveraged-by-tsar-team

http://www.isightpartners.com/2015/07/microsoft-office-zero-day-cve-2015-2424-leveraged-by-tsar-team
http://www.isightpartners.com/2015/07/microsoft-office-zero-day-cve-2015-2424-leveraged-by-tsar-team
http://www.isightpartners.com/2015/07/microsoft-office-zero-day-cve-2015-2424-leveraged-by-tsar-team
http://www.isightpartners.com/2015/07/microsoft-office-zero-day-cve-2015-2424-leveraged-by-tsar-team
http://www.isightpartners.com/2015/07/microsoft-office-zero-day-cve-2015-2424-leveraged-by-tsar-team
http://www.isightpartners.com/2015/07/microsoft-office-zero-day-cve-2015-2424-leveraged-by-tsar-team
http://www.isightpartners.com/2015/07/microsoft-office-zero-day-cve-2015-2424-leveraged-by-tsar-team
http://www.isightpartners.com/2015/07/microsoft-office-zero-day-cve-2015-2424-leveraged-by-tsar-team
http://www.isightpartners.com/2015/07/microsoft-office-zero-day-cve-2015-2424-leveraged-by-tsar-team
http://www.isightpartners.com/2015/07/microsoft-office-zero-day-cve-2015-2424-leveraged-by-tsar-team
http://www.isightpartners.com/2015/07/microsoft-office-zero-day-cve-2015-2424-leveraged-by-tsar-team
http://www.isightpartners.com/2015/07/microsoft-office-zero-day-cve-2015-2424-leveraged-by-tsar-team
http://www.isightpartners.com/2015/07/microsoft-office-zero-day-cve-2015-2424-leveraged-by-tsar-team
http://www.isightpartners.com/2015/07/microsoft-office-zero-day-cve-2015-2424-leveraged-by-tsar-team
http://www.isightpartners.com/2015/07/microsoft-office-zero-day-cve-2015-2424-leveraged-by-tsar-team
http://www.isightpartners.com/2015/07/microsoft-office-zero-day-cve-2015-2424-leveraged-by-tsar-team
http://www.isightpartners.com/2015/07/microsoft-office-zero-day-cve-2015-2424-leveraged-by-tsar-team
http://www.isightpartners.com/2015/07/microsoft-office-zero-day-cve-2015-2424-leveraged-by-tsar-team
http://www.isightpartners.com/2015/07/microsoft-office-zero-day-cve-2015-2424-leveraged-by-tsar-team
http://www.isightpartners.com/2015/07/microsoft-office-zero-day-cve-2015-2424-leveraged-by-tsar-team
http://www.isightpartners.com/2015/07/microsoft-office-zero-day-cve-2015-2424-leveraged-by-tsar-team
http://www.isightpartners.com/2015/07/microsoft-office-zero-day-cve-2015-2424-leveraged-by-tsar-team

A Short Summary

» OLE objects not only produce critical zero-day
vulnerabilities, but also help greatly on

Office/WordPad vulnerability exploitation
> Loading non-ASLR modules
> Heap-spray in Office process

' Y

» Bug class through memory corruption to logic bugs

Agenda

» What Is OLE?

» Historical Zero Days Involving OLE
» OLE Internals

» Attack Surface

> Conclusion

Previous Related Work

» There Is barely no previous research focusing on OLE

Internals, but we will mention two:
> “Attacking Interoperability”
» http://hustlelabs.com/stuff/bh2009 _dowd_smith_dewey.pdf
» by Mark Dowd, Ryan Smith, and David Dewey in 2009
» We named our presentation in honor of the great work
done in this paper

» Parvez Anwar’s blog site has some work related to
Office/OLE

> https://Iwww.greyhathacker.net

http://hustlelabs.com/stuff/bh2009_dowd_smith_dewey.pdf
http://hustlelabs.com/stuff/bh2009_dowd_smith_dewey.pdf
https://www.greyhathacker.net/
https://www.greyhathacker.net/

OLE Is a Subset of COM

OLE objects are COM objects that exposeé
specific Interfaces. Must have:

IPersistStorage

|OleObject

[AdviseSink

| ¢ IDataObject

| ¥ I0leCache

| ¥ I0leCache2

| ¥ 10leCacheControl

| ¥ I0leCommandTarget
| ¥ 10leObject

|7 IPersist

| ¥ IPersistFile

| ¥ IPersistStorage

| ¥ IRunnableObject

-7 TUnknown

OLE Internals

» To explain the OLE internals, first we need to
understand what happens when a user opens a
document containing OLE objects.

User performs action on the OLE object
(e.g., clicking, double-clicking)
, or
User opens the document « “Verb” is performed automatically by Office
| features (e.g., PowerPoint animation)

OLE object “Verb” action

initialized performed

OLE Initialization

» Initializing/loading an OLE object can be done simply
via the ole32!0OleLoad() API

HRESULT OleLoad(

In LPSTORAGE pStg,

In REFIID riid,

In LPOLECLIENTSITE pClientSite,
Out LPVOID *ppvODbj

);

The OleLoad function performs the following steps:

» [f necessary, performs an automatic conversion of the object (see the OleDoAutoConvert function).
* Gets the CLSID from the open storage object by calling the IStorage::Stat method.

¢ (alls the CoCreatelnstance function to create an instance of the handler. If the handler code is not available,
the default handler is used (see the OleCreateDefaultHandler function).

* (Calls the IOleObject::SetClientSite method with the pClientSite parameter to inform the object of its client
site.

» (alls the QueryInterface method for the IPersistStorage interface. If successful, the IPersistStorage:Load
method is invoked for the object.

* Queries and returns the interface identified by the riid parameter.

OLE Initialization

» We focus on the two major steps
» Step 1: calling CoCreatelnstance to initialize the OLE
object

» Step 2: calling IPersistStorage to initialize the OLE
object’s initial status (data)

» Next let's analyze the two steps in detail

Step 1: CoCreatelnstance

ole32!wCreateObject+0x101.:

75b41553 e8b387feff call ole32!CoCreatelnstance (75b29d0b)
0018de38 0018de98 00000000 00000403 64c0c954

0:000> k

75b3f2af ole32!wCreateObject+0x101

75b3f1d4 ole32!0leLoadWithoutBinding+0x9c

632c4eb4 ole32!0leLoad+0x37

0:000> db poi(esp)

0018de98 02 26 02 00 00 00 00 00-cO 00 00 00 00 00 00 46
0:000> db poi(esp+4*3)

64c0c954 12 01 00 00 00 00 00 00-cO 00 00 00 00 00 00

CoCreatelnstance(CLSID,
NULL,
CLSCTX _INPROC_SERVER |
CLSCTX _INPROC_HANDLER |
CLSCTX _NO_CODE_DOWNLOAD,
[ID(10leObject))

Where Does CLSID Come From?

The CLSID comes from the document, indicating
which OLE object the user wants to initialize

Because Office/WordPad supports a couple of

document file types, locating the CLSID varies
Office Open-XML format (.docx, .xlIsx, .pptx, .ppsx, etc)
RTF (.rtf)
Office Binary format (.doc, .xls, .ppt, pps, etc)
Office even supports HTML format

We are going to give examples in the Open-XML
format and RTF

CLSID in Open-XML Format

» For Open-XML Format, the CLSID is read from the

"‘OLESS” binary data file

LI andworm.ppsx\ppt\embeddings IR R RTR A R R v R R R TN

Name
oleObjectl.bin
oleQObjectZ.bin
o) DirectoryEntries[4]
L) OLESSDIrectoryEntry[O] \Root Entry
e ~ EleName Root Entry
- CbEleName 0x16
-~ Type 0%
. - ThyFlags 0x0
- sidleft OXFFFFFFFF
? i-s«ﬂmght OXFFFFFFFF
- sidChild

00000430
00000460

0x00000400
0x00000400

.. 0x00000400

0x00000440
0x00000442
0x00000443
0x00000444
0x00000448
0x0000044c

0x00000200
0x00000080
0x00000040
0x00000002
0x00000001
0x00000001
0x00000004
0x00000004
0x00000004

0226 0200000000000 000Q00O0O0O0OD 46

00 00 00 00 00 00 00 00 00 00 00 0O B0 73 FD 41

List<OLESSDirectoryEntry>
OLESSDirectoryEntry
Dataltem_UnicodeString
Dataltem_UInt16
Dataltem_UInt8
Dataltem_UInt8
Dataltem_UInt32
Dataltem_UInt32
Dataltem_UInt32

CLSID In RTF

> For RTF, it uses the outdated OLE 1.0 format to define

an OLE object
> https://msdn.microsoft.com/en-us/library/dd942402.aspx

» Specifying the CLSID is done via specifying the
corresponding ProgID, in “\objdata” RTF control word*
» ProglD will be “translated” to CLSID at runtime via
CLSIDFromProgID

{\rtfl{\object\objocx{*\objdata
01050000 //OLEVersion
02000000 //FormatID, EmbeddedObject

108000000
5061636b61676500 //ProgID "Package"

00000000
00000000
D4290000

*If the ProgID is invalid, and the following native data follows the OLESS format,
the CLSID will be read from the OLESS native data

https://msdn.microsoft.com/en-us/library/dd942402.aspx
https://msdn.microsoft.com/en-us/library/dd942402.aspx
https://msdn.microsoft.com/en-us/library/dd942402.aspx

Step 2: IPersistStorage:.Load

ole32!wCreateObject+0x1f9:

75b3eb41 {5118 call dword ptr [ecx+18h]
ds:0023:6fb614a8={packager!CPackage::Load (6fb66171)}
0:000> k

75b3f2af ole32!wCreateObject+0x1f9

75b3f1d4 ole32!0leLoadWithoutBinding+0x9c

5c0edeb4 ole32!0leLoad+0x37

» The container calls the “Load()” method on the OLE
object’s IPersistStorage interface to initialize its initial

Status ; __1int32 __stdcall CPackage::Load(CPackage xthis, LPSTORAGE pStg)

?Loadi@CPackage@@UAGJPAUIStorage@@@Z proc near

var_1C= dword ptr -1Ch
NumberOfByteslritten= dword ptr -18h
pclsid= CLSID ptr -14h

var_4= dword ptr -4

this= dword ptr §

pStg= dword ptr 0OCh

mov edi, edi
push ebp
mouv ebp, esp

sub esp, 1Ch

Step 2: IPersistStorage::Load

> https://msdn.microsoft.com/en-

us/library/windows/desktop/ms679731(v=vs.85).aspx
> 1ID: 0000010a-0000-0000-C000-000000000046

Method Description

HandsOffStorage | Instructs the object to release all storage objects that have been passed to it by its
container and to enter HandsOff mode.

InitNew Initializes a new storage object.

IsDirty Determines whether an object has changed since it was last saved to its current storage.
Load Loads an object from its existing storage.

Save Saves an object, and any nested objects that it contains, into the specified storage

object. The object enters NoScribble mode.

SaveCompleted MNotifies the object that it can write to its storage object.

HRESULT Load(
[in] IStorage *pStg

Load the initial “status” for the OLE
object when it’s being Initialized

);

https://msdn.microsoft.com/en-us/library/windows/desktop/ms679731(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms679731(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms679731(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms679731(v=vs.85).aspx

Storage Data

> It really depends on the OLE object for handling the
Istorage - loading its initial status
» As the code for implementing the IPersistStorage
Interface sits in the OLE provider (OLE object)

» The Storage Data (represented in the “IStorage”

parameter) is stored in document file
> Like the “CLSID” field, it’s also from the document file
(which the attacker supplies)
» But there are differences
» OLE container (Office/WordPad) reads the CLSID in order
to instantiate the OLE object
» OLE container reads the Storage Data and passes it to
the OLE object, which is responsible for processing the
data

Storage Data in Office Open-XML
» Represented in OLESS data file

» The following example shows the Storage Data for

Flash Player OLE object
» CLSID: D27CDB6E-AE6D-11CF-96B8-444553540000
» Read Storage Data from OLESS data file (oleObjectl.bin)
» Read from the “Contents” section

=¥ oleObject!.bin
l Contents
] OCNANE

-] Ok

)1 OlePresliy

AsHEX AsText | AsPitue | ASTF | asHTL

000000010
0x00000020
000000030

bb33 bbod 0701 0000 Eaed me0e 0701 0000
7800 053F 0000 0FAD 0000 OCOT 0043 OZFF
FFFF 3F03 E300 0000 870 0009 0073 636K
odaF 7661 7200 6964 D031 3337 3300 S04F

Y D.. .58l
d_var.1d.1373.00

Storage Data in RTF

» Represented in OLE1 Native Data
» Described here: https://msdn.microsoft.com/en-
us/library/dd942053.aspx

{*\objdata

01050000 //OLE wersion

02000000 //Format ID, EmbeddedObject

1BO0O0O0OOO //ProglD
ADE3436F6D6e3746CACE9622E4C6973745669657743747T726C2E3200
00000000

00000000

CO0OEOODO0O //OLE1l Native Data (length + data)

DOCF11EOA1B11AE1000000000000000000000000000000003E00030
1000000200000001000000FEFFFFFFO000000000000000FFFFFFFF

FFFFFFFFFFFFFFFFFEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFEFFFFEF
FFFFFFFFFFFFFFFFFEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFEFFFFFF

https://msdn.microsoft.com/en-us/library/dd942053.aspx
https://msdn.microsoft.com/en-us/library/dd942053.aspx
https://msdn.microsoft.com/en-us/library/dd942053.aspx

A Short Break

» We have explained the two key steps in OLE
Initialization
» Next, let's take a look at the “Verb” action

User performs action on the OLE object
(e.q., clicking, double-clicking)
or
User opens the document « “Verb” performed automatically by Office
features (e.g., PowerPoint animation)

OLE object “Verb” action
Initialized performed

CoCreatelnstance |PersistStorage::Load

OLE “Verb” Action

» In essence, performing “verb” action is just calling the
|I0leObject::DoVerb on the OLE object

» 10leObject
» https://msdn.microsoft.com/en-
us/library/windows/desktop/dd542709(v=vs.85).aspx
» 11D: 00000112-0000-0000-C000-000000000046
» 24 methods on this Interface

» There are a few parameters for this
|OleObject::DoVerb method, but we need to focus only
on the first one: the “iVerb,” which under certain

scenarios can be controlled by the attacker
» For example, via PowerPoint Show files (.ppsx, .pps)

https://msdn.microsoft.com/en-us/library/windows/desktop/dd542709(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd542709(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd542709(v=vs.85).aspx

|OleODbject:.:DoVerb

packager!CPackage::DoVerb:
731e580c 8Dbff mov edi,edi
0:000> dd esp
0031c89c 660651c6 0054ec80 FFFFFFFD 00000000

HRESULT DoVerb(

- <p:cmd tvpe;”verh” cmd="-3">

);

[in] LONG iVerb,
(in] LPMSG lpmsg,
in] IOleClientSite *pActiveS
[in] LONG lindex,
[in] HWND hwndParen
[in] LPCRECT lprcPosRe

- <p:cBhvr>
- <p:cTnid="10" dur="1000" fill="hold">
- <p:stCondLst>
<p:cond delay="0"/>
</p:stCondLst>
<[p:cTn>
- <p:igtEl>
<p:splgt spid="4"/>
</p:tgtEl>
</p:cBhvr>
<[p:cmd>

Agenda

>

>

>

>

What Is OLE?

Historical Zero Days Involving OLE
OLE Internals

Attack Surface

Conclusion

Attack Surface via Document

» S0, what may an attacker possibly perform in a
document-based attack via OLE?

» We need to understand what data an attacker may
supply from documents
» |Is the attacker able to supply the CLSID for

CoCreatelnstance during OLE Initialization?
» Answer: Yes (explained)

» Is the attacker able to supply the Storage used Iin

|PersistStorage::Load() during OLE Initialization?
» Answer: Yes (explained)

» |Is the attacker able to supply the “verb” id during
OLE “Verb” Action?

» Answer: Yes (explained)

Attack | - IPersistStorage::Load

It's the most obvious one
You want to parse some data; | give you the crafted data
Sometimes it will result in memory corruptions;
sometimes it may be a logic bug

In fact, most of the previously disclosed OLE
vulnerabilities were actually in the
IPersistStorage::Load() function

Let’'s give some examples

CVE-2012-0158

» Lots of previous analysis has shown this, in
MSCOMCTL.OCX

] s [
mov ecx, [ebx]
push esi
push edi
push eax
push ebx
call dword ptr [ecx+BOCh] ; read the large length 0x8232
mov esil, eax
test esl, esl
jl short loc_27SC8TEF
Ll
ol =
mow esl, [ebp+lpMem] ; controlled data
moy ecx, edi . Ox8282
mov edi, [ebptarg_B] ; stack parameter
mov eax, ecx
shr ecx, 2
rep mousd . xxstack-based overflow!=x
mov ecx, eax

» But, where does the routine really come from?

CVE-2012-0158

Tracing back, we arrive here

.text:276008D9 sub_276008D39 proc near
.text:276008D9
.text:276008D9
.text:276008D9 arg_0

.text:276008D9 arg_4
.text:276008D3

duord ptr 8
duord ptr 0OCh

.text:276008D39 push ebp

.text:276008DA mou ebp, esp

Jtext:276008DC mou eax, [ebptarg_4]
text:276008DF lea edx, [ebptarg_4]
.text:276008E2 push edx

.text:276008E3 push o}

text:27T6008ES mou ecx, [eax]

.text:27T6008ET push 18h

.text:276008EY push o}

text:276008EB push offset aContents : "Contents”
.text:276008F0 push eax

.text:276008F1 call dword ptr [ecx+10h] ; opening the stream named "CONTENTS™
.text:276008F4 test eax, eax

.text:276008F6 jl short loc_27600916
text:276008F8 mou eax, [ebptarg_0]
text:276008FB push esi

.text:276008FC push [ebptarg_4]

.text:27T6008FF add eax, OFFFFFFFCh

.text: 27600902 mou ecx, [eax]

.text: 27600904 push eax

Jtext: 27600905 call dword ptr [ecx+14h] ; call to 275B6GDE

What is the function sub_276008D9 really?

CVE-2012-0158

» After some REIng, we realize this is exactly the

“IPersistStorage::Load” method
Ctext:275906C0 IPersistStorage_vtable dd offset IPersistStorage__Querylnterface

Cftext 27590600 ; DATA XREF: sub_27586000
Cftext 27590600 ; sub_2759453E+50)0
Ctext:275906CH dd offset IPersistStorage__AddRef
Ctext:275906C8 dd offset IPersistStorage__Release
ctext:275906CC dd offset IPersistStorage__GetRunningClass
ctext:275906D0 dd offset IPersistStorage__IsDirty
.text:275906DY dd offset IPersistStorage__InitNew

Ctext: 275906038 dd offset IPersistStorage__Load ; Ox276008D9
Ctext:275906DC dd offset IPersistStorage__Save
ctext:275906E0 dd offset IPersistStorage__SaveCompleted
ctext:275906EY4 dd offset IPersistStorage__HandsOffStorage

> Indeed, the stack-based overflow exists in the
IPersistStorage::Load method

“Package” Temp File Dropping

» Reported in McAfee Labs blog in July 2014

» https://blogs.mcafee.com/mcafee-labs/dropping-files-temp-
folder-raises-security-concerns

» Demo: http://justhaifeil.blogspot.com/2014/08/demonstration-
of-windowsoffice-insecure.html

» Still unpatched!

» Recently, James Forshaw leveraged the “feature” in the
exploitation of an NTLM Reflection EoP vulnerability he
discovered: https://code.google.com/p/google-security-
research/issues/detail?id=325

» The issue also exists in the “IPersistStorage::Load”
function

https://blogs.mcafee.com/mcafee-labs/dropping-files-temp-folder-raises-security-concerns
https://blogs.mcafee.com/mcafee-labs/dropping-files-temp-folder-raises-security-concerns
https://blogs.mcafee.com/mcafee-labs/dropping-files-temp-folder-raises-security-concerns
https://blogs.mcafee.com/mcafee-labs/dropping-files-temp-folder-raises-security-concerns
https://blogs.mcafee.com/mcafee-labs/dropping-files-temp-folder-raises-security-concerns
https://blogs.mcafee.com/mcafee-labs/dropping-files-temp-folder-raises-security-concerns
https://blogs.mcafee.com/mcafee-labs/dropping-files-temp-folder-raises-security-concerns
https://blogs.mcafee.com/mcafee-labs/dropping-files-temp-folder-raises-security-concerns
https://blogs.mcafee.com/mcafee-labs/dropping-files-temp-folder-raises-security-concerns
https://blogs.mcafee.com/mcafee-labs/dropping-files-temp-folder-raises-security-concerns
https://blogs.mcafee.com/mcafee-labs/dropping-files-temp-folder-raises-security-concerns
https://blogs.mcafee.com/mcafee-labs/dropping-files-temp-folder-raises-security-concerns
https://blogs.mcafee.com/mcafee-labs/dropping-files-temp-folder-raises-security-concerns
https://blogs.mcafee.com/mcafee-labs/dropping-files-temp-folder-raises-security-concerns
https://blogs.mcafee.com/mcafee-labs/dropping-files-temp-folder-raises-security-concerns
https://blogs.mcafee.com/mcafee-labs/dropping-files-temp-folder-raises-security-concerns
http://justhaifei1.blogspot.com/2014/08/demonstration-of-windowsoffice-insecure.html
http://justhaifei1.blogspot.com/2014/08/demonstration-of-windowsoffice-insecure.html
http://justhaifei1.blogspot.com/2014/08/demonstration-of-windowsoffice-insecure.html
http://justhaifei1.blogspot.com/2014/08/demonstration-of-windowsoffice-insecure.html
http://justhaifei1.blogspot.com/2014/08/demonstration-of-windowsoffice-insecure.html
http://justhaifei1.blogspot.com/2014/08/demonstration-of-windowsoffice-insecure.html
http://justhaifei1.blogspot.com/2014/08/demonstration-of-windowsoffice-insecure.html
http://justhaifei1.blogspot.com/2014/08/demonstration-of-windowsoffice-insecure.html
https://code.google.com/p/google-security-research/issues/detail?id=325
https://code.google.com/p/google-security-research/issues/detail?id=325
https://code.google.com/p/google-security-research/issues/detail?id=325
https://code.google.com/p/google-security-research/issues/detail?id=325
https://code.google.com/p/google-security-research/issues/detail?id=325
https://code.google.com/p/google-security-research/issues/detail?id=325

“Package” Temp File Dropping

0:000>r

packager!CPackage::EmbedReadFromStream+0x2c6:
733c404d call packager!CopyStreamToFile (733¢c6974)
0:000> du poi(esp+4)

04fdc008 "C:\Users\ADMINI~1\AppData\Local\"

04fdc048 "Temp\dwmapi.dil"

0:000> k

733c4aaa packager!CPackage::EmbedReadFromStream+0x2c6
733c627e packagerlCPackage::PackageReadFromStream+0x6b
7749eb44 packager!CPackage::Load+0x10d

Attack Il: 10leObject::DoVerb

» This is the “IVerb” param for the 10leObject::DoVerb
HRESULT DoVerb(

[in] LONG iVerb,

[in] LPMSG lpmsg,

[in] IOleClientSite *pActiveSite,
[in] LONG lindex,

[in] HWND hwndParent,
[in] LPCRECT lprcPosRect

);
» The value of the “iVerb” can be defined in some place

the attacker can control. For example: PowerPoint

- <p:cmd type="wverb" cmd="-3">
ShOW) - <p:cBhvr>
- <p:cTn id="10" dur="1000" fill="hold" >
- <p:stCondLst>
<p:cond delay="0"/>
< /p:stCondLst>
</p:cTn>
- <p:tgtEl>
<p:spTgt spid="4"/>
</p:tgtEl>
</p:cBhvr>
</p:cmd>

Attack Il: 10leObject::DoVerb

The attacker can supply the “iVerb” value and call the
“|OleObject::DoVerb” method automatically

For example, via the PowerPoint Show “Animations”
feature

Different values will result in different actions. For
example:
You give value 0O, it performs predefined action O,
maybe opening the object
You give value -1, it performs predefined action -1,
maybe doing something else

Attack Il: 10leObject::DoVerb

» OLE objects can choose not to implement their own

|OleObject but use the default/standard interface
» Thus resulting in some standard “verb” actions
» See next

» However, there are also a number of OLE objects that
chose to implement their own 10leObject
» An action the developer implemented but that may be
abused by bad guys
» Usually logic issues

Standard “Verb” Actions

» https://msdn.microsoft.com/en-
us/library/windows/hardware/z326sbae(v=vs.71).aspx

Value

Action
The default action for the object.

Activates the object for editing. If the application that created the object supports in-
place activation, the object is activated within the OLE container control.

Opens the object in a separate application window. If the application that created the
object supports in-place activation, the object is activated in its own window.

For embedded objects, hides the application that created the object.

If the object supports in-place activation, activates the object for in-place activation
and shows any user interface tools. If the object doesn't support in-place activation, the
object doesn't activate, and an error occurs.

If the user moves the focus to the OLE container control, creates a window for the
object and prepares the object to be edited. An error occurs if the object doesn't
support activation on a single mouse click.

Used when the object is activated for editing to discard all record of changes that the
object’s application can undo.

https://msdn.microsoft.com/en-us/library/windows/hardware/z326sbae(v=vs.71).aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/z326sbae(v=vs.71).aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/z326sbae(v=vs.71).aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/z326sbae(v=vs.71).aspx

The Sandworm Zero Day

» The “Sandworm” zero-day attack (CVE-2014-4114)
was the first ever exploit targeting this
“I0leObject::DoVerb” vector

-text:B2FA15 0840

-text:82FA15 84
-text:B2FA15 80
-text:B2FA15 80
text:B2FA15 04
-text:82FA1588
-text:82FA158C
-text:B82FA1518
text:B2FA151Y
-text:B2FA1518
-text:B82FA151C
-text:B2FA1528
textIB2FA152Y
-text:-82FA1528
text:-B2FA152C
-text:@2FA153A
text:B2FA153Y
-text:B2FA1538
-text:B82FA153C
-text:B2FA1548
textzB2FA154Y
-text:B2FA1548
text:B2FA154L
-text:B2FA155A
text:B2FA155Y
-text:B2FA1558
-text:B2FA155C

const CPackage

dd
dd
dd
dd
dd
dd
dd
dd
dd
dd
dd
dd
dd
dd
dd
dd
dd
dd
dd
dd
dd
dd
dd

“wftable'{for “I0leObject'}
text-B82FA15080 ??_F¥CPackage@E6BI01elbject@E® dd offset ?Querylnterfacel@CPackagelRU7AGJABU GUIDEEPAPAKEZ

offset
offset
offset
offset
offset
offset
offset
offset
offset
offset
offset
offset
offset
offset
offset
offset
offset
offset
offset
offset
offset
offset
offset

; DATA XREF: CPackage::™CPackage{void)}+13}o

; CPackage::CPackage({void}+33)o

; [thunk]:CPackage::QueryInterface adjustor{8}' {(GUID const &,vo]
?AddRefECPackage@RUW7AGKSZ [thunk]:EPackagE::HddHEF‘adeStur{B}' {void)
?Release@CPackage@EUYAGKXEZ ; [thunk]:EPackagE::HeleaSE‘adeStur{B}' {void)
7SetClientSite@CPackage@E@UAGJPAUIOleClientSite@@d? ; CPackage::SetClientSite(I0]
?GetClientSite@CPackage@RUAGJPAPAUIOleClientSite@dR7 ; CPackage::GetClientSite(]
?5etHostHames@CPackage@IUAGIPBGBEZ ; CPackage::SetHostHames{ushort const =, ushor
?Close@CPackage@EUAGJKE? ; CPackage::Close{ulong}
?Savel@CPackage@@UAGJPBEHEZ ; CPackage::Save(ushort const =,int)
?InitFrombata@CPackage@EUAGJPAUIDatalbject@EHKEZ ; CPackage::InitFrombataflbatal
?InitFrombata@CPackage@EUAGJPAUIDatalbject@EHKEZ ; CPackage::InitFrombatafllatal
?GetClipboardData@CPackage@RUAGJKPAPAUIDatadbject@E@? ; CPackage::GetClipboardD:
?Doverb@CPackage@RUAGJJPAUtagHSGERPAUIO1eC1lientSite@EIPAUHYND @EEPBUtagRECTREEZ
?EnumUerbsE@CPackage@@UAGJPAPAUIEnuUmOLEVERBERE? ; CPackage::EnumlUerbs{IEnumiLEVEL
?Update@CPackage@BUAGJIRZ ; CPackage::Update{void}
?Update@CPackage@RBUAGJIXZ ; CPackage::Update(void}
?hetUserClassIDECPackage@EUAGJIPALU_GUIDEREEZ ; CPackage::GetUserClassID(GUID =}
hetUserTypeECPackage@RBUAGJEPAPAGRZ ; CPackage: :GetUserType{ulong,ushort = =)
?3etExtentE@CPackage@RUAGJEPAULagSIZE@ER? ; CPackage: :SetExtent{ulong,tagilZE =)
?GetExtent@CPackage@@UAGJEPAUtagSIZE@@RZ ; CPackage::GetExtent{ulong,tagillE =)
?Advise@CPackage@BUAGJPAUIAduiseSinkEBREPAKEZ ; CPackage: :fAdvise(lfAdviseSink =, uli
?Unadvise@CPackage@RUAGJKEZ ; CPackage::Unadvise{ulong}
?EnumAduise@CPackage@@UAGJPAPAUIENUmMSTATDATARERZ ; CPackage: :EnumAduise{ IEnumSTi
?GetMiscStatus@CPackage@RUAGJEPAKEZ ; CPackage::GetMiscStatus{ulong,ulong =)
?3aveCompleted@CPackage@RUAGJPBGEZ ; CPackage::SaveCompleted{ushort const =}

When “verb” is 3
Performing “context-menu” actions!

i
vz = (a1l - 8); /7 come here for ilerb=3
u23 CPackage::GetContextMenu{&u21});
if { v23 >= 8)
{

hMenu = CreatePopupMenu{};
if { hMenu }
{
u2d = (=(=u21 + 123)¥(v21, hHenu, 8, 2, BZFFFFu, 8);// ClefFolderMenu::QueryContextienu
if { v23 »= 8)
{
mii.chSize = 48;
mii.fFHask = 2;
if { GetMenultemInfoW{hMenu, v_iUerb - 2, 1, &mii))// position = 3 -2 = 1
/f means the 2nd item on the menu.

{
if [={al + 4B) == 3)
v?3 = CPackage::CreateTempFile(8);
if [w23 >=8)
{
Ul = mii.wIb - 2;
ul3d = 36;
ulh = @3
1S = 83
vl? = B3
vl = 83
19 = 1;
23 = (#={=021 + 16))(v21, &Ui13); f£f CDefFolderHMenu::InvokeCommand
// Do the real job: “clicking™ the 2nd item on the menu.
S
¥
else
{
23 = Bx48181u;
e
¥
DestroyMenu{hHenu} ;
H i

i

The Sandworm Zero Day

» What could possibly be wrong?

» The “context-menu” options for different file types are
different

» The file content as well as the filename (file type) are
controlled via “IPersistStorage::Load”
» Remember our “Package” Temp £ testinf

_) Open
File Dropping case StUdy? They Install !lthe 2nd item!!
are the same! Print
» S0, this neat zero-day actually :F’i”“’i“‘"(|
leveraged two attack vectors » p
end to
» For example, installing an .inf Cut
~ Pwned! Logic bug! —
Create shortcut
Delete

Rename

Properties

Attack Ill: CLSID-Assocliated DLL Loading

» S0, we have discussed two important attack vectors for
OLE: IPersistStorage::Load and 10leObject::DoVerb

» Are there any more?
» Definitely

» Let’s review the very first step of loading an OLE object
» Calling the CoCreatelnstance trying to initialize the OLE
objects, the OLE object is specified by CLSID, which is
provided in the document file

» What does CoCreatelnstance do? The following:
CoGetClassObiject(rclsid, dwClsContext, NULL, 1ID_IClassFactory, &pCF);
hresult = pCF->Createlnstance(pUnkOuter, riid, ppvODbj)
pPCF->Release();

» CoGetClassObject needs to first load the DLL associated with
the CLSID into the process

What Is “CLSID-Associated” DLL?

» A DLL has an associated CLSID in your Windows
Registry
» HKEY_CLASSES ROOT\CLSID
» The “InprocServer32” key specifies where the DLL (“server”) is

4-| [FT3C1438-71B4-4D91-AD13-1F889A03ACET) # || Name Type Data

InProcServer32 ab| (Default) REGE.. hsystemrooth\system32\winrssrv.dll
[f744e496-1053-48%-81dc-fhd/aco298a8) ab[ThreadingMo.. REG.SZ Bath

{F748B5F0-1500-11CE-BFOD-00AAD0448860]

Attack Ill: CLSID-Assocliated DLL Loading

What could possibly be wrong here?
From an attacker’s perspective?

As we've discussed, OLE objects are a subset of COM
objects, which is another subset of CLSID-associated

objects
Many COM objects registered in the OS are not OLE

objects
Several hundreds vs. several thousands

Sometimes even a DLL that has a CLSID associated in the
Windows Registry is not necessarily a COM

But, CoCreatelnstance will still load the CLSID-

associated DLL in the process
Regardless whether it is an “OLE DLL”
The loaded DLL won’t be unloaded, even if it's determined
later not to be an "OLE DLL”

Attack Ill: CLSID-Associated DLL Loading

» This is a *design* problem in the process of initializing
OLE objects on Windows, in our opinion

> Without loading the DLL first, you won’t be able to know
whether the COM exposes the interface you want!

» Let's compare it with its well-known “sister” feature: the

ActiveX Controls in Internet Explorer
» Unlike OLE, IE11 loading an ActiveX Control (say, in IE) will
first result in checking the “preapproved” list
» HKLM\Software\Microsoft\Windows\CurrentVersion\Ext\PreAp
proved

» S0, if the ActiveX CLSID is not in the list, the DLL won'’t be
really loaded into the IE process
> No problem for ActiveX in IE

Consequences

» What bad things might happen due to the problem we

discussed?
» We can load any DLL into the process as long as the DLL
IS associated with a CLSID
» Considering the attack is launched via a document

» There are quite a few

» Note: Loading OLE DLL may also have the same
problems. But, being able to load every CLSID-
associated DLL increases the attack surface
significantly

Consequence 1: Non-ASLR DLL

Loading non-ASLR DLL in container process
Namely, Word, PowerPoint, Excel, WordPad
Thus used to bypass ASLR for exploitation

Note, not only the CLSID-associated DLL may be non-
ASLR, but sometimes the CLSID-associated DLL could
also link to other non-ASLR DLLs (so loaded as well)

Does not work on Office 2013 and later because they

enabled “Force ASLR”
http.//blogs.technet.com/b/srd/archive/2013/12/11/software-
defense-mitigating-common-exploitation-technigues.aspx
Still works on Office <= 2010 and WordPad ©

http://blogs.technet.com/b/srd/archive/2013/12/11/software-defense-mitigating-common-exploitation-techniques.aspx
http://blogs.technet.com/b/srd/archive/2013/12/11/software-defense-mitigating-common-exploitation-techniques.aspx
http://blogs.technet.com/b/srd/archive/2013/12/11/software-defense-mitigating-common-exploitation-techniques.aspx
http://blogs.technet.com/b/srd/archive/2013/12/11/software-defense-mitigating-common-exploitation-techniques.aspx
http://blogs.technet.com/b/srd/archive/2013/12/11/software-defense-mitigating-common-exploitation-techniques.aspx
http://blogs.technet.com/b/srd/archive/2013/12/11/software-defense-mitigating-common-exploitation-techniques.aspx
http://blogs.technet.com/b/srd/archive/2013/12/11/software-defense-mitigating-common-exploitation-techniques.aspx
http://blogs.technet.com/b/srd/archive/2013/12/11/software-defense-mitigating-common-exploitation-techniques.aspx
http://blogs.technet.com/b/srd/archive/2013/12/11/software-defense-mitigating-common-exploitation-techniques.aspx
http://blogs.technet.com/b/srd/archive/2013/12/11/software-defense-mitigating-common-exploitation-techniques.aspx
http://blogs.technet.com/b/srd/archive/2013/12/11/software-defense-mitigating-common-exploitation-techniques.aspx
http://blogs.technet.com/b/srd/archive/2013/12/11/software-defense-mitigating-common-exploitation-techniques.aspx

Example 1: otkloadr. WRAssembly.1

» Trying to load the "COM object” identified by ProgID:
otkloadr.-WRAssembly.1

{\rtfl{\object\objocx{*\objdata

01050000

02000000

16000000 //otkloadr.WRAssembly.1
bf7Tdeobeocofoled 225752417373 6506d626c79223100

00000000

00000000

01000000 / Proalbs

4 1 Filter: stkloadr WRAssembly 1 Maods
O 1 |:| 5 D I:l O D ------ 4 otkloadr.WRLs=sembly. 1

00000000 'Ermr ﬁ

88

Error querying COM interfaces

> It,S nOt even a COM' I ¥ (lassFactory cannot supply requested class

OK

Example 1: otkloadr. WRAssembly.1

» Will load “C:\Program Files\Microsoft
Office\Office14\ADDINS\OTKLOADR.DLL,” which
will result in loading linked non-ASLR
MSVCR71.DLL in the same directory

» Disclosed by Parvez Anwar in June 2014 at
http://www.greyhathacker.net/?p=770, already fixed
by Microsoft

http://www.greyhathacker.net/?p=770
http://www.greyhathacker.net/?p=770

Example 2: mscormmec.dll

» This non-ASLR DLL is on the default Windows 7
> C:\Windows\Microsoft. NET\Framework\v1.0.3705\mscormmc.dll

» A couple CLSIDs are associated on this DLL, for example:
» {18BA7139-D98B-43C2-94DA-2604E34E175D}

» Then make an Office document or RTF containing an OLE
object with the CLSID. You will get the non-ASLR DLL
loaded into the process

» Still works! Finding non-ASLR DLL made easy; found this
In just a few minutes

Name Path fase ImageBase LA

mscommedl CA\Windows\MicrosofNET\Frameworkiv10.3/05\mscomme.dl — Ox10000000 (10000000

Conseguence 2: Memory Corruption

» Sometimes, loading an “unprepared” DLL is enough to
trigger a memory corruption

» Example: Microsoft Office Uninitialized Memory Use

Vulnerability (CVE-2015-1770)

» CLSID: CDDBCC7C-BE18-4A58-9CBF-D62A012272CE

» Associated DLL: C:\Program Files\Microsoft
Office\Office15\OSF.DLL

» Just trying to load the CLSID-associated DLL will give you
a crash (exploitable)!

» The OSF.DLL is certainly not designed for you to load as
OLE or ActiveX Control

» Discovered by Yong Chuan Koh of MWR Labs, more

details at
https://labs.mwrinfosecurity.com/system/assets/987/original/mwri_adviso
ry_cve-2015-1770.pdf

https://labs.mwrinfosecurity.com/system/assets/987/original/mwri_advisory_cve-2015-1770.pdf
https://labs.mwrinfosecurity.com/system/assets/987/original/mwri_advisory_cve-2015-1770.pdf
https://labs.mwrinfosecurity.com/system/assets/987/original/mwri_advisory_cve-2015-1770.pdf
https://labs.mwrinfosecurity.com/system/assets/987/original/mwri_advisory_cve-2015-1770.pdf
https://labs.mwrinfosecurity.com/system/assets/987/original/mwri_advisory_cve-2015-1770.pdf
https://labs.mwrinfosecurity.com/system/assets/987/original/mwri_advisory_cve-2015-1770.pdf
https://labs.mwrinfosecurity.com/system/assets/987/original/mwri_advisory_cve-2015-1770.pdf
https://labs.mwrinfosecurity.com/system/assets/987/original/mwri_advisory_cve-2015-1770.pdf

Consequence 3: DLL-Preloading

» There’s another attack scenario that hides in the deep

» Note, this is about document-based attacking

» The current working directory is something the attacker

can control

» | shouldn’t have to explain a DLL-Preloading attack

L J

https://wikileaks.org/hackingteam,/ernails/emailid/49815 P~ a

22. Description. Detail a list of deliverables
including documentation.

Microsoft Office 2007, 2010, 2013 Module Remote DLL
HIjacking Vulnerability

Microsoft Office contains a module that is vulnerable to DLL
hijacking upon referenced from a crafted WebDAV or SMB share
containing an Office file,

DLL-Preloading Example: OLE Loading

» CVE-2015-2369 is a good example we reported, fixed
just in July Patch Tuesday

» Minimal PoC in less than one tweet (140 bytes) ©
{\rt\object\objocx{\objdata
010500000200000014000000574D444D434553502E574D444D43
4553502E310000000000000000000100000041010500000000000

O}}

» CLSID-associated DLL
» ProglD: WMDMCESP.WMDMCESP.1
» CLSID: {067B4B81-B1EC-489f-B111-940EBDC44EBE}
> DLL: %systemroot%\System32\cewmdm.dll

» Will result in loading a DLL named “rapi.dll” from the
current working directory

> Demo!

Demo

Summary of Attacking Vectors

» Based on the time-flow of a victim opening the document,

the attack vectors are:
.. Various types of attacks may occur during the “CLSID-
associated DLL Loading” process—the very first step of

“OLE Obiject Initialization”
- Non-ASLR DLL loading

DLL preloading

I, Various types of vulnerabilities may exist in the
“IPersistStorage::Load” routine, another step of the “OLE

Object Initialization”
A lot of zero-day attacks focus on this area

. “Verb” action attack via “IOleObject::DoVerb”
Usually logic bugs, more dangerous

Every Step Attacked

User opens the document

* User performs action on the OLE object
(e.g., clicking, double-clicking)

or
« “Verb” performed automatically by Office
features (e.g., PowerPoint animation)

OLE object
Initialized

Attacked!

“Verb” action

performed
Attacked!

Attacked!

Summary of Attack Surface

The OLE mechanism offers a huge attack surface

Unlike ActiveX, an OLE object is not restricted by security
enhancement features like “Pre-Approved List,” Safe For
Scripting (SFS), or Safe For Initialization (SFI)

Being able to load any* CLSID-associated DLL makes the
attack surface even much bigger

Hundreds of OLE objects on default Windows

Thousands of CLSID-associated DLLs on default Windows

Don'’t forget it's an open area!
The more apps installed, the bigger the surface becomes
It's possible one day we’ll see a document-based attack
targeting specific users having specific software installed on
the system

*Note that the OLE-loading process honors the IE/Office Killbits, so if a CLSID is killbitted,
the associated DLL will not be loaded.

Agenda
What Is OLE?

Historical Zero Days Involving OLE

OLE Internals

Attack Surface

Conclusion

Conclusion

» The OLE mechanism serves the majority of Microsoft’s
documentation interoperability with other components

» A huge attack surface offered
> New ActiveX?
» Even though it's not scriptable, it can do much more than we
expected

» What to expect next after the preso?
» Many OLE-related vulnerabilities will probably be discovered
» Probably more zero-day attacks targeting Office/WordPad
» Detection and defense need to be improved*, for both

sandboxing and static approaches
» An OLE-specific detection method is on the way
*We have reported some new evasion tech recently (https://blogs.mcafee.com/mcafee-labs/threat-actors-

use-encrypted-office-binary-format-evade-detection), suggesting the difficulties on detecting Office-based
attack correctly.

Conclusion

» To vendor (Microsoft)
» The questionable “OLE Loading” mechanism needs to be

revisited, maybe redesigned
» You can't just load every CLSID-associated DLL into the
Office/WordPad process

> A large-scale internal pentest on the default OS is needed
» New attacking vectors produce many new
vulnerabilities

» Training third-party vendors
» Just like what you have done before for ActiveX

Major References

[1] Mark Dowd, Ryan Smith and David Dewey. “Attacking Interoperability”. [Online]
http://hustlelabs.com/stuff/bh2009 _dowd_smith_dewey.pdf

[2] Don Box. “Essential COM”. [Book] https://books.google.com/books/about/Essential COM.html

[3] WikipediA. “Object Linking and Embedding”. [Online]
https://en.wikipedia.org/wiki/Object_Linking_and Embedding

[4] Haifei Li. “Bypassing Microsoft’s Patch for the Sandworm Zero Day: a Detailed Look at the Root Cause”
[Online] https://blogs.mcafee.com/mcafee-labs/bypassing-microsofts-patch-sandworm-zero-day-root-cause
[5] Haifei Li. “Bypassing Microsoft’'s Patch for the Sandworm Zero Day: Even ‘Editing’ Can Cause Harm”.
[Online] https://blogs.mcafee.com/mcafee-labs/bypassing-microsofts-patch-for-the-sandworm-zero-day-
even-editing-can-cause-harm

[6] Haifei Li. “A Close Look at RTF Zero-Day Attack CVE-2014-1761 Shows Sophistication of Attackers”.
[Online] https://blogs.mcafee.com/mcafee-labs/close-look-rtf-zero-day-attack-cve-2014-1761-shows-
sophistication-attackers

[7] Haifei Li. “McAfee Labs Detects Zero-Day Exploit Targeting Microsoft Office”. [Online]
https://blogs.mcafee.com/mcafee-labs/mcafee-labs-detects-zero-day-exploit-targeting-microsoft-office-2
[8] venustech. “CVE-2012-0158 Analysis Report”. [Online]
http://www.venustech.com.cn/NewsInfo/449/13620.Html

[9] Jonathan Leathery. “Microsoft Office Zero-Day CVE-2015-2424 Leveraged By Tsar Team”. [Online]
http://www.isightpartners.com/2015/07/microsoft-office-zero-day-cve-2015-2424-leveraged-by-tsar-team
[10] Haifei Li. “Dropping Files Into Temp Folder Raises Security Concerns”. [Online]
https://blogs.mcafee.com/mcafee-labs/dropping-files-temp-folder-raises-security-concerns

[11] Parvez Anwar. “Bypassing Windows ASLR in Microsoft Word using Component Object Model (COM)
objects”. [Online] http://www.greyhathacker.net/?p=770

[12] Yong Chuan Koh. “Microsoft Office Uninitialised Memory Use Vulnerability”. [Online]
https://labs.mwrinfosecurity.com/system/assets/987/original/mwri_advisory _cve-2015-1770.pdf

Thank You!

3

i

- A

©

haifel.li@intel.com
bing.sun@intel.com

« We’'d like to especially thank researcher James Forshaw, who

helped peer-review the presentation
« Thanks to Chong Xu, Stanley Zhu, and Dan Sommer of Intel

Security and Xiaoning Li of Intel Labs

(intel®) Security @

