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 Co-founder and Chief Scientist at Lastline, Inc.

— Lastline offers protection against zero-day threats and advanced
malware

* Professor in Computer Science at UC Santa Barbara
— many systems security papers in academic conferences

 Member of Shellphish



blgk hat | £ ¥¢

J

\
USA 2015 e | SA L l
Who are we?

« PhD Student at UC Santa Barbara

— research focused primarily on binary security and embedded
devices

 Member of Shellphish
— team leader of Shellphish's CGC effort
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What are we talking about?




1

black hat

LS AN RIS

The “Internet of Things”
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What is on embedded devices?

* Embedded Linux and user-space programs

e Custom OS and custom programs combined together
in a binary blob
— typically, the binary is all that you get
— and, sometimes, it is not easy to get this off the device
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Binary Analysis

il

Binary analysis D)

noun | bi-na:ry anal-y-sis | \ bi-na-ré a- na-la-sas\

1. The process of automatically deriving properties about the
behavior of binary programs

2. Including static binary analysis and dynamic binary analysis
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Goals of Binary Analysis

* Program verification

* Program testing \ BOODBp\\é

* Vulnerability excavation
* Vulnerability signature generation

* Reverse engineering
* Vulnerability excavation

* Exploit generation
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Static Binary Analysis

— reason over multiple (all) execution paths
— can achieve excellent coverage
— precision versus scalability trade-off

* very precise analysis can be slow and not scalable
* too much approximation leads to wrong results (false positives)

— often works on abstract program model
* for example, binary code is lifted to an intermediate representation
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Dynamic Binary Analysis

— examine individual program paths
— very precise
— coverage is (very) limited

— sometimes hard to properly run program
* hard to attach debugger to embedded system

* when code is extracted and emulated, what happens with calls to
peripherals?
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Challenges of Static Binary Analysis

* Get the binary code

* Binaries lack significant information present in source

e Often no clear library or operating system abstractions
o where to start the analysis from?
o hard to handle environment interactions
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From Source to Binary Code

\
v %

strip
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From Source to Binary Code

\
v ﬁ%gsggs

strip

type info
variable ]

functior\ names
names \

. £
jump
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Missing OS and Library Abstractions

e (Linux) system call interface is great

— you know what the I/O routines are
* important to understand what user can influence

— you have typed parameters and return values
— let’s the analysis focus on (much smaller) main program

* OSis notthere or embedded in binary blob
— heuristics to find 1/0O routines
— open challenge to find mostly independent components
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Missing OS and Library Abstractions

e Library functions are great
— you know what they do and can write a “function summary”
— you have typed parameters and return values
— let’s the analysis focus on (much smaller) main program

e Library functions are embedded (like static linking)
— need heuristics to rediscover library functions
— |IDA FLIRT (Fast Library Identification and Recognition Technology)
— more robustness based on looking for control flow similarity
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Types of Vulnerabilities

* Memory safety vulnerabilities
— buffer overrun

— out of bounds reads (heartbleed)
— write-what-where

* Authentication bypass (backdoors)

e Actuator control!
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Authentication Bypass

Prompt
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Authentication Bypass

Prompt

Backdoor

e.g. strempl() Authentication

\

Success Failure
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Authentication Bypass

Prompt

Hard to find.
Backdoor _ .
e.g. stremp() Authentication F

Success Failure
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Modeling Authentication Bypass

Prompt

Hard to find.
Backdoor Authentication !
e.g. strcmp()

Easier to find! \
@ Success Failure




blgc’zk hat

LISSAS2ENS

5

Input Determinism

Backdoor -
e.g. strcmp() -

Prompt

_______
n‘-‘

v
Authentication

Success . Failure

.
:
:
4

Can we determine
the input needed to
reach the success
function, just by
analyzing the code?

The answer is NO
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Input Determinism

Backdoor
e.g. strcmp()

Prompt

R Yoo |

. Authentication

..............................

Success

Can we determine
the input needed to
reach the success
function, just by
analyzing the code?

The answer is YES
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Modeling Authentication Bypass

Prompt
Backdoor Authentication
e.g. strcmp()
Easier to find! \
Bt how.% Success Failure
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Finding “Authenticated Point”

* Without OS/ABI information:
o Manual reverse engineering
o Program outputs/references certain strings (like
“welcome admin”)
o Program accesses sensitive memory regions

e With ABI information:
o Program calls sensitive syscalls
o Program accesses sensitive resources/files
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Using angr to Hunt for Vulnerabilities

| @ﬂ Static Analysis
- @ﬂ Symbolic Execution
Security

policies Security POCs
- Policy Checker

Program
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angr: A Binary Analysis Framework
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Binary Loader

Static Analysis Routines —

’b‘ Control-Flow Graph
b‘ Data-Flow Analysis

~b‘ Value-Set Analysis

_ ﬁ Symbolic Execution Engine
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Static Analysis Routines —

’b‘ Control-Flow Graph
b‘ Data-Flow Analysis

~b‘ Value-Set Analysis

o ﬁ Symbolic Execution Engine
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Symbolic Execution

"How do | trigger path X or condition Y?"

- Dynamic analysis

- Input A? No. Input B? No. Input C? ...

- Based on concrete inputs to application.
- (Concrete) static analysis

- "You can't"/"You might be able to"

- Based on various static techniques.

We need something slightly different.
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Symbolic Execution

"How do | trigger path X or condition Y?"

1. Interpret the application.

2. Track "constraints" on variables.

3. When the required condition is triggered,
"concretize" to obtain a possible input.
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Symbolic Execution

Constraints

x>=10 Concretize X
x <100

Constraint solving:

42

Jd Conversion from set of constraints to set of concrete values
that satisfy them.
Jd NP-complete, in general.
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Symbolic Execution

x = int (input ())
1f x >= 10
1f x < 100:
print "Two!"
else:
print "Lots!"
else:
print "One!™
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Symbolic Execution

X = int (input())
if x >= 10:
if x < 100:
print "Two!"
else: State A
print "Lots!"

celse: Variables

print "One!™" x =277

Constraints
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Symbolic Execution

X = int (input())
if x >= 10:
if x < 100:
print
else:
print
else:
print "One!"

1A TWO ! 1A

"Lots!"

State A

Variables

X =277

Constraints

\I
State AA State AB
Variables Variables
Xx=7??? X=7?7??

Constraints

x< 10

Constraints

x>=10
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Symbolic Execution

x = int (input ()) State AA State AB
if x >= 10: Variables Variables
if x < 100: =777 « = 777
print "Two!"
else: Constraints Constraints
print "Lots!" x <10 x >= 10

else:
print "One!™"
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Symbolic Execution
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X = int (input())
if x >= 10:
if x < 100:
print "Two!"
else:
print "Lots!"
else:
print "One!™"

State AA

Variables

X =777

Constraints

State AB

Variables

X =777

Constraints

x<10 x>=10
— T~
State ABA State ABB
Variables Variables
X=7??? X=7???

Constraints

x>=10
x <100

Constraints

x>=10
x >= 100
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Symbolic Execution

x = int (input()) State ABA
1t x >= 10: Variables
if x < 100: N
print "Two!" o
else: Constraints
print "Lots!" x >= 10
else: x < 100
print "One!"
AN
Concretized ABA
Variables
X =99
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Symbolic Execution - Pros and Cons

Pros Cons

- Precise - Not scalable

- No false positives (with - constraint solving is np-
correct environment complete
model) - path explosion

- Produces directly-
actionable inputs
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Path Explosion

5] <: 5 paths to here

oo paths to here
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angr: A Binary Analysis Framework
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Binary Loader

Static Analysis Routines—

’b‘ Control-Flow Graph
b‘ Data-Flow Analysis

~b‘ Value-Set Analysis

_ ﬁ Symbolic Execution Engine
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Binary Loader

Static Analysis Routines—

'-b‘ Control-Flow Graph
b‘ Data-Flow Analysis

-b‘ Value-Set Analysis

_ ﬁ Symbolic Execution Engine
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Binary Loader

Static Analysis Routines—

'-b‘ Control-Flow Graph
b‘ Data-Flow Analysis

-b‘ Value-Set Analysis

_ ﬁ Symbolic Execution Engine
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Binary Loader

Static Analysis Routines—

'-b‘ Control-Flow Graph
b‘ Data-Flow Analysis

-b‘ Value-Set Analysis

_ ﬁ Symbolic Execution Engine
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Value Set Analysis

Memory access checks Type inference
Variable recovery Range recovery

Wrapped-interval analysis

Value-set analysis

Abstract interpretation
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Value Set Analysis

{
( global, (4[0x601000, 0x602000],
32)),
( stack _0x400957, (8[-Oxc, -Ox4],
32))
) global stack _0x400957
0x601000, 0x601004 - Oxc

0x601008, 0x60100c - 0x4
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What have we used this for?

>
— W

&

Binary Loader

Static Analysis Routines —

’b‘ Control-Flow Graph
b‘ Data-Flow Analysis

~b‘ Value-Set Analysis

_ ﬁ Symbolic Execution Engine
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The Cyber Grand Challenge!

-

-

.

CB

vulnerable program

~

-

J

Cyber
Reasoning
System

N
A

.

~
POV
exploit
/
\
RB
patched program
/
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service
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Autonomous
processing
—
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Autonomous [
vulnerability »  Test cases
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|| Proposed
POVs
.
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4 N\
Autono::nous Proposed
patching RBs
\_ J

- J

POV
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