
Internet-facing PLCs - A New Back Orifice

Johannes Klick, Stephan Lau, Daniel Marzin, Jan-Ole Malchow, Volker Roth

Freie Universität Berlin - Secure Identity Research Group

<firstname>.<lastname>@fu-berlin.de

Abstract—Industrial control systems (ICS) are integral com-
ponents of production and control processes. Our modern infras-
tructure heavily relies on them. Unfortunately, from a security
perspective, thousands of PLCs are deployed in an Internet-facing
fashion. Security features are largely absent in PLCs. If they are
present then they are often ignored or disabled because security
is often at odds with operations. As a consequence, it is often
possible to load arbitrary code onto an Internet-facing PLC.
Besides being a grave problem in its own right, it is possible
to leverage PLCs as network gateways into production networks
and perhaps even the corporate IT network. In this paper,
we analyze and discuss this threat vector and we demonstrate
that exploiting it is feasible. For demonstration purposes, we
developed a prototypical port scanner and a SOCKS proxy that
runs in a PLC. The scanner and proxy are written in the
PLC’s native programming language, the Statement List (STL).
Our implementation yields insights into what kinds of actions
adversaries can perform easily and which actions are not easily
implemented on a PLC.

I. INTRODUCTION

Industrial control systems (ICS) are integral components
of production and control tasks. Modern infrastructure heavily
relies on them. The introduction of the Smart Manufacturing
(Industry 4.0) technology stack further increases the dependency
on industrial control systems [1]. Modern infrastructure is
already under attack and offers a broad attack surface, ranging
from simple XSS vulnerabilities [2, 3] to major design flaws
in protocols [4, 5].

The canonical example of an attack on an industrial control
system is the infamous Stuxnet worm that targeted an Iranian
uranium enrichment facility. However, adversaries increasingly
target ordinary production systems [6]. A recent example is the
forced shutdown of a blast furnace in a German steelworks in
2014. The attackers reportedly gained access to the pertinent
control systems via the steelwork’s business network [7]. This is
a typical attack vector because business networks serve humans
and humans are susceptible to spear phishing.

Arguably, spear phishing is easy to carry out when ac-
companied with research and social engineering. However,
in far too many cases, even easier ways exist into industrial
control systems. Published scan data shows that thousands of
ICS components, for example, programmable logic controllers
(PLCs), are directly reachable from the Internet [8, 9, 10].
While only one PLC of a production facility may be reachable
in this fashion, the PLC may connect to internal networks with
many more PLCs. This is what we call the “deep” industrial
network. In this paper, we investigate how adversaries can
leverage exposed PLCs to extend their access from the Internet
to the deep industrial network.

The approach we take is to turn PLCs into gateways (we
focus on Siemens PLCs). This is enabled by a notorious lack
of proper means of authentication in PLCs. A knowledgeable
adversary with access to a PLC can download and upload code
to it, as long as the code consists of MC7 bytecode, which is the
native form of PLC code. We explored the runtime environment
of PLCs and found that it is possible to implement several
network services using uploaded MC7 code. In particular, we
implemented

• a SNMP scanner for Siemens PLCs, and

• a fully fledged SOCKS proxy for Siemens PLCs

entirely in Statement List (STL), which compiles to MC7
byte code. Our scanner and proxy can be deployed on a
PLC without service interruption to the original PLC program,
which makes it unlikely that unsuspecting operators will
notice the infection. In order to demonstrate and analyze deep
industrial network intrusion, we developed a proof of concept
tool called PLCinject. Based on our proof of concept, we
analyzed whether the augmentation of the original code with
our PLC malware led to measurable effects that might help
detecting such augmentations. We looked at timing effects,
specifically. We found that augmented code is distinguishable
from unaugmented code, that is, statistically significant timing
differences exist. The difference is minor in absolute terms,
that is, the augmentation does not likely affect a production
process and hence it will not be noticable unless network
operators actively monitor for malicious access. The downside
is that operators of industrial networks must include PLCs
in their vulnerability assessment procedures and they must
actively monitor internal networks for malicious network traffic
that originates from their own PLCs. Moreover, adversaries
can leverage our approach to attack a company’s business
network from the industrial network. This means that network
administrators must guard their business networks from the
front and the back. The remainder of this paper is organized as
follows. We begin with a discussion of work related to ours in
§II. In §III, we give technical background for readers unfamiliar
wth industrial control systems. We describe our attack and
intrusion methods in §IV. In §VI, we discuss mitigations and
§VII concludes the paper.

II. RELATED WORK

Various attacks on PLCs have been published. Most attacks
target the operating systems of PLCs. In contrast we leverage
the abilities of logic programs running on the PLCs. As such
we do not use any unintended functionality. In the following,
we compare our approach to well-known (code) releases and
published attacks that manipulate logic code. One of the most

ERP

MES

SCADA

PLC

In-/Outputsignals

P
la

n
n

in
g

D
at

a
g
at

h
er

in
g

Manufacturing process

Figure III.1: Automation pyramid, adopted from [15]

cited SCADA attack descriptions is Beresfords’ 2011 Black
Hat USA release [5]. He demonstrated how credentials can be
extracted from remote memory dumps. In addition he shows
how to start and stop PLCs through replay attacks. In contrast
to our work he does not alter the logic program on the PLC.
In 2011 Langner released “A timebomb with fourteen bytes”
[11] wherein he describes how to inject rogue logic code into
PLCs. He borrows the same code prepending technology as we
do, from Stuxnet. He conceptualizes how to take control away
from the original code. In contrast, our program runs in parallel
to the original code with the goal to not interfere with the
original code’s execution. An attack similar to Langners’ was
presented at Black Hat USA 2013 by Meixell and Forner [12].
In their release they describe different ways of exploiting PLCs.
Among those are ways to remove safety checks from logic
code. Again, our approach differs as we add new functionality
while preserving original functionality. To our best knowledge,
the first academic paper on PLC malware was published by
McLaughlin in 2011 [13]. In this work he proposes a basic
mechanism for dynamic payload generation. He presents an
approach based on symbolic execution that recovers boolean
logic from PLC logic code. From this, he tries to determine
unsafe states for the PLC and generates code to trigger one of
these states. In 2012 McLaughlin published a followup paper
[14], which extends his approach in a way that automatically
maps the code to a predefined model by means of model
checking. With his model, he can specify a desired behaviour
and automatically generate attack code. In his work McLaughlin
focuses on manipulating the control flow of a PLC. We, in
contrast, use the PLC as a gateway to the network and leave
its original functions untouched.

III. INDUSTRIAL CONTROL SYSTEMS

Figure III.1 illustrates the structure of a typical company
that uses automation systems. Industrial control systems consist
of several layers. At the top are enterprise resource planning
(ERP) systems, which hold the data about currently available
resources and production capacities. Manufacturing execution
systems (MES) are able to manage multiple factories or plants
and receives tasks from ERP systems. The systems below the
MES are located in the factory. Supervision, control and data
acquisition (SCADA) systems control production lines. They

provide data about the current production state and they provide
means for intervention. The devices holding the logic for
production processes are called programmable logic controllers
(PLC). We explain them in more detail in section III-A. Human
machine interfaces (HMI) display the current progress and allow
operators to interact with the production process.

A. PLC Hardware

A PLC consists of a central processing unit (CPU) which is
attached to a number of digital and analog inputs and outputs. A
PLC program stored on the integrated memory or on a external
Multi Media Card (MMC) defines how the inputs and outputs
are controlled. A special feature of a PLC is the guaranty of a
defined executions time to control time critical processes. For
communication or special purpose applications the functionality
of a CPU can be extended with modules. The Siemens S7-
314C-2 PN/DP we use in our experiments has 24 digital inputs,
16 digital outputs, 5 analog inputs, 2 analog outputs and a
MMC slot. It is equipped with 192KByte of internal memory,
64KByte can be used for permanent storage. Additionally, the
PLC has one RS485 and two RJ45 sockets [16].

B. PLC Execution Environment

C
y
c
le

 t
im

e

Time slices (1 ms each)

Time slice (1 ms)

2

3

4

5

Figure III.2: Overview of program execution, extracted from [17]

Siemens PLCs run a real time operating system (OS), which
initiates the cycle time monitoring. Afterwards the OS cycles
through four steps (see figure III.2). In the first step the CPU
copies the values of the process image of outputs to the output
modules. In the second step the CPU reads the status of the
input modules and updates the process image of input values.
In the third step the user program is executed in time slices
with a duration of 1 ms. Each time slice is divided into three
parts, which are executed sequentially: The operating system,
the user program and the communication. The number of time
slices depends on the current user program. By default the time
should be not longer than 150 ms. An engineer can configure a
different value. If the defined time expires, an interrupt routine
is called. In the common case the CPU returns to the start of
the cycle and restarts the cycle time monitoring [17].

C. Software

Siemens provides their Total Integrated Automation (TIA)
portal software to engineers for the purpose of developing PLC
programs. It consists of two main components. The STEP 7 as
development environment for PLCs and WinCC to configure
HMIs. Engineers are able to program PLC in Ladder Diagram
(LAD), Function Block Diagram (FBD), structured control
language (SCL) and Statement List (STL). In contrast to the
text-based SCL and assembler-like STL the LAD and FBD
languages are graphical. PLC programs are divided into units of
organization blocks (OB), functions (FC), function blocks (FB),
data blocks (DB), system functions (SFC), system function
blocks (SFB) and system data blocks (SDB). OBs, FCs and
FBs contain the actual code while DBs provide storage for data
structures and SDBs current PLC configurations. For internal
data storage addressing the prefix M for memory is used.

D. PLC Programs

A PLC program consists of at least one organization block
called OB 1, which is comparable to the main() function in a
traditional C program. It will be called by the operating system.
There exist more organization blocks for special purposes, for
example, OB 100. This block is called once when the PLC
starts and is used usually for the initialization of the system.
Engineers can encapsulate code by using functions and function
blocks. The only difference is an additional DB as a parameter
to calling a FB. The SFCs and SFBs are built into the PLC. The
code can not be inspected. The STEP 7 software knows which
SFCs and SFBs are available based on hardware configuration
steps. The following examples give an overview of the the
programming languages SCL, LAD and STL. Each example
shows the same configuration of three inputs and one output.
First, the CPU performs a logical AND operation of inputs
0.0 and 0.1. Next, it calculates a logical OR operation of
the outcome and the input 0.2. The result is written to output
0.0 which sets the logical values to the connected wire in the
next cycle. The first example represents the described program
in STL. This is done in four lines of assembler-like instructions.
Each line defines one instruction.

1 A %I0 . 0
2 A %I0 . 1
3 O %I0 . 2
4 = %Q0 . 0

The next example shows the same program in the text-based
language SCL. This program can be expressed in one line.

1 %Q0 . 0 := (% I0 . 0 AND %I0 . 1) OR %I0 . 2 ;

The graphical example needs the help of the STEP 7. Inputs
and outputs are positioned through drag & drop on the wire.
New connections can be made on predefined positions by
selecting the wire-tool from the toolbar above. Figure III.3
shows the graphical representation of our example program.

The following description can also be found in the Siemens
manual delivered with the PLC [18]. The CPU has several
registers used for execution and current state. For binary
operations the status word register is important. All binary
operations influence this register. The CPU uses for calculations

%I 0.0 %I 0.1

%I 0.2

%Q 0.0

Figure III.3: Function block diagram example

up to four accumulator registers of 32 bits width. They are
organized like a stack. It is possible to address independently
each byte of the top register. Before a new value is loaded into
the accumulator one the current value is copied to accumulator
two. For adding two numbers the values have to be loaded
successively into the accumulator register before the +D
operation is called. The result is written back into accumulator
one. In STL the program would look like as following.

1 L DW#16#1 / / ACCU1=1
2 L DW#16#2 / / ACCU1=2 ,ACCU2=1
3 +D / / ACCU1=ACCU1+ACCU2

Code which is used multiple times in the program should
be implemented as functions. These functions can be called
from every point in the code. The CALL instruction allows to
jump into the defined function. The necessary parameters are
defined in the called function header and have to be specified
below every CALL instruction.

1 CALL FC1
2 VAR1 := 1
3 VAR2 := W#16#A

As mentioned earlier the only difference between function
blocks and functions is a reference to the corresponding data
block. In many cases the program needs storage which is
assigned to a specific function to read constants or save process
values. It is unusual to put constants direct in the code, because
the code have to be recompiled after every change. In contrast
data blocks can be manipulated easily even remotely. A function
block call looks like as following.

1 CALL FB1 , %DB1
2 VAR1 := 1
3 VAR2 := W#16#A

Both function types can define different parameters: IN, OUT,
IN_OUT, TEMP and RET_VAL. The FB STAT parameters
are stored in its data block, which is passed as an additional
argument. The TEMP type declares local variables which
only are available in the function. The other types are self
explanatory.

E. Binary Representation of PLC Program

Every code written in any language is compiled into MC 7.
The opcode length of MC 7 instructions is variable and the
encoding of parameters differs on many instructions. The binary
representation of the example program from the section before
looks as following.

1 00100000 A %I0 . 0
2 00110000 A %I0 . 1
3 01120000 O %I0 . 2
4 41100000 = %Q0 . 0

F. Network Protocol

The Siemens PLCs uses the proprietary S7Comm protocol
for transferring blocks. It is a remote procedure call (RPC)
protocol based on TCP/IP and ISO over TCP. Figure III.4
illustrates the encapsulation of the protocols. The protocol
provides the following functionality:

• System State List (SSL) request
• List available blocks
• Read/write data
• Block info request
• Up-/download block
• Transfer block into filesystem
• Start, stop and memory reset
• Debugging

The executing of one of these function requires an initialized
connection. After a regular TCP handshake the ISO over TCP
setup is proceeded to negotiate the PDU size. In the S7Comm
protocol the client has to provide additionally to his preferred
PDU size the rack and slot of the CPU (see connection setup
in figure III.5). The CPU responses with its preferred PDU size
and both agree to continue with the minimum of both values.
After this initialization the client is able to invoke the functions
on the CPU. Figure III.5 shows the packet order of a download
block function including the transfer into the filesystem. The
PLC controls the download process after receiving the download
request. The number of download block requests depends on the
length of the block and the PDU size. The end is signaled with
the download end request. The PLC waits after receiving the
acknowledgement for further requests. Finally the transferred
block should be persisted by calling the plc control request.
With the destination filesystem P as parameter the CPU stores
the block and executes it.

The upload process is similar. The engineering work station
(EWS) requests for the upload of a specific block and waits for
the acknowledgement. After receiving the acknowledgement
without errors the EWS starts requesting the block. The
responses contain the data of the block. The EWS repeats
the procedure as long as the whole block is transferred. The
end is signaled with an upload end request. The transferred
blocks are structured and consists of header, data part and
footer. The table III.1 shows the structure of the known bytes.
The footer contains information about the parameters used for
calling the function. Not every byte of the header and footer
are known well, but we have identified the necessary areas to
understand the content.

IV. ATTACK DESCRIPTION

The search engine SHODAN shows that thousands of
industrial control systems are direct accessible via the Internet
[8, 10]. As shown in chapter III it is possible to download
and upload the PLC program code. This enables attacker to
manipulate the logic code of the PLCs that reads inputs and

EWS PLC

Connection Setup, PDU-Size:512

Connection Setup, PDU-Size:240

Download Request

Download Request Ack

Download Block

Download Block Ack, (Data)

..
.

Download End

Download End AckPLC Control insert block into filesystem P

PLC Control Ack

..
.

Figure III.5: Download block sequence diagram

Table III.1: Block structure, adopted from code [20]

Description Bytes Offset

Block signature 2 0

Block version 1 2

Block attribute 1 3

Block language 1 4

Block type 1 5

Block number 2 6

Block length 4 8

Block password 4 12

Block last modified date 6 16

Block interface last modified date 6 22

Block interface length 2 28

Block Segment table length 2 30

Block local data length 2 32

Block data length 2 34

Data (MC 7 / DB) x 36

Block signature 1 36+x

Block number 2 37+x

Block interface length 2 39+x

Block interface blocks count 2 41+x

Block interface y 43+x

...

outputs. Furthermore the PLC offers a system library [21]
which contains functions to establish arbitrary TCP / UDP
communication. An attacker can use the full TCP/UDP support
to scan the local production network behind the internet-facing
PLC. Furthermore he can leverage this PLC as a gateway to
reach all the other production or network devices.

Like Stuxnet we prepend the attacker’s code to the existing
logic code of the PLC. The malicious code will be executed
at the very beginning of organization block 1 (OB) in addition
to the normal control code. That is why the PLC will not
be disturbed in its function. The easiest way is to download

Header Params Pardata DataS7 Telegram

S7 PDUCOTPTPKTISO over TCP

ISO TCP TelegramHeaderTCP/IP

Figure III.4: Packet encapsulation, adopted from [19]

(a) Attacker abuses the PLC to scan the local network for SNMP
devices

(b) Now he can use the PLC as a gateway into the local network

Figure IV.1: Attack cycle

the OB1 of Siemens PLCs and add a CALL instruction to an
arbitrary function under our control, in our example a function
called FC 666. Then the patched OB1, FC 666 and additional
blocks will be uploaded to the PLC. Picture IV.2 illustrates the
code injection process. With the next execution cycle of the
PLC the new uploaded program including the attacker’s code
will be executed without any kind of service disruption. This

process enables the attacker to run any additional malicious
code on the PLC. With this paper we publish a tool called
PLCinject that will automate this process [22]. Having this
capabilities an attacker is able to execute the attack cycle
as shown in figure IV.1. In step one the attacker injects a
SNMP Scanner that runs in addition to the normal control
code of the PLC. After a full SNMP scan of the local network
(step two) the attacker can download the scan results from the
PLC (step three). The attacker has now an overview of the
network behind the Internet-facing PLC. The attacker removes
the SNMP scanner and injects a SOCKS Proxy to the PLC
logic program (step four). This enables the attacker to reach
all PLCs in the local production network via the compromised
PLC which acts as a SOCKS proxy. In the next two sections we

(a) Original program.

(b) Patched program. The red blocks are added by PLCinject.

Figure IV.2: Scheme of patching the PLCs program.

are going to explain the implementation of the SNMP scanner
and the SOCKS proxy. We will not explain every operation
and system function in detail. For a complete description of

those we refer to [18] and [21].

A. SNMP Scanner

Siemens PLCs can not be used as a TCP port scanner
because the used TCP connection function TCON cannot
be aborted until the function has established an connection.
Furthermore it is only possible to run eight TCP connection
in parallel on a Siemens S7-300 PLC. Consequently the PLC
is only able to perform a TCP scan until eight unsuccessful
connection attempts occured. This limitation do not apply to
stateless UDP connections. That is why we use the UDP based
Simple Network Management Protocol (SNMP). SNMP version
1 is defined in RFC 1157 [23] and was developed for monitoring
and controlling network devices. A lot of network devices and
most of the Siemens Simatic PLCs have SNMP enabled by
default. Siemens PLCs are very communicative in case of
enabled SNMP. By reading the SNMP sysDesc object with the
OID 1.3.6.1.2.1.1.1, the Siemens PLC will transmit its product
type, product model number, hardware and firmware version
as shown in the following SNMP response:

Siemens, SIMATIC S7, CPU314C-2 PN/DP,

6ES7 314-6EH04-0AB0 , HW: 4, FW: V3.3.10.

The system description is very useful for matching discovered
PLCs against vulnerability and exploit databases. The firmware
of PLCs is not very often patched. There are mainly two
reasons: On the one hand a PLC firmware patch will interrupt
the production process which causes a negative monetary
impact. On the other hand a firmware patch of the PLC can
lead to a loss of the production certification or other kind of
quality assurance that is important for the customers of the
manufacturing company. That is why the probability to find
a Siemens PLC with a known vulnerability is very high. The
SNMP scanner can be broken down into the following steps:

1) Get local IP and subnet
2) Calculate IPs of the subnet
3) Set up UDP connection
4) Send SNMP request
5) Receive SNMP responses
6) Save responses in a DB
7) Stop scanning and disconnect UDP connection

As described in the chapter III the programming of a
PLC is quite different from normal programming with e.g.
the C language on a X86 system. Each PLC program is
cyclically executed. That is it is needed save the state of the
program after each step with condition variables. For reasons
of comprehensibility we will only explain steps one to three.

Figure IV.3 shows a code snippet of step one that calls the
RDSYSST function. The RDSYSST function reads the internal
System State List (SSL) of the Siemens PLC to obtain the
PLC’s local IP. SSL requests are normally used for diagnostic
purposes. Line 14 and 15 will end the function in the case
that the RDSYST function is busy. Figure IV.4 shows how the
program calculates the first local IP. This is done by bitwise
logic AND operation of the PLC’s local IP address with its
subnet mask, which returns the start address of the local network
adress range (line 24 - 30). Now the SNMP scanner needs to

Figure IV.3: Get PLCs local IP

Figure IV.4: Calculate the local nets first IP and the maximal number
of hosts

know how often it must increment the IP address to cover the
whole local subnet. Therefore we XOR the subnet mask with
0xFFFFFFFF (line 35 - 39). The result is the number of IP
addresses in the subnet. Figure IV.5 shows how to set up an

Figure IV.5: Setup a UDP connection

UDP connection in STL. At first we need to call the TCON
function with special parameters in our TCON_PAR_SCAN
data block. In case of UDP the TCON function does not set up
a connection, this will only be done in the case of TCP because
it is connection oriented in contrast to UDP. But calling the

TCON parameter once is not enough. The connection function
will start to work when the #connect variable raises from 0 to 1
between two calls of the function. That is why we programmed
a toggle function after the first appearance of the connect
function (line 10 - 11). This will change the #connect value
from false to true after TCON has been called the first time in
a cycle. The TCON function will detect a raising signal edge
on its call in the next cycle and will then be executed. The
next step is to send the UDP based SNMP packets and receive
them. This will be done by calling the functions TUSEND and
TURCV. After the SNMP scan has been completed all data
will be stored in data block which can be downloaded by the
attacker (step 3).

B. SOCKS 5 Proxy

Once the attacker has discovered all SNMP devices, in-
cluding the local PLCs, the next step is to connect to them.
This can be accomplished by using the accessible PLC as a
gateway into the local network. To achieve this we chose to
implement a SOCKS 5 proxy on the PLC. This has two main
reasons. At first the SOCKS protocol is quite lightweight and
easy to implement. Furthermore all applications can use this
kind of proxy, either they are SOCKS aware and thus can be
configured to use one or you use a so-called proxifier to add
SOCKS support to arbitrary programs. The SOCKS 5 protocol
is defined in RFC 1928 [24]. An error-free TCP connection to
a target through the proxy consists of the following steps:

1) The client connects via TCP to the SOCKS server
and sends a list of supported authentication methods.

2) The server replies with one selected authentication
method.

3) Depending on the selected authentication method the
appropriate sub-negotiation is entered.

4) The client sends a connect request with the targets IP.
5) The server sets up the connection and replies. All

subsequent packets are tunnelled between client and
target.

6) The client closes the TCP connection.

Our implementation offers the minimal necessary function-
ality. It supports no authentication, so we can skip step 3. Also
we do not support proper error handling. In the end only TCP
connects with IPv4 addresses are supported. Once the client
connected, we expect this message flow:

1) Client offers authentication methods: any mes-
sage, typically 0x05 <authcount-n> (1 byte)
<authlist> (n bytes).

2) Server chooses authentication method: 0x05 0x00

(perform no authentication).
3) Client wants to connect to target: 0x05 0x01 0x00

0x01 <ip> (4 bytes) <port> (2 bytes).
4) Server confirms connection: 0x05 0x00 0x00

0x01 0x00 0x00 0x00 0x00 0x00 0x00.
5) Client and target can now communicate through the

connection with the server.

As previously mentioned, programs on the PLC are cycli-
cally executed. This is why we use a simple state machine to
handle the SOCKS protocol. Therefore we number each state

and use a jump list to execute the corresponding code block,
see figure IV.6. A state transition is achieved by incrementing

Figure IV.6: Jump list for the states of SOCKS 5

the state number which is persisted in a data block.

Figure IV.7: Receive the clients authentication negotiation

Figure IV.8: Respond with no authentication necessary

It follows a description of each state and its actions:

bind: On first start the program has to bind and listen to
SOCKS port 1080. This is accomplished by using the system
function TCON in passive mode. We stay in this state until a
partner is connecting to this port.

negotiate: We wait until the client sends any message.
This is done with the function TRCV which is enabled with
the EN_R argument, see figure IV.7.

authenticate: After the first message we send a reply
which indicates the client to perform no authentication. For
this purpose we use the TSEND system function. In contrast
to TRCV this function is edge controlled which means the
parameter REQ has to change from FALSE to TRUE between
consecutive calls to activate sending. As shown in figure IV.8
we toggle a flag and call TSEND twice with a rising edge on
REQ.

connect_request: Then we expect the client to send a
connection set up message containing target IP and port number
which is stored for the next state.

connect: We set up the connection to the target with
TCON.

connect_confirm: When the connection to the target is
established, we send the confirmation message to the client.

proxy: Now we simply tunnel the connections between
client and target. All data received from the client with TRCV is
stored in a buffer which is reused to feed the TSEND function
for sending data to the client. The same principle applies to
the opposite direction, but we have to consider that sending
messages can take a couple of cycles. Therefore a second
buffer is used to ensure that no messages are mixed or lost. A
disconnect is signaled with the error flag of TRCV. When this
occurs we will send the last received data and then we go to
the next state.

reset: In this state we close all connections with
TDISCON and reset all persisted flags to its initial values.

V. EVALUATION

Figure V.1: Shows the data distribution of the measured scan cycles
for the three scenarios. Data are represented as boxplots
with mean and were analyzed with the use of the Kruskal-
Wallis test and the Dunn’s Multiple Comparison Test.
Significant differences are shown in the graph (p < 0.0001
= ***). All data were statistically analyzed with Prism
software, version 5.0 (Graph Pad Inc).

We analyzed the differences of the execution cycle times
of the following scenarios: (a) a simple control program
as a baseline, (b) its malicious version with the prepended

Table V.1: Statistical analysis of the three scenarios

Baseline Proxy idle Proxy under load

Mean 85.32 85.40 86.67

Sdt. Deviation 0.4927 0.5003 0.5239

Sdt. Error 0.01089 0.01106 0.01158

SOCKS proxy in idle mode and (c) under load. Idle mode
means that the proxy has been added to the control code
but no proxy connection has been established. The Baseline
program copies bytewise the input memory to the output
memory 20 times which results in 81920 copy instructions.
For the measurement, we added small code snippets which
store the last cycle time in a data block. Siemens PLCs
store the time of last execution cycle in a local variable of
OB1 called OB1_PREV_CYCLE. We measured 2046 cycles
in each scenario. All three scenarios do not exhibit normal
distributions. We used the Kruskal–Wallis and the Dunn’s
Multiple Comparison Test for statistical significance analysis.
The results are shown in Figure V.1. Execution time differed
significantly in all three scenarios. Table V.1 shows the mean
difference of the Baseline and the Proxy under load program,
which is only 1.35 ms. The maximum transfer rate of the
SOCKS proxy prepended to the Baseline program was about
40 KB/s. If the SOCKS proxy runs alone on the PLC it is
able to transfer up to 730 KB/s. All network measurements
have used a direct 100 Mbit/s Ethernet connection to the PLC.
Finally, we tested the described attack cycle in our laboratory.
In addition to regular traffic, we verified that we were able to
tunnel an exploit for the DoS vulnerability CVE-2015-2177 via
the SOCKS tunnel using the tsocks library. The exploit worked
as expected via the SOCKS tunnel.

VI. DISCUSSION

Our attacks have limitations. In order to ensure that the
PLC is always responsive, the execution time of the main
program is monitored by a watchdog which kills the main
program if the execution time becoes too long. The additional
SNMP Scanner or Proxy code that we upload, together with
the original programm, should not exceed the overall maximum
execution time of 150 ms. An injection of the scanner or proxy
is unlikely to trigger this timeout because the mean additional
execution time of the proxy under load is 1.35 ms which is
small compared to 150 ms. Furthermore, time-outs can be
avoided by resetting the time counter after the execution of
the injected program with the system function RE_TRIGR [21].
The easiest way to mitigate the described attack is to keep the
PLC offline or to use a virtual private network (VPN) instead.
If this is not possible protection-level 3 should be activated
on the Siemens PLC. This enables a password-based read and
write protection for the PLC. Without the right password the
attacker can not modify the PLCs program. Based on our
experience, this feature is rarely used in practice. Another
applicable protection mechanism would be a firewall with deep
packet inspection which is aware of industrial control protocols
and thus can block potential malicious accesses such as attempts
to reprogram the PLC.

VII. CONCLUSION

We have shown a new threat vector that enables an external
attacker to leverage a PLC as a SNMP scanner and network
gateway to the internal production network. This makes it
possible to access control systems behind an Internet-facing
PLC. Our measurements indicate that the attack code, which
runs de facto parallel to the original control program, causes a
statistically significant but negligible increase of the execution
cycle time. This makes a service disruption of the PLC unlikely
and increases the chances that an attack remains undetected.
Prior work on scanning the Internet for ICS only adressed
risks due to control systems that are connected to the Internet
directly. Our investigation shows that risks assessments must
take PLCs into account that are connected only indirectly to the
Internet. As a consequence, the target set of Internet-reachable
industrial control systems is probably larger than expected and
includes the “deep” industrial control network.

REFERENCES

[1] S. Heng, “Industry 4.0 upgrading of germany’s industrial
capabilities on the horizon,” Deutsche Bank Research,
2014.

[2] NIST, “CVE-2014-2908,” Apr. 2014. [Online]. Avail-
able: https://web.nvd.nist.gov/view/vuln/detail?vulnId=
CVE-2014-2908

[3] ——, “CVE-2014-2246,” Mar. 2014. [Online]. Avail-
able: https://web.nvd.nist.gov/view/vuln/detail?vulnId=
CVE-2014-2246

[4] ——, “CVE-2012-3037,” May 2012. [Online]. Avail-
able: https://web.nvd.nist.gov/view/vuln/detail?vulnId=
CVE-2012-3037

[5] D. Beresford, “Exploiting Siemens Simatic S7 PLCs,”
Black Hat USA, 2011.

[6] N. Cybersecurity and C. I. C. (NCCIC), “Ics-cert monitor,”
Sep. 2014.

[7] Bundesamt für Sicherheit in der Informationstechnik, “Die
Lage der IT-Sicherheit in Deutschland 2014,” 2015.

[8] Industrial Control Systems Cyber Emergency Response
Team, “Alert (ICS-ALERT-12-046-01A) Increasing Threat
to Industrial Control Systems (Update A),” Available
from ICS-CERT, ICS-ALERT-12-046-01A., Oct. 2012.
[Online]. Available: https://ics-cert.us-cert.gov/alerts/
ICS-ALERT-12-046-01A

[9] J.-O. Malchow and J. Klick, Sicherheit in vernetzten
Systemen: 21. DFN-Workshop. Paulsen, C., 2014, ch.
Erreichbarkeit von digitalen Steuergeräten - ein Lagebild,
pp. C2–C19.

[10] B. Radvanovsky, “Project shine: 1,000,000 internet-
connected scada and ics systems and counting,” Tofino
Security, 2013.

[11] R. Langner. (2011) A time bomb with fourteen bytes.
[Online]. Available: http://www.langner.com/en/2011/07/
21/a-time-bomb-with-fourteen-bytes/

[12] B. Meixell and E. Forner, “Out of Control: Demonstrating
SCADA Exploitation,” Black Hat USA, 2013.

[13] S. E. McLaughlin, “On dynamic malware payloads aimed
at programmable logic controllers.” in HotSec, 2011.

[14] S. McLaughlin and P. McDaniel, “Sabot: specification-
based payload generation for programmable logic con-
trollers,” in Proceedings of the 2012 ACM conference on

Computer and communications security. ACM, 2012,
pp. 439–449.

[15] Wikipedia, “Automation Pyramid (content taken).”
[Online]. Available: https://de.wikipedia.org/wiki/
Automatisierungspyramide

[16] Siemens, “S7 314C-2PN/DP Technical Details.”
[Online]. Available: https://support.industry.siemens.com/
cs/pd/495261?pdti=td&pnid=13754&lc=de-WW

[17] ——, “S7-300 CPU 31xC and CPU 31x: Technical
specifications.” [Online]. Available: https://cache.industry.
siemens.com/dl/files/906/12996906/att_70325/v1/s7300_
cpu_31xc_and_cpu_31x_manual_en-US_en-US.pdf

[18] ——. (2011) S7-300 Instruction list S7-300 CPUs
and ET 200 CPUs . [Online]. Available: https:
//cache.industry.siemens.com/dl/files/679/31977679/att_
81622/v1/s7300_parameter_manual_en-US_en-US.pdf

[19] SNAP7, “S7 Protocol.” [Online]. Available: http:
//snap7.sourceforge.net/siemens_comm.html#s7_protocol

[20] J. Kühner, “DotNetSiemensPLCToolBoxLibrary.”
[Online]. Available: https://github.com/jogibear9988/
DotNetSiemensPLCToolBoxLibrary

[21] Siemens. (2006) System Software for S7-300/400
System and Standard Functions Volume 1/2. [Online].
Available: https://cache.industry.siemens.com/dl/files/574/
1214574/att_44504/v1/SFC_e.pdf

[22] D. Marzin, S. Lau, and J. Klick, “PLCinject Tool.” [On-
line]. Available: https://github.com/SCADACS/PLCinject

[23] J. Case, M. Fedor, M. Schoffstall, and J. Davin, “Simple
Network Management Protocol (SNMP),” RFC 1157
(Historic), Internet Engineering Task Force, May 1990.
[Online]. Available: http://www.ietf.org/rfc/rfc1157.txt

[24] M. Leech, M. Ganis, Y. Lee, R. Kuris, D. Koblas,
and L. Jones, “SOCKS Protocol Version 5,” RFC 1928
(Proposed Standard), Internet Engineering Task Force,
Mar. 1996. [Online]. Available: http://www.ietf.org/rfc/
rfc1928.txt

https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-2908
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-2908
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-2246
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-2246
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2012-3037
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2012-3037
https://ics-cert.us-cert.gov/alerts/ICS-ALERT-12-046-01A
https://ics-cert.us-cert.gov/alerts/ICS-ALERT-12-046-01A
http://www.langner.com/en/2011/07/21/a-time-bomb-with-fourteen-bytes/
http://www.langner.com/en/2011/07/21/a-time-bomb-with-fourteen-bytes/
https://de.wikipedia.org/wiki/Automatisierungspyramide
https://de.wikipedia.org/wiki/Automatisierungspyramide
https://support.industry.siemens.com/cs/pd/495261?pdti=td&pnid=13754&lc=de-WW
https://support.industry.siemens.com/cs/pd/495261?pdti=td&pnid=13754&lc=de-WW
https://cache.industry.siemens.com/dl/files/906/12996906/att_70325/v1/s7300_cpu_31xc_and_cpu_31x_manual_en-US_en-US.pdf
https://cache.industry.siemens.com/dl/files/906/12996906/att_70325/v1/s7300_cpu_31xc_and_cpu_31x_manual_en-US_en-US.pdf
https://cache.industry.siemens.com/dl/files/906/12996906/att_70325/v1/s7300_cpu_31xc_and_cpu_31x_manual_en-US_en-US.pdf
https://cache.industry.siemens.com/dl/files/679/31977679/att_81622/v1/s7300_parameter_manual_en-US_en-US.pdf
https://cache.industry.siemens.com/dl/files/679/31977679/att_81622/v1/s7300_parameter_manual_en-US_en-US.pdf
https://cache.industry.siemens.com/dl/files/679/31977679/att_81622/v1/s7300_parameter_manual_en-US_en-US.pdf
http://snap7.sourceforge.net/siemens_comm.html#s7_protocol
http://snap7.sourceforge.net/siemens_comm.html#s7_protocol
https://github.com/jogibear9988/DotNetSiemensPLCToolBoxLibrary
https://github.com/jogibear9988/DotNetSiemensPLCToolBoxLibrary
https://cache.industry.siemens.com/dl/files/574/1214574/att_44504/v1/SFC_e.pdf
https://cache.industry.siemens.com/dl/files/574/1214574/att_44504/v1/SFC_e.pdf
https://github.com/SCADACS/PLCinject
http://www.ietf.org/rfc/rfc1157.txt
http://www.ietf.org/rfc/rfc1928.txt
http://www.ietf.org/rfc/rfc1928.txt

