£

black hat

USA =26

bibekhat

LISSAS2ENS

 Co-founder and Chief Scientist at Lastline, Inc.

— Lastline offers protection against zero-day threats and advanced
malware

* Professor in Computer Science at UC Santa Barbara
— many systems security papers in academic conferences

 Member of Shellphish

blgk hat | £ ¥¢

J

\
USA 2015 e | SA L l
Who are we?

« PhD Student at UC Santa Barbara

— research focused primarily on binary security and embedded
devices

 Member of Shellphish
— team leader of Shellphish's CGC effort

S
S O

What are we talking about?

1

black hat

LS AN RIS

The “Internet of Things”

Global Internet Device Installed Base Forecast
20,000,000

18,000,000

BI INTELLIGENCE
16,000,000

Wearables
14,000,000

Smart TVs
12,000,000
10,000,000

8,000,000

6,000,000 Tablets

Number Of Devices In Use (In Thousands)

4,000,000

2,000,000

0
2004 2005 2006 2007 2008 2009 2010 2011 2012 2013E 2014 2015E 2016E 2017E 2018E

Source: Gartner, IDC, Strategy Analytics, Machina Research, company filings, Bll estimates

blgc’zk hat

LS AN RIS

blgc’zk hat

LISSAS2ENS

What is on embedded devices?

* Embedded Linux and user-space programs

e Custom OS and custom programs combined together
in a binary blob
— typically, the binary is all that you get
— and, sometimes, it is not easy to get this off the device

= =m = e ‘

Binary Analysis

il

Binary analysis D)

noun | bi-na:ry anal-y-sis | \ bi-na-ré a- na-la-sas\

1. The process of automatically deriving properties about the
behavior of binary programs

2. Including static binary analysis and dynamic binary analysis

O

black hat

LISSAS2ENS

Goals of Binary Analysis

* Program verification

* Program testing \ BOODBp\\é

* Vulnerability excavation
* Vulnerability signature generation

* Reverse engineering
* Vulnerability excavation

* Exploit generation

blStkhat / ’
B=r N\ =imi= T

Static Binary Analysis

— reason over multiple (all) execution paths
— can achieve excellent coverage
— precision versus scalability trade-off

* very precise analysis can be slow and not scalable
* too much approximation leads to wrong results (false positives)

— often works on abstract program model
* for example, binary code is lifted to an intermediate representation

O

black hat

LISSAS2ENS

Dynamic Binary Analysis

— examine individual program paths
— very precise
— coverage is (very) limited

— sometimes hard to properly run program
* hard to attach debugger to embedded system

* when code is extracted and emulated, what happens with calls to
peripherals?

blgc’zk hat

LISSAS2ENS

Challenges of Static Binary Analysis

* Get the binary code

* Binaries lack significant information present in source

e Often no clear library or operating system abstractions
o where to start the analysis from?
o hard to handle environment interactions

bidekhat ‘ﬁﬁ ’.

From Source to Binary Code

\
v %

strip

w Y

blbeKxhat g, ‘ ’
LUSA 2015 |

From Source to Binary Code

\
v ﬁ%gsggs

strip

type info
variable]

functior\ names
names \

. £
jump

blgc’zk hat

LISSAS2ENS

W

Missing OS and Library Abstractions

e (Linux) system call interface is great

— you know what the I/O routines are
* important to understand what user can influence

— you have typed parameters and return values
— let’s the analysis focus on (much smaller) main program

* OSis notthere or embedded in binary blob
— heuristics to find 1/0O routines
— open challenge to find mostly independent components

blgc’zk hat

LISSAS2ENS

W

Missing OS and Library Abstractions

e Library functions are great
— you know what they do and can write a “function summary”
— you have typed parameters and return values
— let’s the analysis focus on (much smaller) main program

e Library functions are embedded (like static linking)
— need heuristics to rediscover library functions
— |IDA FLIRT (Fast Library Identification and Recognition Technology)
— more robustness based on looking for control flow similarity

blgc’zk hat

LISSAS2ENS

‘HHA

Types of Vulnerabilities

* Memory safety vulnerabilities
— buffer overrun

— out of bounds reads (heartbleed)
— write-what-where

* Authentication bypass (backdoors)

e Actuator control!

bistkhat

—=Aue RS

Authentication Bypass

Prompt

h 4

Authentication

/\

SUCCeSS

N
bidekhat ¢ ?}}

Authentication Bypass

Prompt

Backdoor

e.g. strempl() Authentication

\

Success Failure

KNI/

Authentication Bypass

Prompt

Hard to find.
Backdoor _ .
e.g. stremp() Authentication F

Success Failure

N "

Authentication Bypass

Prompt

. LR RS
- N $. .
"o
_ .ﬁ"lllll Missing!
. *
[4 L 0.
T, .

Success

N i

Modeling Authentication Bypass

Prompt

Hard to find.
Backdoor Authentication !
e.g. strcmp()

Easier to find! \
@ Success Failure

blgc’zk hat

LISSAS2ENS

5

Input Determinism

Backdoor -
e.g. strcmp() -

Prompt

n‘-‘

v
Authentication

Success . Failure

.
:
:
4

Can we determine
the input needed to
reach the success
function, just by
analyzing the code?

The answer is NO

blgc’zk hat

LISSAS2ENS

5

Input Determinism

Backdoor
e.g. strcmp()

Prompt

R Yoo |

. Authentication

..............................

Success

Can we determine
the input needed to
reach the success
function, just by
analyzing the code?

The answer is YES

N i

Modeling Authentication Bypass

Prompt
Backdoor Authentication
e.g. strcmp()
Easier to find! \
Bt how.% Success Failure

ol 5

Finding “Authenticated Point”

* Without OS/ABI information:
o Manual reverse engineering
o Program outputs/references certain strings (like
“welcome admin”)
o Program accesses sensitive memory regions

e With ABI information:
o Program calls sensitive syscalls
o Program accesses sensitive resources/files

"

Using angr to Hunt for Vulnerabilities

| @ﬂ Static Analysis
- @ﬂ Symbolic Execution
Security

policies Security POCs
- Policy Checker

Program

O

LS ALSE]

black hat

=

Ly 5

angr: A Binary Analysis Framework

é@ angr —

>
— W

&

Binary Loader

Static Analysis Routines —

’b‘ Control-Flow Graph
b‘ Data-Flow Analysis

~b‘ Value-Set Analysis

_ ﬁ Symbolic Execution Engine

O

LS ALSE]

black hat

=

Ly 5

angr: A Binary Analysis Framework

é@ angr —

>
— W

&

Binary Loader

Static Analysis Routines —

’b‘ Control-Flow Graph
b‘ Data-Flow Analysis

~b‘ Value-Set Analysis

o ﬁ Symbolic Execution Engine

blStkhat / ’
B=r N\ =imi= T

Symbolic Execution

"How do | trigger path X or condition Y?"

- Dynamic analysis

- Input A? No. Input B? No. Input C? ...

- Based on concrete inputs to application.
- (Concrete) static analysis

- "You can't"/"You might be able to"

- Based on various static techniques.

We need something slightly different.

bl&k hat

LISSAS2ENS

: ‘“ﬂ ¥

Symbolic Execution

"How do | trigger path X or condition Y?"

1. Interpret the application.

2. Track "constraints" on variables.

3. When the required condition is triggered,
"concretize" to obtain a possible input.

blbeKxhat gtz ’
([SA RS = 3

Symbolic Execution

Constraints

x>=10 Concretize X
x <100

Constraint solving:

42

Jd Conversion from set of constraints to set of concrete values
that satisfy them.
Jd NP-complete, in general.

"

Symbolic Execution

x = int (input ())
1f x >= 10
1f x < 100:
print "Two!"
else:
print "Lots!"
else:
print "One!™

LISSAS2ENS

Sem

Symbolic Execution

X = int (input())
if x >= 10:
if x < 100:
print "Two!"
else: State A
print "Lots!"

celse: Variables

print "One!™" x =277

Constraints

O

black hat

SAS2ENS

)"

ﬁ ll

Symbolic Execution

X = int (input())
if x >= 10:
if x < 100:
print
else:
print
else:
print "One!"

1A TWO ! 1A

"Lots!"

State A

Variables

X =277

Constraints

\I
State AA State AB
Variables Variables
Xx=7??? X=7?7??

Constraints

x< 10

Constraints

x>=10

SAS2ENS

biSekhat . gﬁ l‘

Symbolic Execution

x = int (input ()) State AA State AB
if x >= 10: Variables Variables
if x < 100: =777 « = 777
print "Two!"
else: Constraints Constraints
print "Lots!" x <10 x >= 10

else:
print "One!™"

O

black hat

SAS2ENS

Symbolic Execution

M
3

X = int (input())
if x >= 10:
if x < 100:
print "Two!"
else:
print "Lots!"
else:
print "One!™"

State AA

Variables

X =777

Constraints

State AB

Variables

X =777

Constraints

x<10 x>=10
— T~
State ABA State ABB
Variables Variables
X=7??? X=7???

Constraints

x>=10
x <100

Constraints

x>=10
x >= 100

O

LISSAS2ENS

Lo

Symbolic Execution

x = int (input()) State ABA
1t x >= 10: Variables
if x < 100: N
print "Two!" o
else: Constraints
print "Lots!" x >= 10
else: x < 100
print "One!"
AN
Concretized ABA
Variables
X =99

blgc’zk hat

LISSAS2ENS

Ly 5

Symbolic Execution - Pros and Cons

Pros Cons

- Precise - Not scalable

- No false positives (with - constraint solving is np-
correct environment complete
model) - path explosion

- Produces directly-
actionable inputs

S
S O

Path Explosion

5] <: 5 paths to here

oo paths to here

O

LS ALSE]

black hat

=

Ly 5

angr: A Binary Analysis Framework

é@ angr —

>
— W

d>
T

Binary Loader

Static Analysis Routines—

’b‘ Control-Flow Graph
b‘ Data-Flow Analysis

~b‘ Value-Set Analysis

_ ﬁ Symbolic Execution Engine

1

black hat

LS AN RIS

1y 50

angr: A Binary Analysis Framework

é@ dnNgr —

>
—

d>
T

Binary Loader

Static Analysis Routines—

'-b‘ Control-Flow Graph
b‘ Data-Flow Analysis

-b‘ Value-Set Analysis

_ ﬁ Symbolic Execution Engine

1

black hat

LS AN RIS

1y 50

angr: A Binary Analysis Framework

é@ dnNgr —

>
—

d>
T

Binary Loader

Static Analysis Routines—

'-b‘ Control-Flow Graph
b‘ Data-Flow Analysis

-b‘ Value-Set Analysis

_ ﬁ Symbolic Execution Engine

1

black hat

LS AN RIS

1y 50

angr: A Binary Analysis Framework

é@ dnNgr —

>
—

d>
T

Binary Loader

Static Analysis Routines—

'-b‘ Control-Flow Graph
b‘ Data-Flow Analysis

-b‘ Value-Set Analysis

_ ﬁ Symbolic Execution Engine

pisckbat | =3 ‘“ lﬁ

LISSAS2ENS

Value Set Analysis

Memory access checks Type inference
Variable recovery Range recovery

Wrapped-interval analysis

Value-set analysis

Abstract interpretation

1

blackhat 4 “’l s

Value Set Analysis

{
(global, (4[0x601000, 0x602000],
32)),
(stack _0x400957, (8[-Oxc, -Ox4],
32))
) global stack _0x400957
0x601000, 0x601004 - Oxc

0x601008, 0x60100c - 0x4

O

black hat

LS ALSE]

=

Ly 5

What have we used this for?

>
— W

&

Binary Loader

Static Analysis Routines —

’b‘ Control-Flow Graph
b‘ Data-Flow Analysis

~b‘ Value-Set Analysis

_ ﬁ Symbolic Execution Engine

1

black hat

LS AN RIS

b

The Cyber Grand Challenge!

-

-

.

CB

vulnerable program

~

-

J

Cyber
Reasoning
System

N
A

.

~
POV
exploit
/
\
RB
patched program
/

blgc’zk hat

LS AN RIS

Cror

4)

Autonomous
service
resiliency

Autonomous
processing
—
4)
Autonomous [
vulnerability » Test cases
scanning .
N J
|| Proposed
POVs
.
4)
4 N\
Autono::nous Proposed
patching RBs
_ J

- J

POV

- J

blgc’zk hat

LS AN RIS

o

)

Autonomous

J_

processing

-
.

4)

Autonomous
service
resiliency

POV

|
4)
. ~ s (
ty » Test cases
g \.
N J |
N Proposed
POVs
.
\
PR 4 p
(" IS Proposed
RBs
_ J
/

- J

blgc’:k hat

LS AN RIS

SSSSSSS

