
Harnessing Intelligence from Malware

Repositories

Arun Lakhotia and Vivek Notani
Software Research Lab

University of Louisiana at Lafayette
arun@louisiana.edu , vxn4849@louisiana.edu

7/22/2015 (C) 2015 U. Louisiana at Lafayette 1

mailto:arun@Louisiana.edu
mailto:vxn4849@louisiana.edu

Self Introduction

 Software Research Lab
 10 years research on Malware
 Graduate course on malware analysis
 Active interaction with industry
 Funded by AFOSR, ARO, DARPA, ONR, and

State of Louisiana

 Research Focus
 How does malware evade detection?
 How to detect stealthy malware?
 Malware analysis in the large

 Results
 Papers: 50+ peer-reviewed
 Patents: one granted
 Degrees: 6 Ph.D., 8 M.Sc.
 Research Funding: $5MM+

7/22/2015 (C) 2015 U. Louisiana at Lafayette 2

Targeted Attacks

7/22/2015 (C) 2015 U. Louisiana at Lafayette 3

4

Machine Generation of Malware

CyberSecurity Paradox

Physical world: FAILED attempts are INVESTIGATED

Cyber World: FAILED attempts are CELEBRATED

Extract Intelligence from

Malware

7/22/2015 (C) 2015 U. Louisiana at Lafayette 6

Connect families

Discover trends Malware evolution

Connect actors

Requirement: “Google” for Malware

8

“Google”

Malware
Collection

0.90

0.82

0.76

0.30

Nearest Match

Query Malware

Challenges

9

❶ ❸❷ ❹

❶ Remove obfuscation

❷ Map to document

❸ Create index

❹ Search

Key Innovation: VM Introspection

in the Cloud

VM VM

HYPERVISOR

7/22/2015 (C) 2015 U. Louisiana at Lafayette 10

Key Innovation: Semantic

Fingerprints

(380091df)
(0091df96)
(91df96f6)
(df96f633)

eax = def(ebp)
ebp = -4+def(esp)
esp = -8+def(esp)

memdw(-8+def(esp))= def(ebp)
memdw(-4+def(esp))= def(ebp)
memdw(4+def(esp)) = def(memdw(def(esp)))

STATE OF PRACTICE VIRUSBATTLE

Bit shreds Semantics

Fingerprint Fingerprint

Susceptible to obfuscation Obfuscation resistent7/22/2015 (C) 2015 U. Louisiana at Lafayette 11

Semantics Enabled: Connecting Malware

through Code

Aldibot

Ponyloader

Smokeloader

Darkcomet

Semantically similar binaries between malware families

7/22/2015 (C) 2015 U. Louisiana at Lafayette 12

Unpacking Malware

(C) 2015 U. Louisiana at Lafayette 137/22/2015

Challenge 1: Packing

7/22/2015 (C) 2015 U. Louisiana at Lafayette 14

Classes of Packers (Protectors)

• Classification parameter
• Based on execution behavior

• When and how much of the original code is decrypted

• Traditional Packer
• Entire original code is decrypted at one time

• Entire original code is in clear text before it is executed

• Paged Packer
• Just-In-Time decryption of a page when it is executed

• Only a ‘page’ of the original code is in clear text at any time

• Virtual Machine Protectors
• Decrypt a single instruction at a time

• None of the original code is ever in clear text

7/22/2015 (C) 2015 U. Louisiana at Lafayette 15

Unpacking: State-of-Practice

7/22/2015 (C) 2015 U. Louisiana at Lafayette 16

Malware

Windows Guest OS

UNPACKER CODE

Virtualization Stack

Innovation: Unpacking using VM

Introspection

17(C) 2015 U. Louisiana at Lafayette7/22/2015

Malware

Windows Guest OS

QEMU Hypervisor

Linux Guest OS

Virtualization Stack

VB UNPACKER CODE

Observe malware below ring 0

Unpacking Traditionally Packed

Malware

18(C) 2015 U. Louisiana at Lafayette7/22/2015

Execute
Malware

Detect
When to

Stop

Extract
Revealed

Code

When to Stop: Hump and Dump

Addresses Ordered by last execution time

• Traditional Packer
• Decryption in a loop

• High instruction
execution frequency

• Spike in frequency
graph

• Hump & Dump Algorithm
• Detect spike – hump
• Detect end – flat

19(C) 2015 U. Louisiana at Lafayette7/22/2015

PE Compact2.5 (calc.exe), Linear Scale

When to Stop: TimeOut

• What if Hump is never detected?
• TimeOut

• Limits execution time

7/22/2015 (C) 2015 U. Louisiana at Lafayette 20

Constructing PE

• Modify OEP using last PC value

• Fix Section Headers

• Copy Memory Contents to new PE

7/22/2015 (C) 2015 U. Louisiana at Lafayette 21

Extracting Memory Contents:

Challenge

• Extracting memory through hypervisor

• Memory contents may be paged out by GuestOS

• Solution:
• Determine memory is paged out

• Analyze execution profile

• Re-run unpacker with new parameters
• Catch before memory is paged out

7/22/2015 (C) 2015 U. Louisiana at Lafayette 22

Dataset Description:
• File Type: PE-32
• Source: FBI
• Availability: Upon request
• Collection period: 1 year

Bot Family # Executables

Aldibot 19

Armageddon 1

Blackenergy 65

Darkcomet 339

Darkshell 379

Ddoser 5

Illusion 17

Nitol 11

Optima 160

Ponyloader 1,312

Smokeloader 31

Umbraloader 25

Yzf 4

Zeus 41

Total 2,409

Case Study

23(C) 2015 U. Louisiana at Lafayette7/22/2015

Case Study: Results

7/22/2015 (C) 2015 U. Louisiana at Lafayette 24

Unpacked Binary “very similar” to Original => Poor Unpacking

HEURISTIC

Original Unique

Unpacked

Poor

Unpacking

Poor

Unpacking

(%)

Hump and Dump 1,671 1,523 205 12.27

TimeOut 515 500 46 8.93

Self-tuning 168 163 23 13.69

TOTAL 2,354 2,186 274 11.64

• Input : 2,409
• Unpacked : 2,354
• Output : 2,185

Unpacker’s Impact: Analysis Cost

Reduction

Unpacked
Malware

CNC IP

Malware Binaries # %

Original binaries 2,409

Unpacked successfully 2,354 97.7%

Unique unpack result 2,185 92.8%

Reduction in analyst work 169 7.2%Multiple malware produce the same unpacked result

7/22/2015 (C) 2015 U. Louisiana at Lafayette 25

Matching Code

(C) 2015 U. Louisiana at Lafayette 267/22/2015

Challenge 2: Code Obfuscation

7/22/2015 (C) 2015 U. Louisiana at Lafayette 27

push ecx

mov ecx,ebp

add ecx,33

push esi

mov esi,ecx

sub esi,34

mov [esi-2],eax

pop esi

pop ecx

push ecx

mov ecx, ebp

push eax

mov eax, 33

add ecx, eax

pop eax

push esi

mov esi, ecx

push edx

mov edx, 34

sub esi, edx

pop edx

mov [esi - 2], eax

pop esi

pop ecx

push ecx

mov ecx, [ebp + 10]

mov ecx, ebp

push eax

add eax, 2342

mov eax, 33

add ecx, eax

pop eax

mov eax, esi

push eax

mov esi, ecx

push edx

xor edx, 778f

mov edx, 34

sub esi, edx

pop edx

mov [esi-2], eax

pop esi

pop ecx

push ecx

mov ecx,ebp

add ecx,33

mov [ecx-36],eax

pop ecx

Requirements

• Scale requirement
• Search in collection of thousands to millions of malware

• Performance requirement
• Provide results in seconds, or less

• Quality requirement
• Error rates should be comparable to pairwise matching

7/22/2015 (C) 2015 U. Louisiana at Lafayette 28

Representations for Matching

Binaries

29

Map binary to ‘document’

Word = N-Bytes

(380091df)
(0091df96)
(91df96f6)
(df96f633)

Disassemble

Word = N-
mnemonic

(je push)
(push mov)
(mov pop)
(pop xor)

Abstracted
Bytecode

(C) 2015 U. Louisiana at Lafayette7/22/2015

VirusBattle Strategy

30

Map binary to CFG to Document

Binary Disassembly CFG

Word = Block

Abstracted
Bytecode

Abstracted
Disassembly

Semantics

Juice

(C) 2015 U. Louisiana at Lafayette7/22/2015

Code to Semantics

31

push ebp
mov ebp,esp
sub esp,4
mov eax, DWORD ebp+4
mov DWORD ebp+8,eax
mov eax, DWORD ebp
mov DWORD ebp-4,eax

eax = def(ebp)
ebp = -4+def(esp)
esp = -8+def(esp)

memdw(-8+def(esp))= def(ebp)
memdw(-4+def(esp))= def(ebp)
memdw(4+def(esp)) = def(memdw(def(esp)))

Code Semantics• Sequential
• Focus on operations

• Parallel
• Captures affect

Interpret: seq(Instruction) -> State -> State
State = LValue -> RValue

LValue = Register + Mem

+ def(RValue)
+ RValue op Rvalue
+ op RValue

Unsimplified

Value in previous
state

RValue = Int

7/22/2015 (C) 2015 U. Louisiana at Lafayette

Limitations of (Block) Semantics

• Does not capture:
• Register renaming

• Memory address reassignment

• Code motion between blocks

• Evolutionary changes
• Hashes good for strict equality

• Solution:
• Generalize semantics

• Juice

• Use n-Block semantics

• Use fuzzy hashes

327/22/2015 (C) 2015 U. Louisiana at Lafayette

Semantics to ‘words’

• Challenge:
• How to map equal semantics to the same `word’?

• Solution:
• Define canonical ordering

• RValue structures are ground

• Use ordering over symbols

• Account for commutativity

• Sum-of-product form

• Simplify

• Word = Hash (md5, SHA1) of linearized semantics

33

RValue = Int
+ def(RValue)
+ RValue op Rvalue
+ op RValue

7/22/2015 (C) 2015 U. Louisiana at Lafayette

Computing Juice

34

Problem: Establish constraints between
induced variables?

Solution

1. Track simplification steps

2. Generalize simplification steps

7/22/2015 (C) 2015 U. Louisiana at Lafayette

Semantics and Juice

35

push ebp
mov ebp,esp
sub esp,4
mov eax, DWORD ebp+4
mov DWORD ebp+8,eax
mov eax, DWORD ebp
mov DWORD ebp-4,eax

eax = def(ebp)
ebp = -4+def(esp)
esp = -8+def(esp)

memdw(-8+def(esp))= def(ebp)
memdw(-4+def(esp))= def(ebp)
memdw(4+def(esp)) = def(memdw(def(esp)))

Code Semantics

A = def(B),
B = N1+def(C),
C = N2+def(C),

memdw(N2+def(C)) = def(B)
memdw(N1+def(C)) = def(B)
memdw(N3+def(C)) = def(memdw(def(C)))

where A, B, C are ‘registers’
N1, N2, N3 are ‘Int’

Juice

• Inductive Generalization
Replace registers and
constants by variables

7/22/2015 (C) 2015 U. Louisiana at Lafayette

RValue = Int
+ def(RValue)
+ RValue op Rvalue
+ op RValue
+ Variable

Challenge 3: Scalable Search

7/22/2015 (C) 2015 U. Louisiana at Lafayette 36

Featurization Process

37

Unpack Disassembly

Procedure

Procedure

Procedure

Hash

Hash

Hash

MinHash

MinHash

Feature
VectorBinary

Binary

Compiler Attributes

7/22/2015 (C) 2015 U. Louisiana at Lafayette

MinHash: A form of LSH

7/22/2015 (C) 2015 U. Louisiana at Lafayette 38

A Feature B

Light Brown Hair Color Dark Brown

Long Hair Length Long

Brown Eye Color Brown

MinHash Signature-1 MinHash Signature-2

Feature = MinHash Function
Set of Features = MinHash Signature

Compose for Deterministic manipulations

Architecture

7/22/2015 (C) 2015 U. Louisiana at Lafayette 39

VirusBattle Webservice Architecture

7/22/2015 (C) 2015 U. Louisiana at Lafayette 40

Empirical Results

7/22/2015 (C) 2015 U. Louisiana at Lafayette 41

Dataset

7/22/2015 (C) 2015 U. Louisiana at Lafayette 42

0

500

1000

1500

2000

2500

3000

unpacked

original

Bots harvested in 2013

“Interesting” Procedures

7/22/2015 (C) 2015 U. Louisiana at Lafayette 43

7/22/2015 (C) 2015 U. Louisiana at Lafayette 44

Libraries ID’ed by IDA

Transitive Library via Semantics

7/22/2015 (C) 2015 U. Louisiana at Lafayette 45

RE Cost Reduction

1.7 Million+ procedures

32K+ semantically unique procedures

7/22/2015 (C) 2015 U. Louisiana at Lafayette 46

of semantically unique procedures

of procedures in binaries

of IDA unique procedures
105K+ procedures

Procedures All IDA
Unique

Juice
Unique

Lib Procs 65,113 11,482 4,382

Non Lib
Procs

1,644,355
96.2%

93,916
89.1%

27,859
86.4%

Total 1,709,468 105,398 32,241

Intelligence: Connecting Families

Aldibot

Ponyloader

Smokeloader

Darkcomet

Semantically similar binaries between malware families

7/22/2015 (C) 2015 U. Louisiana at Lafayette 47

Intelligence: Code Sharing

7/22/2015 (C) 2015 U. Louisiana at Lafayette 48

Optima DarkComet

Shared in 13/159 samples
Shared in 65/319 samples

Non-Lib Unpacked Procedure

Intelligence: Code Evolution

7/22/2015 (C) 2015 U. Louisiana at Lafayette 49

ddoser: 10 samples

P
ro

ce
d

u
re

s
Sh

ar
ed

Percent binaries

200 in
100%

100 in
10%

Intelligence: Needle in Haystack

7/22/2015 (C) 2015 U. Louisiana at Lafayette 50

darkcomet: 649 samples

20 in 60-65%

930 in 0-5%

P

ro
ce

d
u

re
s

Sh
ar

ed

Percent binaries

Performance

95% percentile
Semantic analysis: < 15s
Unpacking: < 30s
Malware Search: < 7s
Procedure Search: < 100ms

Distribution of analysis time

7/22/2015 (C) 2015 U. Louisiana at Lafayette 51

VirusBattle: In a nutshell

Key Innovations

• Automated unpacking using VM introspection

• Semantic fingerprints, as against bits-based fingerprints

• Innovative 2-tier search algorithm for fast searches

• Search at various granularity:
Whole binary, procedures, blocks, strings

• Interfaces with Palantir’s Forensic Investigation platform

Rapidly extract intelligence from malware
Application

Impact
• Order of magnitude improvement in malware

analysts capability
Unpacking time:

Reduced from days/weeks to minutes

Analysis work:
Reduce efforts from weeks/months to minutes

New capability:
Build knowledge base of analysis indexed on similar code
Share analysts’ experience across malware families

Component Time(*) Accuracy

Unpacker 30 sec 97%

Semantic Juice 15 sec

Binary search 7 sec 95%

Procedure search 100ms

Performance

* Based on analysis of 2,500 botnets binaries; ** Max time to process 95% of files

7/22/2015 (C) 2015 U. Louisiana at Lafayette 52

Blackhat Sound Bytes

• Malware repositories are great source of intelligence

• Semantic juice peers through code obfuscation

• Semantic hashing enables fast search over large repositories

• VM Introspection gives you X-Ray vision over malware

• VirusBattle.com: Malware Intelligence Mining in the Cloud

7/22/2015 (C) 2015 U. Louisiana at Lafayette 53

Contact

Prof. Arun Lakhotia

Vivek Notani

University of Louisiana at
Lafayette, Lafayette, LA, USA

arun@louisiana.edu

vxn4849@louisiana.edu

7/22/2015 (C) 2015 U. Louisiana at Lafayette 54

mailto:arun@Louisiana.Edu
mailto:vxn4849@louisiana.edu

Extras

7/22/2015 (C) 2015 U. Louisiana at Lafayette 55

MinHash: A form of LSH

• Consider Set A and Set B

• Let h(x)->int be a function that takes a member of A or B and gives an
integer

• Let hmin (s) represent minimum member of set s w.r.t. h.

• Then,

Pr(hmin(A)=hmin(B)) =

Problem: High Variance!

7/22/2015 (C) 2015 U. Louisiana at Lafayette 56

MinHash Signatures:

• Compose d minhash functions:
• Signature Match then implies each of the d functions agree on match

• Pr (sig(A)=sig(B)) = J(A,B)d

Problem: Too many False Negatives!

• Check r minhash signatures:
• A Match then implies atleast one of the r signatures agree on match

• Pr (match(A,B)) = 1 - (1 - J(A,B)d)r

7/22/2015 (C) 2015 U. Louisiana at Lafayette 57

