
The Giles Production Rule System Compiler
User Manual

The KoreLogic Development Team

c©2014-2015 KoreLogic, Inc.
See README.LICENSE for licensing terms.

1 Introduction
Giles 1 is a compiler that creates production systems (or “engines” in Giles
parlance).

A production system is a program that is typically used to provide some
sort of artificial intelligence. Giles engines are particularly well-suited to being
expert systems, log analyzers, and behavior-detection systems.

Giles is a compiler, meaning that it is not itself a production system, but
rather a tool for creating production systems. In fact, Giles’s defining feature
is that its output is not a program in the traditional sense, but rather a schema
for a modern, unmodified, SQL-based Relational Database Management System
(RDBMS). That means that Giles can turn a normal, unmodified RDBMS into
a fully functional production system.

This approach has immediate advantages. Perhaps the most important is
that programmers can use normal database access interfaces, which are ubiqui-
tous; this immediately makes Giles engines accessible to far more programmers
than those of traditional systems. The engines are also able to take advantage
of modern databases’ data safety and reliability guarantees, as well as their
transactional semantics. This means that Giles engines are capable of dealing
with huge amounts of data safely, even in the face of system crashes, and over
long periods of time. These benefits are important given the expected use cases
of Giles engines: pre-defined production systems that are built into and provide
intelligence for larger, potentially long-running and unattended, systems.

In other words, Giles lets you deploy a production rule system anywhere
where you can deploy your (supported) database.

This document describes Giles-the-compiler and Giles-the-language. It as-
sumes you (the reader) have a decent understanding of SQL, but does not require
that you have any experience with production systems or artificial intelligence.
In fact, one of Giles’s goals is to make production systems (often seen as esoteric)
more accessible.

1Giles is named after the character Rupert Giles from the Buffy the Vampire Slayer tele-
vision and comic book series. The names are pronounced identically, with a soft G.

1

1.1 What is a Production System, Anyway?
A production system (or production rule system) is a kind of computer program
that is often used to provide some sort of artificial intelligence. Production
systems are very often used for log and behavior analysis and expert systems.
Production systems consist of facts and rules.

A fact is a single datum describing a discrete piece of information in the
problem domain of the system. Some example facts might be:

• Suzanne is an astronaut.

• Train #447 arrived at platform 9 3
4 at 08:00.

• User “jdoe” logged in via terminal #16 at 12:33.

The set of all known facts is referred to as the working memory of the system.
A rule is a simple “if-then” statement. The “if” part is known as the pred-

icate, and specifies a pattern of facts. The “then” part is known as the action.
When some set of facts in working memory matches the predicate, the action is
performed.

Giles defines two possible actions: assert and suppress. The assert action
adds a new fact to the working memory, while the suppress action suppresses
facts already in working memory. When a rule’s action is taken, it is said that
the rule has fired. When a rule fires, it can add or remove facts from working
memory, which can cause other predicates to match, which can cause other rules
to fire, and so on.

Rules only work in the presence of facts. They aren’t like more traditional
computer programs that have well-defined start and end points. Instead, a
production system sits in a cycle that looks like this:

Step 1 Find all rules whose predicates are matched by a set of facts in working
memory. If there aren’t any matching predicates, halt.

Step 2 Perform the actions for those rules.

Step 3 Go to Step 1.

This is called the recognize-act cycle, and it executes once for each fact that is
added to or removed from working memory.

In other words, when a production system starts up, it just sits there, waiting
for the user to add some facts to working memory. As facts are added and
removed, the production system updates the contents of working memory by
adding and removing other facts.

The general workflow for a production system is therefore to add or remove
some facts, and then examine working memory to see what it looks like after
those changes. For example, a log analyzer might have facts in memory repre-
senting individual log entries, and other facts representing “alerts” that indicate
something supsicious was inferred from those logs. The user would add one fact
per log entry, and then check to see if any alert facts are present.

2

While this all might sound fairly simple, the trick is doing this all efficiently.
A given engine might have hundreds of rules and millions of facts, so finding
matching predicates quickly is critical to performance. That’s where Giles comes
into play: it creates efficient production systems2.

1.2 What Are Giles-Style Production Systems Good For?
Giles creates production systems that are good for finding patterns in large data
sets where data is added or removed incrementally over time. Some example
use cases:

Log Analysis For example, an engine could be given one fact per log entry, and
could correlate multiple log sources to find complex behavioral patterns.

Inference Engines As facts are added to an engine, a more complete picture
can be built up of a system. For example, a network scanning tool might
assert facts about discovered devices and the engine can infer client-server
relationships, device operating systems, and other pieces of complex in-
formation.

Expert Systems Facts can be asserted listing symptoms. The individual
symptoms could be correlated to infer possible diagnoses. As more di-
agnoses are added from more and more patients over time, inferences can
be made about epidemiological data.

1.3 What You Need to Already Know
Giles’s most interesting feature is that it compiles a production system descrip-
tion in a SQL database schema. This manual assumes that you are already
at least somewhat familiar with SQL. If not, there are many excellent tutori-
als available on the Web. The examples in this manual all use the ubiquitous
and excellent SQLite database engine, and its dialect of SQL is documented at
https://www.sqlite.org/lang.html.

Giles’s input takes the form of YAML (http://www.yaml.org) files. YAML,
which stands for “YAML Ain’t Markup Language” is a human-readable data
serialization language. Some familiarity with YAML might come in handy when
reading this manual, but it is not strictly necessary. (A nice side effect of using
YAML for Giles’s input language is that there are many automated tools that
can process YAML files, making it easy to write programs that can manipulate
Giles source code.)

2 Getting Your Feet Wet
The best way to learn anything is by following examples. This section describes
a basic Giles engine piece by piece, to give you a flavor of the language and the

2Well, as efficient as possible given the rules that were written. It’s possible to write
inefficient programs in any language.

3

https://www.sqlite.org/lang.html
http://www.yaml.org

output engine.

2.1 Facts, Fact Classes, and Rules
In Giles, facts are made up of fields. For example, a fact that describes activity
in a train station might have fields for train number, arrival time, departure
time, destination, etc. A fact that describes a person might have fields for first
and last name, age, and home address.

In Giles, every fact belongs to exactly one fact class, and a fact’s class
determines what fields it has. Every engine has a section called Facts that
describes the fact classes known to the engine.

Every fact has every field filled in — there is no concept of default or NULL
values for fields.

In engines, facts are just rows in normal database tables. New facts are added
to working memory (“asserted”) by inserting rows into tables, and facts are
removed from working memory (“retracted”) by deleting rows. Giles guarantees
(thanks to database transactions) that fact tables are always globally consistent;
after a fact is inserted or removed, all of the fact tables in the system are updated
atomically and can be inspected without fear of inaccurate or missing data.

Facts asserted by the user are always distinct. That is, the user is free to
assert as many facts of the same class and with identical fields as desired. This is
important in situations where multiple facts may be intrinsicly indistinguishable
(say, for example, in an aritificial intelligence problem dealing with differently
colored blocks, some duplicated, where any red block is sufficient). The user
can always add a “distinguishing” field to a fact class (a name, for example) if
necessary. Automated processes can deduplicate data as required.

When Giles compiles an engine, it turns rules into triggers on fact tables.
That way, when a new fact (row) is inserted or removed from working memory
(tables), these triggers fire and perform all of the actions defined by the rules.

That means that working with a Giles engine is as simple as performing
normal SQL INSERT, DELETE, and SELECT statements. What could be easier?

2.2 All Men Are Socrates
Without further ado, here is a simple engine that infers that if someone is
human, he or she is mortal:

1 Facts:
2 IsHuman :
3 Person : STRING
4
5 IsMortal :
6 Person : STRING
7
8 Rules:
9 AllHumansAreMortal :

10 Description : All humans are mortal .

4

11
12 MatchAll :
13 - Fact: IsHuman
14 Meaning : The named person is human.
15 Assign :
16 Person : !expr This. Person
17
18 Assert :
19 IsMortal :
20 Person : !expr Locals . Person

Engine descriptions are purely declarative; it helps to keep this in mind while
reading through this section. Let’s look at this engine piece-by-piece:

Lines 1–6

Here we define two fact classes, IsHuman and IsMortal. IsHuman facts are
assertions that some person is human, while IsMortal facts are assertions that
some person is mortal.

Lines 8–10

Here we define the rules for the engine; this engine only has one. This rule is
named AllHumansAreMortal. We give the rule a human-readable description
(such a description is mandatory for reasons that will be explained later).

Lines 12–16

Here is the predicate for the rule. All predicates have at least a MatchAll clause,
which states “this clause is true if all of my sub-clauses are true”. In this case,
there is just one sub-clause, introduced by the - (hyphen).

The sub-clause declares a fact class to test for (IsHuman), and gives a human-
readable description of what that fact means.

The sub-clause also performs an assignment. Assignments extract parts of
matched facts and store them in local variables. These local variables can then
be used in expressions in other parts of the predicate; it is through local variables
that facts can be interrelated by rules.

Remember that engine descriptions are declarative. While “assignment”
might sound procedural3, it’s still declarative. Predicates are completely order-
insensitive, meaning that the facts that they match can be inserted into working
memory in any order. In light of this, it might have been better to call it
“extraction” rather than “assignment”.

The assignment here creates a new local variable called Person and gives it a
computed value based on an expression. The !expr tag indicates that a dynamic
expression is to follow. These expressions can be arbitrarily complicated, but
in this case, the expression is simple: it’s just the value of the Person field of

3Okay, it does sound procedural. Sorry.

5

the fact matched by this clause (the This specifier refers to “the fact matched
by this clause”).

A new “instance” of a rule is created for each matching set of facts in working
memory. Since there is only one matching clause in our predicate, that means
there will be a new instance of this rule for each IsHuman fact in working memory,
and each instance will have its own value for the Person local variable.

Lines 18–20

Here we define the rule’s action. In this case, it’s Assert, meaning we’re going
to add a new fact to working memory. Assert actions have a single sub-clause,
which is the name of a fact class (in this case, IsMortal), which itself contains
the values that populate the fields of this new fact.

On line 20, we provide a value for the new fact’s only field (Person). Note
that this is a dynamic expression, as indicated by the !expr tag. Again, this
expression could be arbitrarily complicated, but we go for simple in this example:
just the value of the Person local variable.

This assertion completes our rule: we infer that if someone is human, he or
she is mortal.

2.3 Compiling and Loading
Let’s compile this engine. Put the engine description above into a file called
mortal.yml and run this command:

giles -o mortal .sql mortal .yml

This will, assuming nothing goes wrong, give us a SQLite database schema in
mortal.sql.

Let’s create a database by loading this schema into a (completely normal!)
SQLite instance:

sqlite > .read mortal .sql

We now have a working production system.

2.4 Asserting and Viewing
Let’s assert a new fact, asserting that Socrates is human:

sqlite > INSERT INTO Giles_IsHuman_Facts (Person)
...> VALUES (’Socrates ’);

Facts that are asserted like this (that is, directly by the user) are referred to as
axioms or axiomatic facts. That is in contrast to facts that are asserted by the
engine, which are derived facts.

Now that we’ve made this assertion, let’s see if our rule worked and asserted
that Socrates is mortal:

sqlite > SELECT * FROM Giles_IsMortal_Facts ;
Person = Socrates
Id = 1

6

Success!
The id field stores a unique identifier that is automatically added to every

fact. The id is guaranteed to be unique within a given fact class, and so a fact
class plus an id is enough to uniquely identify any fact.

2.5 Justifying
Now that we’ve inferred that Socrates is mortal, we can ask the engine to justify
its knowledge:

sqlite > SELECT Justification
...> FROM Giles_IsMortal_Justification
...> WHERE Id = 1;

Justification =
Fact ’IsMortal #1’ was produced
by rule ’AllHumansAreMortal ’:

All humans are mortal .

Justification :
* The named person is human. (IsHuman #1)

The engine has justified how it knows that Socrates is mortal — namely,
via the rule AllHumansAreMortal and because he IsHuman. This justification
could be applied recursively, all the way back to the axioms that originally lead
to this conclusion.

2.6 Retracting
We can now retract our initial assertion that Socrates is human:

sqlite > DELETE FROM Giles_IsHuman_Facts
...> WHERE Person = ’Socrates ’;

With its support gone, the inference that Socrates is mortal is now gone too:
sqlite > SELECT COUNT (*) FROM Giles_IsMortal_Facts ;
COUNT (*) = 0

2.7 The Fundamental Giles Guarantee
Why did the inference that Socrates is mortal vanish? Because of the funda-
mental guarantee of all Giles engines:

• All facts that can be derived from the current set of axioms in working
memory are derived.

• No facts that cannot be derived from the current set of axioms in working
memory are derived.

That is to say, when the user inserts axioms into working memory, or retracts
them from working memory, the engine guarantees that all of working memory

7

is updated (atomically!) to reflect the set of derivable facts based on those
axioms.

That’s why, when we retracted our assertion that Socrates is human, the
engine no longer provided the fact asserting he was mortal.

This guarantee is always true, and extends no matter how far cause is from
effect. Even if 6.02 × 1023 rules had to fire to make the inference, the engine
will remove the fact if it can no longer be supported by the set of axioms in the
working memory.

This guarantee has some useful consequences. Users can “experiment” with
adding and removing facts safe in the knowledge that nothing will be lost that
can’t be restored, and no unreliable data can be produced. For example, users
could create an expert system that knows about network design, and experiment
with different network layouts by simply adding and removing facts, to see what
the expert system thought about the network design.

3 Fact Classes
As was stated earlier, all facts are instances of exactly one fact class. Engines
must define at least one class of facts.

Fact classes simply specify a name and the names and types of the class’s
fields. A class must have at least one field.

Fact classes are defined in the Facts section of an engine. For example:
1 Facts:
2 Person :
3 FirstName : STRING
4 Age: INTEGER
5 Car:
6 Year: INTEGER
7 Make: STRING

3.1 Field Types
Every field is of some type. Four types are defined:

BOOLEAN Either TRUE or FALSE.

INTEGER An integer of some width.

REAL A floating point number of some precision.

STRING A string of characters in some encoding.

The widths, precisions, and encodings of these types are intentionally vague,
because they depend on the target database. In general, integers are at least
32 bits wide, but might be 64 bits wide or even of infinite width. Real numbers
are usually IEEE double-precision floating point numbers, but might be single
precision.

8

String encoding is the biggest variable, though. Some systems use ASCII,
some use EBCDIC, some support UTF-8, some don’t.

Consult your database’s documentation to get exact limits and semantics
for these types.

3.1.1 Type Checking

Giles performs full and strict type checking on engines during compilation. Type
transfer functions are available to cast values of one type to another.

The following functions are available:

string of bool Cast a boolean to a string value.

string of int Cast an integer to a string value.

string of real Cast a real to a string value.

int of real Cast a real to an integer value.

int of string Cast a string to an integer value.

real of int Cast a integer value to a real value.

The exact semantics of these functions varies depending on the targeted
database system. There is a general guarantee, however: none of these func-
tions will ever result in a NULL value or abort the current transaction. Failed
conversion is always signaled via some database-specific canary value.

One important note about the strict type checking is that there is no silent
promotion of types. It is not possible, for example, to freely mix REAL and
INTEGER values in arithmetic expressions; explicit type transfers must be per-
formed.

3.2 !output Facts
Giles performs a special optimization called α-pruning. This optimization es-
sentially ignores facts that can be cheaply proven to never match any predicate
defined in the engine. “Ignored” in this case means “completely ignored”, in
that inserting such a fact into a table has no effect — not even inserting a row
into the table.

This is an important optimization, because it means that facts that can
never have an impact on the engine take up no storage space. It does however,
come with a price: the user might be interested in some facts even if the engine
never is (say, “alerts” or something). Giles allows fact classes to be spared from
α-pruning by marking the class as !output.

For example:
1 Facts:
2 AnOutputFact : ! output
3 Message : STRING

9

Giles automatically marks fact classes that only appear in actions as !output.
That is, if a fact class never appears in a predicate, it is always an !output class.
This automatic marking handles the vast majority of cases where we have seen
facts marked as !output in practice.

4 Rules
Every rule consists of exactly one predicate and exactly one action.

Because Giles’s expression language is used extensively throughout the var-
ious parts of rules, it might be useful to make a small diversion now to discuss
the expression language in more detail.

4.1 Expressions and the Basic Operators
Remember that Giles’s input language is just YAML. The compiler makes good
use of YAML’s native type scheme, meaning literal numbers and strings and such
can be written “naturally” and things will generally work out fine. However, this
can only express static values, and there are situations where we need dynamic
(that is, calculated at runtime) values.

Enter the !expr tag. A string tagged with !expr is passed to Giles’s expres-
sion parser instead of being treated as a normal string.

Giles’s expression parser is pretty straightforward: it uses normal infix no-
tation, with more-or-less normal precedence, and with parentheses to change
precedence as needed. Functions can be invoked in the “standard” name-and-
parenthesized-argument-list notation.

Here are some sample Giles expressions:
!expr 1 + 1
!expr strlen (" hello , world !")
!expr (Locals .Foo + 7) >= 30 &&

strlen (This.Name) <= 39

The basic binary operators are listed here, in order of precedence:

10

Operator Input Type Result Type Description
* numeric numeric Multiplication
/ numeric numeric Division
% INTEGER INTEGER Remainder
+ numeric numeric Addition
- numeric numeric Subtraction
. STRING STRING Concatenation
== any BOOLEAN Equality
!= any BOOLEAN Not Equal
< numeric BOOLEAN Less Than
> numeric BOOLEAN Greater Than
<= numeric BOOLEAN Less Than or Equal
>= numeric BOOLEAN Greater Than or Equal
˜ STRING BOOLEAN Regex Match (see 4.1.3)
&& BOOLEAN BOOLEAN Conjunction
|| BOOLEAN BOOLEAN Disjunction
AND BOOLEAN BOOLEAN Predicate Join (see 4.2)

There are also two unary operators:

Operator Input Type Result Type Description
- numeric numeric Arithmetic Negation

NOT BOOLEAN BOOLEAN Logical Negation

Unary operators have precedence over all binary operators.

4.1.1 YAML Quirks

Sometimes expressions need to be parenthesized in a certain way to work around
YAML parsing syntax. For example, this expression is not valid YAML:

!expr "Hello , " . "World !"

because it starts with a double quote, and the YAML parser therefore only
parses the string up to the next double quote.

To get around this, parentheses may be used. The above expression could
be safely rewritten like this:

!expr ("Hello , " . "World !")

Note the extra space after the first parenthesis, which is required to ensure the
YAML parser doesn’t treat the expression as a simple string.

4.1.2 Constants, Field References, and Local Variables

There are three namespaces that are visible in expressions. All variable (and
named constant) references are qualified with their namespace.

Named constants are placed in the Constants namespace. Constants are
defined in the Constants section of the engine. For example:

11

1 Constants :
2 Pi: 3.14
3 TheAnswer : 42

These constants could be referred to as Constants.Pi and Constants.TheAnswer
in expressions. The type of a constant is automatically inferred from its decla-
ration.

Field references are valid only in expressions in sub-clauses of predicate
clauses. The fields of the fact matched by that sub-clause are placed into the
This namespace. For example:

1 MatchAll :
2 - Fact: Person
3 Meaning : A person named Douglas who is
4 at least 42 exists .
5 When: !expr This. FirstName == " Douglas " AND
6 This.Age >= 42

Field references can be used inside assignments as well, to extract values from
facts and into local variables.

Local variables are created by assignments in MatchAll predicate clauses.
The engine automatically creates on “instance” of a rule per matching set of
facts in working memory and each instance has its own set of local variables.
Local variables are placed in the Locals namespace. For example:

1 MatchAll :
2 - Fact: Person
3 Meaning : A person exists .
4 Assign :
5 FirstName : !expr This. FirstName
6
7 - Fact: Dog
8 Meaning : A dog exists owned by that person .
9 When: !expr This.Owner == Locals . FirstName

Local variables are the mechanism by which multiple facts can be related to
one another. The assignment of a local variable can use an arbitarily complex
value (that is, the assignment is an expression).

Note that, for technical reasons, the assignment of a local variable must
occur textually prior to its first use. This affects how sub-clauses are ordered,
but should not in any way be taken to mean that the matched facts must be
asserted in some order; predicates are always order-insensitive.

4.1.3 Regular Expressions

Note that the ˜ operator allows regular expressions to be used in engines. How-
ever, regular expressions are not supported by all targeted database backends,
and on others may require special configuration4.

4This is the case in SQLite.

12

To make sure the user is prepared to configure the target database appro-
priately, the compiler will fail to compile an engine using regular expressions
unless the compiler is invoked with the -r flag.

4.2 Predicates
Every rule has a predicate that specifies a pattern of fact(s) to match. Every
predicate has at least a MatchAll clause, and, optionally MatchNone and When
clauses. All of the clauses specified in a predicate must be true for the predicate
to be true and the rule to fire.

Predicates are always order-insensitive: the facts matched by a predicate
can be asserted in any order. Also, the same fact can match multiple different
clauses in a predicate at once. Finally, the engine will find all sets of facts that
match a predicate and fire the rule once for each set.

4.2.1 MatchAll

The MatchAll clause specifies a set of sub-clauses, each matching a single fact.
All sub-clauses of a MatchAll clause must be true for the clause itself to match.

A MatchAll clause looks like this:
1 MatchAll :
2 - Fact: Person
3 Meaning : A person named Socrates exists .
4 When: !expr This. FirstName == " Socrates "
5 Assign :
6 FirstName : !expr This. FirstName
7
8 - Fact: Citizenship
9 Meaning : That person is Athenian .

10 When: !expr This. FirstName == Locals . FirstName AND
11 This.Polis == " Athens "

Each sub-clause begins with a hyphen. This is a YAML-ism to indicate that
the clauses are a list.

Each sub-clause identifies a fact class, and provides a human-readable mean-
ing to be used during justification. Each sub-clause may also optionally have a
complex predicate (the When) portion, and a set of assignments.

If a sub-clause has a complex predicate, it must be a list of field refer-
nece-comparator-value triples conjoined with the special AND operator. The AND
operator acts like a normal boolean conjunction, but combines tests of field
values together into a complex predicate.

If a sub-clause does not have a complex predicate, then the clause will match
any fact of the appropriate class in working memory (that is, there is a default
“true” predicate).

13

4.2.2 MatchNone

The MatchNone clause specifies a set of sub-clauses, each matching a single fact.
If none of the sub-clauses of a MatchNone clause match, then the clause itself
matches.

Each sub-clause of a MatchNone clause is of the same form as the MatchAll
sub-clauses, except that assignments are not allowed.

4.2.3 Final When

A rule may have a final predicate, known as a When predicate. It is simply a
single expression of BOOLEAN type that must be true for the rule to fire. For
example:

1 When: !expr Locals .Foo == TRUE AND Locals .Bar == 39

4.3 Actions
Every rule has exactly one action. Two types of actions are possible: Assert
(add a new fact to working memory) and Suppress (remove some facts from
working memory). Each of these actions modifies working memory in some way,
which can cause more rules’ predicates to match, causing those rules to fire, and
so on.

4.3.1 Assert Actions

The Assert action asserts a new fact into working memory. The action simply
takes the name of a fact class and a dictionary specifying the new fact’s fields’
values. For example:

1 Assert :
2 Car:
3 Make: Yoyodyne
4 Model: Tristero
5 Year: !expr Locals .Year

4.3.2 Suppress

The Supress action retracts facts from working memory. It simply takes the
name of a fact class and a predicate and retracts all facts that match.

For example:
1 Suppress :
2 Fact: Car
3 When: !expr This.Make == ’Yoyodyne ’

Note that the Giles Guarantee (see 2.7) still holds in light of Suppress
actions. For example, say rule R matches fact F and fires, and as its action
suppresses fact F2. If fact F is later suppressed by a rule or retracted by the
user, fact F2 will be restored. This ensures that all derivable facts are derived.

14

However, if the user manually deletes some axioms, things are really and
truly gone. The engine guarantees that all facts derivable from a set of axioms
are derived, but deleting an axiom changes that set, and thus changes the set
of derivable facts.

5 Parameters
Parameters are a special kind of fact class, declared in a special Parameters
section of an engine. These parameters can have limits placed on their values
and can be guaranteed to be singletons, or multiply-valued and indexable by
a string, and have default values. While they are just normal facts under the
hood, they can provide a useful “tuning” interface.

Some example parameters:
1 Parameters :
2 ABooleanParameter :
3 Default : FALSE
4
5 AnIntegerParameter :
6 Default : 100
7 Lower: 0
8 Upper: 100
9

10 ARealParameter :
11 Default : 1.0
12 Lower: 0.0
13 Upper: 1.0
14
15 AStringParameter :
16 Default : "Hello , world !"
17
18 ADictionaryParameter :
19 Dictionary : TRUE
20 Default : FALSE

The engine provides a special interface to the parameters by way of a Parameters
table. Modifying a parameter’s value will fail if an invalid parameter name is
specified, or if the provided value falls outside of the specified limits.

Parameters create fact classes of the same name with a single field of the
appropriate type named Value. Dictionary parameters have an additional field
of type STRING named Key. Parameters are matched in predicates just like any
other fact.

6 Recursive Rules
The matching process in an engine is inherently recursive: when a rule’s action
modifies working memory, more rules may fire as a result. However, as long as

15

there are no cycles among those rules (that is, none of those rules asserts or
suppresses facts that are matched by another of those rules), the processing is
sure to terminate.

Problems arise when cycles like these exist in a rule set. Computation might
go on forever in a recursive loop or the database could raise an exception when
stack space is exhausted.

Giles supports rules with these sorts of cycles5, with the caveat that un-
defined behavior can result if recursion is not terminated or continues on long
enough to exhaust some finite resource provided by the hosting database.

To write these sorts of rule sets, Giles allows an Assert action to be deco-
rated with a !distinct tag. This tag means that a new fact will be asserted if
and only if an identical fact does not already exist. If such a fact already exists,
the rule’s action will not fire. This can be used to break recursive loops.

Note that for the purposes of the !distinct tag, “identical” means “of the
same fact class and with identical values for all its fields”.

Note that the Giles Guarantee (2.7) still applies in this case. If a fact that
is produced distinctly is suppressed, the engine will check to see if any of the
other rules that produce that fact could fire; if so, they do. Thus a suppressed
fact is only suppressed if there are no rules that could produce the fact that are
capable of firing.

Because an engine with cycles in its rule sets can have undefined behavior,
the compiler will not compile such sets unless it is invoked with the -c flag, which
indicates that the user is aware of the cycles and their potential consequences.

It is not possible to suppress a fact belonging to a class that appears in any
!distinct assertion, because it could cause the engine to enter an infinite loop.
Additionally, not all database backends will support these sorts of rule sets, and
others may require special configuration.

7 The Foreign Function Interface
Any single-valued function provided by the host database can be used in an
expression by declaring it via the foreign function interface. This declaration
must state the number and types of arguments, the name of the function in the
database, the name will function will be known as in Giles, and the return type.

For example, the SQLite SUBSTR function has a declaration similar to this:
1 Functions :
2 Substr :
3 External : SUBSTR
4 Parameters : [STRING , INTEGER , INTEGER]
5 Returns : STRING

This declares the Giles function Substr is implemented by the SQLite func-
tion SUBSTR. It takes three parameters: a STRING and two INTEGERs. It returns
a value of type STRING.

5Assuming the underlying database engine supports recursive triggers; not all do, and some
require special configuration.

16

With this declaration, the Substr function can be used in any Giles expres-
sion transparently.

Note that foreign functions must return a single value of the appropriate
type, and must never return NULL (doing so results in undefined behavior).

8 Multi-File Engines
An engine definition can be split across multiple YAML files. Each file can have
any combination of the top-level sections (for example, Facts or Parameters).
All of these top-level sections will be merged together during compilation.

This is a useful structuring technique as engines grow larger.

9 Database-Specific Notes
This section outlines the some notes and caveats specific to different database
backends supported by the compiler.

9.1 SQLite
• SQLite version 3.7.16.1 or greater is required.

• Recursive triggers must be enabled.

• Foreign key support must be enabled.

• By default, SQLite does not support regular expressions. If regular ex-
pressions are used in rules, the user must provide regular expression imple-
mentation that is compatible with the Perl Compatible Regular Expression
(PCRE) library.

• SQLite has a default limit of 1000 recursive trigger invocations. An engine
without cycles in its ruleset would be very unlikely to ever run into this
limit, but with cycles this limit could be reached very quickly. Exceeding
this limit results in a runtime error.

17

	Introduction
	What is a Production System, Anyway?
	What Are Giles-Style Production Systems Good For?
	What You Need to Already Know

	Getting Your Feet Wet
	Facts, Fact Classes, and Rules
	All Men Are Socrates
	Compiling and Loading
	Asserting and Viewing
	Justifying
	Retracting
	The Fundamental Giles Guarantee

	Fact Classes
	Field Types
	Type Checking

	!output Facts

	Rules
	Expressions and the Basic Operators
	YAML Quirks
	Constants, Field References, and Local Variables
	Regular Expressions

	Predicates
	MatchAll
	MatchNone
	Final When

	Actions
	Assert Actions
	Suppress

	Parameters
	Recursive Rules
	The Foreign Function Interface
	Multi-File Engines
	Database-Specific Notes
	SQLite

