

• Haifei Li (haifei.li@intel.com)
• Bing Sun (bing.sun@intel.com)

​Attacking Interoperability:
​An OLE Edition

About Us: Haifei

• Security Researcher at Intel Security (formerly McAfee)
• Previously: Microsoft, Fortinet

• Work on several questions (for good purposes):
 1) How to find vulnerabilities
 2) How to exploit them
 At McAfee my interests have been extended to a 3rd question:

 3) How to detect the effect by answering the 1st and 2nd.

 Work on research-backed projects aiming at detecting the
most stealthy exploits or zero-days (e.g., the Advanced
Exploit Detection System)

• Presented at BlackHat Europe 2010, REcon 2012,
Syscan360 2012, CanSecWest 2011/2014/2015)

About Us: Bing

• Security Research Manager of IPS security research team
at Intel Security Group (formerly McAfee)

• Focus:
 1) Advanced vulnerability exploitation and detection
 2) Rootkits techniques and detection
 3) Firmware security
 4) Virtualization security

• Presented at BlackHat EU 2007, Syscan 2007,
CanSecWest 2008, Xcon 2006/2007/2009

Even though we are going to talk about OLE,

for Object Linking and Embedding, we will

cover only Embedding in this presentation.
 Due to the length of our presentation

 This is a really big area

Declaration

Agenda

 What Is OLE?

 Historical Zero Days Involving OLE

 OLE Internals

 Attack Surface

 Conclusion

Object Linking and Embedding
 Based on Component Object Model (COM)

 It serves the majority of interoperability on

Office/WordPad
 Working with default/third-party applications to

provide rich documentation features to

Office/WordPad users

What Is OLE?

 Embedding a document in another document

 By double-clicking on the “Checklist” document readers

will be able to open another document
 Very convenient for Office users

What Is OLE in Our Lives, Really?

Agenda

 What Is OLE?

 Historical Zero Days Involving OLE

 OLE Internals

 Attack Surface

 Conclusion

 Almost all previous critical Office/WordPad zero days

actually involve OLE

 CVE-2014-4114/6352 (a.k.a. “Sandworm” zero day)
 Reported in October 2014. Logic fault, really serious

 2 OLE objects found in the original sample

 Microsoft failed to fix it in the initial patch

OLE-related Zero Days in History

 CVE-2014-1761
 Reported in March 2014 by Google, highly targeted attack

 RTF format-handling fault, not a vulnerability in OLE object,

but leverages OLE mechanism to load a non-ASLR module,

“MSCOMCTL.OCX”, to bypass ASLR

OLE-related Zero Days in History

 CVE-2013-3906
 Detected and reported by us in October 2013

 Microsoft Graphics Component fault, not a vulnerability in

OLE object, but leverages ActiveX/OLE mechanism to

perform a heap spray in Office

OLE-related Zero Days in History

OLE-related Zero Days in History

 CVE-2012-0158 / CVE-2010-3333
 Years-old vulnerabilities in MSCOMCTL.OCX

 Classic OLE vulnerabilities

 Still see samples in the wild today. :P

 Just in: A similar zero-day attack in MSCOMCTL.OCX

(CVE-2015-2424)
 Disclosed on July 15 by iSIGHT Partners
 http://www.isightpartners.com/2015/07/microsoft-office-zero-

day-cve-2015-2424-leveraged-by-tsar-team

http://www.isightpartners.com/2015/07/microsoft-office-zero-day-cve-2015-2424-leveraged-by-tsar-team
http://www.isightpartners.com/2015/07/microsoft-office-zero-day-cve-2015-2424-leveraged-by-tsar-team
http://www.isightpartners.com/2015/07/microsoft-office-zero-day-cve-2015-2424-leveraged-by-tsar-team
http://www.isightpartners.com/2015/07/microsoft-office-zero-day-cve-2015-2424-leveraged-by-tsar-team
http://www.isightpartners.com/2015/07/microsoft-office-zero-day-cve-2015-2424-leveraged-by-tsar-team
http://www.isightpartners.com/2015/07/microsoft-office-zero-day-cve-2015-2424-leveraged-by-tsar-team
http://www.isightpartners.com/2015/07/microsoft-office-zero-day-cve-2015-2424-leveraged-by-tsar-team
http://www.isightpartners.com/2015/07/microsoft-office-zero-day-cve-2015-2424-leveraged-by-tsar-team
http://www.isightpartners.com/2015/07/microsoft-office-zero-day-cve-2015-2424-leveraged-by-tsar-team
http://www.isightpartners.com/2015/07/microsoft-office-zero-day-cve-2015-2424-leveraged-by-tsar-team
http://www.isightpartners.com/2015/07/microsoft-office-zero-day-cve-2015-2424-leveraged-by-tsar-team
http://www.isightpartners.com/2015/07/microsoft-office-zero-day-cve-2015-2424-leveraged-by-tsar-team
http://www.isightpartners.com/2015/07/microsoft-office-zero-day-cve-2015-2424-leveraged-by-tsar-team
http://www.isightpartners.com/2015/07/microsoft-office-zero-day-cve-2015-2424-leveraged-by-tsar-team
http://www.isightpartners.com/2015/07/microsoft-office-zero-day-cve-2015-2424-leveraged-by-tsar-team
http://www.isightpartners.com/2015/07/microsoft-office-zero-day-cve-2015-2424-leveraged-by-tsar-team
http://www.isightpartners.com/2015/07/microsoft-office-zero-day-cve-2015-2424-leveraged-by-tsar-team
http://www.isightpartners.com/2015/07/microsoft-office-zero-day-cve-2015-2424-leveraged-by-tsar-team
http://www.isightpartners.com/2015/07/microsoft-office-zero-day-cve-2015-2424-leveraged-by-tsar-team
http://www.isightpartners.com/2015/07/microsoft-office-zero-day-cve-2015-2424-leveraged-by-tsar-team
http://www.isightpartners.com/2015/07/microsoft-office-zero-day-cve-2015-2424-leveraged-by-tsar-team
http://www.isightpartners.com/2015/07/microsoft-office-zero-day-cve-2015-2424-leveraged-by-tsar-team

 OLE objects not only produce critical zero-day

vulnerabilities, but also help greatly on

Office/WordPad vulnerability exploitation
 Loading non-ASLR modules

 Heap-spray in Office process

 …

 Bug class through memory corruption to logic bugs

A Short Summary

Agenda

 What Is OLE?

 Historical Zero Days Involving OLE

 OLE Internals

 Attack Surface

 Conclusion

 There is barely no previous research focusing on OLE

internals, but we will mention two:
 “Attacking Interoperability”

 http://hustlelabs.com/stuff/bh2009_dowd_smith_dewey.pdf

 by Mark Dowd, Ryan Smith, and David Dewey in 2009

 We named our presentation in honor of the great work

done in this paper

 Parvez Anwar’s blog site has some work related to

Office/OLE
 https://www.greyhathacker.net

Previous Related Work

http://hustlelabs.com/stuff/bh2009_dowd_smith_dewey.pdf
http://hustlelabs.com/stuff/bh2009_dowd_smith_dewey.pdf
https://www.greyhathacker.net/
https://www.greyhathacker.net/

OLE Is a Subset of COM

COM
OLE

OLE objects are COM objects that expose

specific Interfaces. Must have:

IPersistStorage

IOleObject

 To explain the OLE internals, first we need to

understand what happens when a user opens a

document containing OLE objects.

OLE Internals

“Verb” action
performed

• User performs action on the OLE object

(e.g., clicking, double-clicking)

 or

• “Verb” is performed automatically by Office

features (e.g., PowerPoint animation)

OLE object
initialized

User opens the document

 Initializing/loading an OLE object can be done simply

via the ole32!OleLoad() API

 HRESULT OleLoad(

 In LPSTORAGE pStg,

 In REFIID riid,

 In LPOLECLIENTSITE pClientSite,

 Out LPVOID *ppvObj

);

OLE Initialization

 We focus on the two major steps
 Step 1: calling CoCreateInstance to initialize the OLE

object

 Step 2: calling IPersistStorage to initialize the OLE

object’s initial status (data)

 Next let’s analyze the two steps in detail

OLE Initialization

ole32!wCreateObject+0x101:

75b41553 e8b387feff call ole32!CoCreateInstance (75b29d0b)

0018de38 0018de98 00000000 00000403 64c0c954

0:000> k

75b3f2af ole32!wCreateObject+0x101

75b3f1d4 ole32!OleLoadWithoutBinding+0x9c

632c4eb4 ole32!OleLoad+0x37

0:000> db poi(esp)

0018de98 02 26 02 00 00 00 00 00-c0 00 00 00 00 00 00 46

0:000> db poi(esp+4*3)

64c0c954 12 01 00 00 00 00 00 00-c0 00 00 00 00 00 00

 CoCreateInstance(CLSID,

 NULL,

 CLSCTX_INPROC_SERVER |

 CLSCTX_INPROC_HANDLER |

 CLSCTX_NO_CODE_DOWNLOAD,

 IID(IOleObject))

Step 1: CoCreateInstance

 The CLSID comes from the document, indicating

which OLE object the user wants to initialize

 Because Office/WordPad supports a couple of

document file types, locating the CLSID varies
 Office Open-XML format (.docx, .xlsx, .pptx, .ppsx, etc)

 RTF (.rtf)

 Office Binary format (.doc, .xls, .ppt, pps, etc)

 Office even supports HTML format

 We are going to give examples in the Open-XML

format and RTF

Where Does CLSID Come From?

 For Open-XML Format, the CLSID is read from the

“OLESS” binary data file

CLSID in Open-XML Format

 For RTF, it uses the outdated OLE 1.0 format to define

an OLE object
 https://msdn.microsoft.com/en-us/library/dd942402.aspx

 Specifying the CLSID is done via specifying the

corresponding ProgID, in “\objdata” RTF control word*
 ProgID will be “translated” to CLSID at runtime via

CLSIDFromProgID

CLSID in RTF

*If the ProgID is invalid, and the following native data follows the OLESS format,

the CLSID will be read from the OLESS native data

https://msdn.microsoft.com/en-us/library/dd942402.aspx
https://msdn.microsoft.com/en-us/library/dd942402.aspx
https://msdn.microsoft.com/en-us/library/dd942402.aspx

ole32!wCreateObject+0x1f9:

75b3eb41 ff5118 call dword ptr [ecx+18h]

ds:0023:6fb614a8={packager!CPackage::Load (6fb66171)}

0:000> k

75b3f2af ole32!wCreateObject+0x1f9

75b3f1d4 ole32!OleLoadWithoutBinding+0x9c

5c0e4eb4 ole32!OleLoad+0x37

 The container calls the “Load()” method on the OLE

object’s IPersistStorage interface to initialize its initial

status

Step 2: IPersistStorage::Load

 https://msdn.microsoft.com/en-

us/library/windows/desktop/ms679731(v=vs.85).aspx
 IID: 0000010a-0000-0000-C000-000000000046

Step 2: IPersistStorage::Load

Load the initial “status” for the OLE

object when it’s being initialized

https://msdn.microsoft.com/en-us/library/windows/desktop/ms679731(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms679731(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms679731(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms679731(v=vs.85).aspx

 It really depends on the OLE object for handling the

Istorage - loading its initial status

 As the code for implementing the IPersistStorage

interface sits in the OLE provider (OLE object)

 The Storage Data (represented in the “IStorage”

parameter) is stored in document file
 Like the “CLSID” field, it’s also from the document file

(which the attacker supplies)

 But there are differences
 OLE container (Office/WordPad) reads the CLSID in order

to instantiate the OLE object

 OLE container reads the Storage Data and passes it to

the OLE object, which is responsible for processing the

data

Storage Data

Represented in OLESS data file

 The following example shows the Storage Data for

Flash Player OLE object
 CLSID: D27CDB6E-AE6D-11CF-96B8-444553540000

 Read Storage Data from OLESS data file (oleObject1.bin)

 Read from the “Contents” section

Storage Data in Office Open-XML

 Represented in OLE1 Native Data

 Described here: https://msdn.microsoft.com/en-

us/library/dd942053.aspx

Storage Data in RTF

https://msdn.microsoft.com/en-us/library/dd942053.aspx
https://msdn.microsoft.com/en-us/library/dd942053.aspx
https://msdn.microsoft.com/en-us/library/dd942053.aspx

 We have explained the two key steps in OLE

Initialization

 Next, let’s take a look at the “Verb” action

A Short Break

“Verb” action
performed

• User performs action on the OLE object

(e.g., clicking, double-clicking)

 or

• “Verb” performed automatically by Office

features (e.g., PowerPoint animation)

OLE object
Initialized

User opens the document

CoCreateInstance IPersistStorage::Load

 In essence, performing “verb” action is just calling the

IOleObject::DoVerb on the OLE object

 IOleObject
 https://msdn.microsoft.com/en-

us/library/windows/desktop/dd542709(v=vs.85).aspx

 IID: 00000112-0000-0000-C000-000000000046

 24 methods on this Interface

 There are a few parameters for this

IOleObject::DoVerb method, but we need to focus only

on the first one: the “iVerb,” which under certain

scenarios can be controlled by the attacker
 For example, via PowerPoint Show files (.ppsx, .pps)

OLE “Verb” Action

https://msdn.microsoft.com/en-us/library/windows/desktop/dd542709(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd542709(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd542709(v=vs.85).aspx

packager!CPackage::DoVerb:

731e580c 8bff mov edi,edi

0:000> dd esp

0031c89c 660651c6 0054ec80 FFFFFFFD 00000000

IOleObject::DoVerb

Agenda

 What Is OLE?

 Historical Zero Days Involving OLE

 OLE Internals

 Attack Surface

 Conclusion

 So, what may an attacker possibly perform in a

document-based attack via OLE?

 We need to understand what data an attacker may

supply from documents

 Is the attacker able to supply the CLSID for

CoCreateInstance during OLE Initialization?
 Answer: Yes (explained)

 Is the attacker able to supply the Storage used in

IPersistStorage::Load() during OLE Initialization?
 Answer: Yes (explained)

 Is the attacker able to supply the “verb” id during

OLE “Verb” Action?
 Answer: Yes (explained)

Attack Surface via Document

 It’s the most obvious one
 You want to parse some data; I give you the crafted data

 Sometimes it will result in memory corruptions;

sometimes it may be a logic bug

 In fact, most of the previously disclosed OLE

vulnerabilities were actually in the

IPersistStorage::Load() function

 Let’s give some examples

Attack I - IPersistStorage::Load

 Lots of previous analysis has shown this, in

MSCOMCTL.OCX

 But, where does the routine really come from?

CVE-2012-0158

 Tracing back, we arrive here

 What is the function sub_276008D9 really?

CVE-2012-0158

 After some REing, we realize this is exactly the

“IPersistStorage::Load” method

 Indeed, the stack-based overflow exists in the

IPersistStorage::Load method

CVE-2012-0158

 Reported in McAfee Labs blog in July 2014
 https://blogs.mcafee.com/mcafee-labs/dropping-files-temp-

folder-raises-security-concerns

 Demo: http://justhaifei1.blogspot.com/2014/08/demonstration-

of-windowsoffice-insecure.html

 Still unpatched!

 Recently, James Forshaw leveraged the “feature” in the

exploitation of an NTLM Reflection EoP vulnerability he

discovered: https://code.google.com/p/google-security-

research/issues/detail?id=325

 The issue also exists in the “IPersistStorage::Load”

function

“Package” Temp File Dropping

https://blogs.mcafee.com/mcafee-labs/dropping-files-temp-folder-raises-security-concerns
https://blogs.mcafee.com/mcafee-labs/dropping-files-temp-folder-raises-security-concerns
https://blogs.mcafee.com/mcafee-labs/dropping-files-temp-folder-raises-security-concerns
https://blogs.mcafee.com/mcafee-labs/dropping-files-temp-folder-raises-security-concerns
https://blogs.mcafee.com/mcafee-labs/dropping-files-temp-folder-raises-security-concerns
https://blogs.mcafee.com/mcafee-labs/dropping-files-temp-folder-raises-security-concerns
https://blogs.mcafee.com/mcafee-labs/dropping-files-temp-folder-raises-security-concerns
https://blogs.mcafee.com/mcafee-labs/dropping-files-temp-folder-raises-security-concerns
https://blogs.mcafee.com/mcafee-labs/dropping-files-temp-folder-raises-security-concerns
https://blogs.mcafee.com/mcafee-labs/dropping-files-temp-folder-raises-security-concerns
https://blogs.mcafee.com/mcafee-labs/dropping-files-temp-folder-raises-security-concerns
https://blogs.mcafee.com/mcafee-labs/dropping-files-temp-folder-raises-security-concerns
https://blogs.mcafee.com/mcafee-labs/dropping-files-temp-folder-raises-security-concerns
https://blogs.mcafee.com/mcafee-labs/dropping-files-temp-folder-raises-security-concerns
https://blogs.mcafee.com/mcafee-labs/dropping-files-temp-folder-raises-security-concerns
https://blogs.mcafee.com/mcafee-labs/dropping-files-temp-folder-raises-security-concerns
http://justhaifei1.blogspot.com/2014/08/demonstration-of-windowsoffice-insecure.html
http://justhaifei1.blogspot.com/2014/08/demonstration-of-windowsoffice-insecure.html
http://justhaifei1.blogspot.com/2014/08/demonstration-of-windowsoffice-insecure.html
http://justhaifei1.blogspot.com/2014/08/demonstration-of-windowsoffice-insecure.html
http://justhaifei1.blogspot.com/2014/08/demonstration-of-windowsoffice-insecure.html
http://justhaifei1.blogspot.com/2014/08/demonstration-of-windowsoffice-insecure.html
http://justhaifei1.blogspot.com/2014/08/demonstration-of-windowsoffice-insecure.html
http://justhaifei1.blogspot.com/2014/08/demonstration-of-windowsoffice-insecure.html
https://code.google.com/p/google-security-research/issues/detail?id=325
https://code.google.com/p/google-security-research/issues/detail?id=325
https://code.google.com/p/google-security-research/issues/detail?id=325
https://code.google.com/p/google-security-research/issues/detail?id=325
https://code.google.com/p/google-security-research/issues/detail?id=325
https://code.google.com/p/google-security-research/issues/detail?id=325

0:000> r

packager!CPackage::EmbedReadFromStream+0x2c6:

733c404d call packager!CopyStreamToFile (733c6974)

0:000> du poi(esp+4)

04fdc008 "C:\Users\ADMINI~1\AppData\Local\"

04fdc048 "Temp\dwmapi.dll"

0:000> k

733c4aaa packager!CPackage::EmbedReadFromStream+0x2c6

733c627e packager!CPackage::PackageReadFromStream+0x6b

7749eb44 packager!CPackage::Load+0x10d

“Package” Temp File Dropping

 This is the “iVerb” param for the IOleObject::DoVerb

 The value of the “iVerb” can be defined in some place

the attacker can control. For example: PowerPoint

Show)

Attack II: IOleObject::DoVerb

 The attacker can supply the “iVerb” value and call the

“IOleObject::DoVerb” method automatically
 For example, via the PowerPoint Show “Animations”

feature

 Different values will result in different actions. For

example:
 You give value 0, it performs predefined action 0,

maybe opening the object

 You give value -1, it performs predefined action -1,

maybe doing something else

Attack II: IOleObject::DoVerb

 OLE objects can choose not to implement their own

IOleObject but use the default/standard interface
 Thus resulting in some standard “verb” actions

 See next

 However, there are also a number of OLE objects that

chose to implement their own IOleObject
 An action the developer implemented but that may be

abused by bad guys

 Usually logic issues

Attack II: IOleObject::DoVerb

 https://msdn.microsoft.com/en-

us/library/windows/hardware/z326sbae(v=vs.71).aspx

Standard “Verb” Actions

https://msdn.microsoft.com/en-us/library/windows/hardware/z326sbae(v=vs.71).aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/z326sbae(v=vs.71).aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/z326sbae(v=vs.71).aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/z326sbae(v=vs.71).aspx

 The “Sandworm” zero-day attack (CVE-2014-4114)

was the first ever exploit targeting this

“IOleObject::DoVerb” vector

The Sandworm Zero Day

When “verb” is 3
Performing “context-menu” actions!

 What could possibly be wrong?

 The “context-menu” options for different file types are

different

 The file content as well as the filename (file type) are

controlled via “IPersistStorage::Load”

 For example, installing an .inf
 Pwned! Logic bug!

The Sandworm Zero Day

 Remember our “Package” Temp

 File Dropping case study? They

 are the same!

 So, this neat zero-day actually

 leveraged two attack vectors

 So, we have discussed two important attack vectors for

OLE: IPersistStorage::Load and IOleObject::DoVerb

 Are there any more?
 Definitely

 Let’s review the very first step of loading an OLE object
 Calling the CoCreateInstance trying to initialize the OLE

objects, the OLE object is specified by CLSID, which is

provided in the document file

 What does CoCreateInstance do? The following:
CoGetClassObject(rclsid, dwClsContext, NULL, IID_IClassFactory, &pCF);

hresult = pCF->CreateInstance(pUnkOuter, riid, ppvObj)

pCF->Release();

 CoGetClassObject needs to first load the DLL associated with

the CLSID into the process

Attack III: CLSID-Associated DLL Loading

 A DLL has an associated CLSID in your Windows

Registry
 HKEY_CLASSES_ROOT\CLSID
 The “InprocServer32” key specifies where the DLL (“server”) is

What Is “CLSID-Associated” DLL?

 What could possibly be wrong here?
 From an attacker’s perspective?

 As we’ve discussed, OLE objects are a subset of COM

objects, which is another subset of CLSID-associated

objects
 Many COM objects registered in the OS are not OLE

objects
 Several hundreds vs. several thousands

 Sometimes even a DLL that has a CLSID associated in the

Windows Registry is not necessarily a COM

 But, CoCreateInstance will still load the CLSID-

associated DLL in the process
 Regardless whether it is an “OLE DLL”

 The loaded DLL won’t be unloaded, even if it’s determined

later not to be an “OLE DLL”

Attack III: CLSID-Associated DLL Loading

 This is a *design* problem in the process of initializing

OLE objects on Windows, in our opinion
 Without loading the DLL first, you won’t be able to know

whether the COM exposes the interface you want!

 Let’s compare it with its well-known “sister” feature: the

ActiveX Controls in Internet Explorer
 Unlike OLE, IE11 loading an ActiveX Control (say, in IE) will

first result in checking the “preapproved” list
 HKLM\Software\Microsoft\Windows\CurrentVersion\Ext\PreAp

proved

 So, if the ActiveX CLSID is not in the list, the DLL won’t be

really loaded into the IE process

 No problem for ActiveX in IE

Attack III: CLSID-Associated DLL Loading

 What bad things might happen due to the problem we

discussed?
 We can load any DLL into the process as long as the DLL

is associated with a CLSID

 Considering the attack is launched via a document

 There are quite a few

 Note: Loading OLE DLL may also have the same

problems. But, being able to load every CLSID-

associated DLL increases the attack surface

significantly

Consequences

 Loading non-ASLR DLL in container process
 Namely, Word, PowerPoint, Excel, WordPad

 Thus used to bypass ASLR for exploitation

 Note, not only the CLSID-associated DLL may be non-

ASLR, but sometimes the CLSID-associated DLL could

also link to other non-ASLR DLLs (so loaded as well)

 Does not work on Office 2013 and later because they

enabled “Force ASLR”
 http://blogs.technet.com/b/srd/archive/2013/12/11/software-

defense-mitigating-common-exploitation-techniques.aspx

 Still works on Office <= 2010 and WordPad 

Consequence 1: Non-ASLR DLL

http://blogs.technet.com/b/srd/archive/2013/12/11/software-defense-mitigating-common-exploitation-techniques.aspx
http://blogs.technet.com/b/srd/archive/2013/12/11/software-defense-mitigating-common-exploitation-techniques.aspx
http://blogs.technet.com/b/srd/archive/2013/12/11/software-defense-mitigating-common-exploitation-techniques.aspx
http://blogs.technet.com/b/srd/archive/2013/12/11/software-defense-mitigating-common-exploitation-techniques.aspx
http://blogs.technet.com/b/srd/archive/2013/12/11/software-defense-mitigating-common-exploitation-techniques.aspx
http://blogs.technet.com/b/srd/archive/2013/12/11/software-defense-mitigating-common-exploitation-techniques.aspx
http://blogs.technet.com/b/srd/archive/2013/12/11/software-defense-mitigating-common-exploitation-techniques.aspx
http://blogs.technet.com/b/srd/archive/2013/12/11/software-defense-mitigating-common-exploitation-techniques.aspx
http://blogs.technet.com/b/srd/archive/2013/12/11/software-defense-mitigating-common-exploitation-techniques.aspx
http://blogs.technet.com/b/srd/archive/2013/12/11/software-defense-mitigating-common-exploitation-techniques.aspx
http://blogs.technet.com/b/srd/archive/2013/12/11/software-defense-mitigating-common-exploitation-techniques.aspx
http://blogs.technet.com/b/srd/archive/2013/12/11/software-defense-mitigating-common-exploitation-techniques.aspx

 Trying to load the “COM object” identified by ProgID:

otkloadr.WRAssembly.1

 It’s not even a COM!

Example 1: otkloadr.WRAssembly.1

 Will load “C:\Program Files\Microsoft

Office\Office14\ADDINS\OTKLOADR.DLL,” which

will result in loading linked non-ASLR

MSVCR71.DLL in the same directory

 Disclosed by Parvez Anwar in June 2014 at

http://www.greyhathacker.net/?p=770, already fixed

by Microsoft

Example 1: otkloadr.WRAssembly.1

http://www.greyhathacker.net/?p=770
http://www.greyhathacker.net/?p=770

 This non-ASLR DLL is on the default Windows 7
 C:\Windows\Microsoft.NET\Framework\v1.0.3705\mscormmc.dll

 A couple CLSIDs are associated on this DLL, for example:
 {18BA7139-D98B-43C2-94DA-2604E34E175D}

 Then make an Office document or RTF containing an OLE

object with the CLSID. You will get the non-ASLR DLL

loaded into the process

 Still works! Finding non-ASLR DLL made easy; found this

in just a few minutes

Example 2: mscormmc.dll

 Sometimes, loading an “unprepared” DLL is enough to

trigger a memory corruption

 Example: Microsoft Office Uninitialized Memory Use

Vulnerability (CVE-2015-1770)
 CLSID: CDDBCC7C-BE18-4A58-9CBF-D62A012272CE

 Associated DLL: C:\Program Files\Microsoft

Office\Office15\OSF.DLL

 Just trying to load the CLSID-associated DLL will give you

a crash (exploitable)!

 The OSF.DLL is certainly not designed for you to load as

OLE or ActiveX Control

 Discovered by Yong Chuan Koh of MWR Labs, more

details at
https://labs.mwrinfosecurity.com/system/assets/987/original/mwri_adviso

ry_cve-2015-1770.pdf

Consequence 2: Memory Corruption

https://labs.mwrinfosecurity.com/system/assets/987/original/mwri_advisory_cve-2015-1770.pdf
https://labs.mwrinfosecurity.com/system/assets/987/original/mwri_advisory_cve-2015-1770.pdf
https://labs.mwrinfosecurity.com/system/assets/987/original/mwri_advisory_cve-2015-1770.pdf
https://labs.mwrinfosecurity.com/system/assets/987/original/mwri_advisory_cve-2015-1770.pdf
https://labs.mwrinfosecurity.com/system/assets/987/original/mwri_advisory_cve-2015-1770.pdf
https://labs.mwrinfosecurity.com/system/assets/987/original/mwri_advisory_cve-2015-1770.pdf
https://labs.mwrinfosecurity.com/system/assets/987/original/mwri_advisory_cve-2015-1770.pdf
https://labs.mwrinfosecurity.com/system/assets/987/original/mwri_advisory_cve-2015-1770.pdf

 There’s another attack scenario that hides in the deep
 Note, this is about document-based attacking

 The current working directory is something the attacker

can control

 I shouldn’t have to explain a DLL-Preloading attack

should I?

Consequence 3: DLL-Preloading

 CVE-2015-2369 is a good example we reported, fixed

just in July Patch Tuesday

 Minimal PoC in less than one tweet (140 bytes) 
{\rt\object\objocx{\objdata

010500000200000014000000574D444D434553502E574D444D43

4553502E310000000000000000000100000041010500000000000

0}}

 CLSID-associated DLL
 ProgID: WMDMCESP.WMDMCESP.1

 CLSID: {067B4B81-B1EC-489f-B111-940EBDC44EBE}

 DLL: %systemroot%\System32\cewmdm.dll

 Will result in loading a DLL named “rapi.dll” from the

current working directory

 Demo!

DLL-Preloading Example: OLE Loading

Demo

 Based on the time-flow of a victim opening the document,

the attack vectors are:
I. Various types of attacks may occur during the “CLSID-

associated DLL Loading” process—the very first step of

“OLE Object Initialization”
• Non-ASLR DLL loading

• Memory Corruption

• DLL preloading

• …

II. Various types of vulnerabilities may exist in the

“IPersistStorage::Load” routine, another step of the “OLE

Object Initialization”
• A lot of zero-day attacks focus on this area

III. “Verb” action attack via “IOleObject::DoVerb”
• Usually logic bugs, more dangerous

Summary of Attacking Vectors

“Verb” action
performed

• User performs action on the OLE object

(e.g., clicking, double-clicking)

 or

• “Verb” performed automatically by Office

features (e.g., PowerPoint animation)

OLE object
Initialized

User opens the document

OLE DLL Loading
(CoCreateInstance)

OLE Data Initialization
(IPersistStorage::Load)

Every Step Attacked

Attacked! Attacked!

Attacked!

 The OLE mechanism offers a huge attack surface

 Unlike ActiveX, an OLE object is not restricted by security

enhancement features like “Pre-Approved List,” Safe For

Scripting (SFS), or Safe For Initialization (SFI)

 Being able to load any* CLSID-associated DLL makes the

attack surface even much bigger
 Hundreds of OLE objects on default Windows

 Thousands of CLSID-associated DLLs on default Windows

 Don’t forget it’s an open area!
 The more apps installed, the bigger the surface becomes

 It’s possible one day we’ll see a document-based attack

targeting specific users having specific software installed on

the system

Summary of Attack Surface

*Note that the OLE-loading process honors the IE/Office Killbits, so if a CLSID is killbitted,

the associated DLL will not be loaded.

Agenda

 What Is OLE?

 Historical Zero Days Involving OLE

 OLE Internals

 Attack Surface

 Conclusion

Conclusion

 The OLE mechanism serves the majority of Microsoft’s

documentation interoperability with other components

 A huge attack surface offered
 New ActiveX?

 Even though it’s not scriptable, it can do much more than we

expected

 What to expect next after the preso?
 Many OLE-related vulnerabilities will probably be discovered

 Probably more zero-day attacks targeting Office/WordPad

 Detection and defense need to be improved*, for both

sandboxing and static approaches
 An OLE-specific detection method is on the way

*We have reported some new evasion tech recently (https://blogs.mcafee.com/mcafee-labs/threat-actors-

use-encrypted-office-binary-format-evade-detection), suggesting the difficulties on detecting Office-based

attack correctly.

Conclusion

 To vendor (Microsoft)
 The questionable “OLE Loading” mechanism needs to be

revisited, maybe redesigned
 You can't just load every CLSID-associated DLL into the

Office/WordPad process

 A large-scale internal pentest on the default OS is needed

 New attacking vectors produce many new

vulnerabilities

 Training third-party vendors

 Just like what you have done before for ActiveX

[1] Mark Dowd, Ryan Smith and David Dewey. “Attacking Interoperability”. [Online]

http://hustlelabs.com/stuff/bh2009_dowd_smith_dewey.pdf

[2] Don Box. “Essential COM”. [Book] https://books.google.com/books/about/Essential_COM.html

[3] WikipediA. “Object Linking and Embedding”. [Online]

https://en.wikipedia.org/wiki/Object_Linking_and_Embedding

[4] Haifei Li. “Bypassing Microsoft’s Patch for the Sandworm Zero Day: a Detailed Look at the Root Cause”

[Online] https://blogs.mcafee.com/mcafee-labs/bypassing-microsofts-patch-sandworm-zero-day-root-cause

[5] Haifei Li. “Bypassing Microsoft’s Patch for the Sandworm Zero Day: Even ‘Editing’ Can Cause Harm”.

[Online] https://blogs.mcafee.com/mcafee-labs/bypassing-microsofts-patch-for-the-sandworm-zero-day-

even-editing-can-cause-harm

[6] Haifei Li. “A Close Look at RTF Zero-Day Attack CVE-2014-1761 Shows Sophistication of Attackers”.

[Online] https://blogs.mcafee.com/mcafee-labs/close-look-rtf-zero-day-attack-cve-2014-1761-shows-

sophistication-attackers

[7] Haifei Li. “McAfee Labs Detects Zero-Day Exploit Targeting Microsoft Office”. [Online]

https://blogs.mcafee.com/mcafee-labs/mcafee-labs-detects-zero-day-exploit-targeting-microsoft-office-2

[8] venustech. “CVE-2012-0158 Analysis Report”. [Online]

http://www.venustech.com.cn/NewsInfo/449/13620.Html

[9] Jonathan Leathery. “Microsoft Office Zero-Day CVE-2015-2424 Leveraged By Tsar Team”. [Online]

http://www.isightpartners.com/2015/07/microsoft-office-zero-day-cve-2015-2424-leveraged-by-tsar-team

[10] Haifei Li. “Dropping Files Into Temp Folder Raises Security Concerns”. [Online]

https://blogs.mcafee.com/mcafee-labs/dropping-files-temp-folder-raises-security-concerns

[11] Parvez Anwar. “Bypassing Windows ASLR in Microsoft Word using Component Object Model (COM)

objects”. [Online] http://www.greyhathacker.net/?p=770

[12] Yong Chuan Koh. “Microsoft Office Uninitialised Memory Use Vulnerability”. [Online]

https://labs.mwrinfosecurity.com/system/assets/987/original/mwri_advisory_cve-2015-1770.pdf

Major References

Thank You!

haifei.li@intel.com

bing.sun@intel.com

• We’d like to especially thank researcher James Forshaw, who

helped peer-review the presentation

• Thanks to Chong Xu, Stanley Zhu, and Dan Sommer of Intel

Security and Xiaoning Li of Intel Labs

